dungeon29 commited on
Commit
03ce3a4
·
verified ·
1 Parent(s): eb3c854

Update llm_client.py

Browse files
Files changed (1) hide show
  1. llm_client.py +5 -3
llm_client.py CHANGED
@@ -120,7 +120,8 @@ class GroqLLM(LLM):
120
  model=self.groq_model,
121
  temperature=0.3,
122
  max_tokens=1024,
123
- stop=stop_seq
 
124
  )
125
  return chat_completion.choices[0].message.content
126
  except Exception as e:
@@ -204,7 +205,7 @@ class LLMClient:
204
  self.server_bin,
205
  "-m", self.model_path,
206
  "--port", str(self.server_port),
207
- "-c", "8192",
208
  "--host", "0.0.0.0",
209
  "--mlock" # Lock model in RAM to prevent swapping
210
  ]
@@ -262,12 +263,13 @@ class LLMClient:
262
  # Custom Prompt Template
263
  template = """<|im_start|>system
264
  You are CyberGuard - an AI specialized in Phishing Detection.
265
- Task: Analyze the provided URL and HTML snippet to classify the website as 'PHISHING' or 'BENIGN'.
266
  Check specifically for BRAND IMPERSONATION (e.g. Facebook, Google, Banks).
267
  If the HTML content is missing, empty, or contains an error message (like "Could not fetch website content"), YOU MUST RETURN classification by ANALYZING the URL.
268
  Classification Rules:
269
  - PHISHING: Typosquatting URLs (e.g., paypa1.com), hidden login forms, obfuscated javascript, mismatched branding vs URL.
270
  - BENIGN: Legitimate website, clean code, URL matches the content/brand.
 
271
 
272
  RETURN THE RESULT IN THE EXACT FOLLOWING FORMAT (NO PREAMBLE):
273
 
 
120
  model=self.groq_model,
121
  temperature=0.3,
122
  max_tokens=1024,
123
+ stop=stop_seq,
124
+ extra_body={"enable_thinking": True}
125
  )
126
  return chat_completion.choices[0].message.content
127
  except Exception as e:
 
205
  self.server_bin,
206
  "-m", self.model_path,
207
  "--port", str(self.server_port),
208
+ "-c", "8192", # Increased context window to handle web content
209
  "--host", "0.0.0.0",
210
  "--mlock" # Lock model in RAM to prevent swapping
211
  ]
 
263
  # Custom Prompt Template
264
  template = """<|im_start|>system
265
  You are CyberGuard - an AI specialized in Phishing Detection.
266
+ Task: Analyze the provided URL and HTML snippet to classify the website as 'PHISHING' or 'BENIGN'.
267
  Check specifically for BRAND IMPERSONATION (e.g. Facebook, Google, Banks).
268
  If the HTML content is missing, empty, or contains an error message (like "Could not fetch website content"), YOU MUST RETURN classification by ANALYZING the URL.
269
  Classification Rules:
270
  - PHISHING: Typosquatting URLs (e.g., paypa1.com), hidden login forms, obfuscated javascript, mismatched branding vs URL.
271
  - BENIGN: Legitimate website, clean code, URL matches the content/brand.
272
+ Let's think step by step to verify logical inconsistencies between URL and Content before deciding.
273
 
274
  RETURN THE RESULT IN THE EXACT FOLLOWING FORMAT (NO PREAMBLE):
275