Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,7 +15,15 @@ from PIL import Image
|
|
| 15 |
import json
|
| 16 |
import base64
|
| 17 |
from huggingface_hub import InferenceClient
|
|
|
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "spaces==0.43.0"])
|
| 21 |
|
|
@@ -78,6 +86,34 @@ pipe = Flux2Pipeline.from_pretrained(
|
|
| 78 |
)
|
| 79 |
pipe.to(device)
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
# Pull pre-compiled Flux2 Transformer blocks from HF hub
|
| 82 |
# flash-attn估计库估计更新了,导致冲突了,不使用预编译的了
|
| 83 |
# spaces.aoti_blocks_load(pipe.transformer, "zerogpu-aoti/FLUX.2", variant="fa3")
|
|
@@ -171,7 +207,7 @@ def get_duration(prompt_embeds, image_list, width, height, num_inference_steps,
|
|
| 171 |
return max(65, num_inference_steps * step_duration + 10)
|
| 172 |
|
| 173 |
@spaces.GPU(duration=get_duration)
|
| 174 |
-
def
|
| 175 |
# Move embeddings to GPU only when inside the GPU decorated function
|
| 176 |
prompt_embeds = prompt_embeds.to(device)
|
| 177 |
|
|
@@ -187,21 +223,42 @@ def generate_image(prompt_embeds, image_list, width, height, num_inference_steps
|
|
| 187 |
progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps")
|
| 188 |
return callback_kwargs
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
def infer(prompt, input_images=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=50, guidance_scale=2.5, prompt_upsampling=False, progress=gr.Progress()):
|
| 207 |
|
|
@@ -233,7 +290,7 @@ def infer(prompt, input_images=None, seed=42, randomize_seed=False, width=1024,
|
|
| 233 |
|
| 234 |
# 3. Image Generation (GPU bound)
|
| 235 |
progress(0.3, desc="Waiting for GPU...")
|
| 236 |
-
image =
|
| 237 |
prompt_embeds,
|
| 238 |
image_list,
|
| 239 |
width,
|
|
@@ -243,6 +300,10 @@ def infer(prompt, input_images=None, seed=42, randomize_seed=False, width=1024,
|
|
| 243 |
seed,
|
| 244 |
progress
|
| 245 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
return image, seed
|
| 248 |
|
|
|
|
| 15 |
import json
|
| 16 |
import base64
|
| 17 |
from huggingface_hub import InferenceClient
|
| 18 |
+
import logging
|
| 19 |
|
| 20 |
+
# Enhanced logging configuration
|
| 21 |
+
logging.basicConfig(
|
| 22 |
+
level=logging.INFO,
|
| 23 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 24 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
| 25 |
+
)
|
| 26 |
+
logger = logging.getLogger(__name__)
|
| 27 |
|
| 28 |
subprocess.check_call([sys.executable, "-m", "pip", "install", "spaces==0.43.0"])
|
| 29 |
|
|
|
|
| 86 |
)
|
| 87 |
pipe.to(device)
|
| 88 |
|
| 89 |
+
class GenerationError(Exception):
|
| 90 |
+
"""Custom exception for generation errors"""
|
| 91 |
+
pass
|
| 92 |
+
|
| 93 |
+
# -------------------- NSFW 检测模型加载 --------------------
|
| 94 |
+
try:
|
| 95 |
+
logger.info("Loading NSFW detector...")
|
| 96 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 97 |
+
from transformers import AutoProcessor, AutoModelForImageClassification
|
| 98 |
+
nsfw_processor = AutoProcessor.from_pretrained("Falconsai/nsfw_image_detection")
|
| 99 |
+
nsfw_model = AutoModelForImageClassification.from_pretrained(
|
| 100 |
+
"Falconsai/nsfw_image_detection"
|
| 101 |
+
).to(device)
|
| 102 |
+
logger.info("NSFW detector loaded successfully.")
|
| 103 |
+
except Exception as e:
|
| 104 |
+
logger.error(f"Failed to load NSFW detector: {e}")
|
| 105 |
+
nsfw_model = None
|
| 106 |
+
nsfw_processor = None
|
| 107 |
+
|
| 108 |
+
def detect_nsfw(image: Image.Image, threshold: float = 0.5) -> bool:
|
| 109 |
+
"""Returns True if image is NSFW"""
|
| 110 |
+
inputs = nsfw_processor(images=image, return_tensors="pt").to(device)
|
| 111 |
+
with torch.no_grad():
|
| 112 |
+
outputs = nsfw_model(**inputs)
|
| 113 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 114 |
+
nsfw_score = probs[0][1].item() # label 1 = NSFW
|
| 115 |
+
return nsfw_score > threshold
|
| 116 |
+
|
| 117 |
# Pull pre-compiled Flux2 Transformer blocks from HF hub
|
| 118 |
# flash-attn估计库估计更新了,导致冲突了,不使用预编译的了
|
| 119 |
# spaces.aoti_blocks_load(pipe.transformer, "zerogpu-aoti/FLUX.2", variant="fa3")
|
|
|
|
| 207 |
return max(65, num_inference_steps * step_duration + 10)
|
| 208 |
|
| 209 |
@spaces.GPU(duration=get_duration)
|
| 210 |
+
def _generate_image(prompt_embeds, image_list, width, height, num_inference_steps, guidance_scale, seed, progress=gr.Progress()):
|
| 211 |
# Move embeddings to GPU only when inside the GPU decorated function
|
| 212 |
prompt_embeds = prompt_embeds.to(device)
|
| 213 |
|
|
|
|
| 223 |
progress(progress_value, desc=f"Image generating, {step + 1}/{num_inference_steps} steps")
|
| 224 |
return callback_kwargs
|
| 225 |
|
| 226 |
+
try:
|
| 227 |
+
image = pipe(
|
| 228 |
+
prompt_embeds=prompt_embeds,
|
| 229 |
+
image=image_list,
|
| 230 |
+
num_inference_steps=num_inference_steps,
|
| 231 |
+
guidance_scale=guidance_scale,
|
| 232 |
+
generator=generator,
|
| 233 |
+
width=width,
|
| 234 |
+
height=height,
|
| 235 |
+
callback_on_step_end=callback_fn,
|
| 236 |
+
).images[0]
|
| 237 |
+
|
| 238 |
+
# NSFW 检测
|
| 239 |
+
if nsfw_model and nsfw_processor:
|
| 240 |
+
if detect_nsfw(image):
|
| 241 |
+
msg = "Generated image contains NSFW content and cannot be displayed. Please modify the input image or prompt and try again."
|
| 242 |
+
raise Exception(msg)
|
| 243 |
+
|
| 244 |
+
path = save_image(image, "./outputs")
|
| 245 |
+
progress(1, desc="Complete")
|
| 246 |
+
info = {
|
| 247 |
+
"status": "success"
|
| 248 |
+
}
|
| 249 |
+
return path, info
|
| 250 |
+
except GenerationError as e:
|
| 251 |
+
error_info = {
|
| 252 |
+
"error": str(e),
|
| 253 |
+
"status": "failed",
|
| 254 |
+
}
|
| 255 |
+
return None, error_info
|
| 256 |
+
except Exception as e:
|
| 257 |
+
error_info = {
|
| 258 |
+
"error": str(e),
|
| 259 |
+
"status": "failed",
|
| 260 |
+
}
|
| 261 |
+
return None, error_info
|
| 262 |
|
| 263 |
def infer(prompt, input_images=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=50, guidance_scale=2.5, prompt_upsampling=False, progress=gr.Progress()):
|
| 264 |
|
|
|
|
| 290 |
|
| 291 |
# 3. Image Generation (GPU bound)
|
| 292 |
progress(0.3, desc="Waiting for GPU...")
|
| 293 |
+
image, info = _generate_image(
|
| 294 |
prompt_embeds,
|
| 295 |
image_list,
|
| 296 |
width,
|
|
|
|
| 300 |
seed,
|
| 301 |
progress
|
| 302 |
)
|
| 303 |
+
|
| 304 |
+
# 如果出错,抛出异常
|
| 305 |
+
if info["status"] == "failed":
|
| 306 |
+
raise gr.Error(info["error"])
|
| 307 |
|
| 308 |
return image, seed
|
| 309 |
|