Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
b8dd3b4
1
Parent(s):
54f5ad7
Replace bpy with trimesh for GLB export (Python 3.10 compatible)
Browse files- README.md +1 -1
- app.py +13 -32
- requirements.txt +1 -1
README.md
CHANGED
|
@@ -9,7 +9,7 @@ python_version: "3.11"
|
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
| 11 |
license: other
|
| 12 |
-
hardware: a10g
|
| 13 |
tags:
|
| 14 |
- mcp-server-track
|
| 15 |
- building-mcp-track-consumer
|
|
|
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
| 11 |
license: other
|
| 12 |
+
hardware: zero-a10g
|
| 13 |
tags:
|
| 14 |
- mcp-server-track
|
| 15 |
- building-mcp-track-consumer
|
app.py
CHANGED
|
@@ -89,53 +89,34 @@ def reconstruct_body(image: np.ndarray) -> tuple:
|
|
| 89 |
|
| 90 |
try:
|
| 91 |
import torch
|
| 92 |
-
import
|
| 93 |
estimator, faces = load_model()
|
| 94 |
-
|
| 95 |
# Process image
|
| 96 |
if isinstance(image, Image.Image):
|
| 97 |
image = np.array(image)
|
| 98 |
-
|
| 99 |
# BGR for OpenCV
|
| 100 |
import cv2
|
| 101 |
img_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 102 |
-
|
| 103 |
outputs = estimator.process_one_image(img_bgr, bbox_thr=0.5)
|
| 104 |
-
|
| 105 |
if not outputs:
|
| 106 |
return None, "⚠️ No humans detected"
|
| 107 |
-
|
| 108 |
-
# Export first person as GLB via
|
| 109 |
person = outputs[0]
|
| 110 |
vertices = person["pred_vertices"]
|
| 111 |
-
|
| 112 |
-
#
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
# Create mesh
|
| 116 |
-
mesh = bpy.data.meshes.new("body_mesh")
|
| 117 |
-
mesh.from_pydata(vertices.tolist(), [], faces.tolist())
|
| 118 |
-
mesh.update()
|
| 119 |
-
|
| 120 |
-
# Create object
|
| 121 |
-
obj = bpy.data.objects.new("body", mesh)
|
| 122 |
-
bpy.context.collection.objects.link(obj)
|
| 123 |
-
bpy.context.view_layer.objects.active = obj
|
| 124 |
-
obj.select_set(True)
|
| 125 |
-
|
| 126 |
-
# Smooth shading
|
| 127 |
-
for poly in mesh.polygons:
|
| 128 |
-
poly.use_smooth = True
|
| 129 |
-
|
| 130 |
# Save GLB
|
| 131 |
output_dir = tempfile.mkdtemp()
|
| 132 |
glb_path = f"{output_dir}/body_{uuid.uuid4().hex[:8]}.glb"
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
export_format='GLB',
|
| 136 |
-
use_selection=True
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
return glb_path, f"✓ Reconstructed {len(outputs)} person(s)"
|
| 140 |
|
| 141 |
except Exception as e:
|
|
|
|
| 89 |
|
| 90 |
try:
|
| 91 |
import torch
|
| 92 |
+
import trimesh
|
| 93 |
estimator, faces = load_model()
|
| 94 |
+
|
| 95 |
# Process image
|
| 96 |
if isinstance(image, Image.Image):
|
| 97 |
image = np.array(image)
|
| 98 |
+
|
| 99 |
# BGR for OpenCV
|
| 100 |
import cv2
|
| 101 |
img_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 102 |
+
|
| 103 |
outputs = estimator.process_one_image(img_bgr, bbox_thr=0.5)
|
| 104 |
+
|
| 105 |
if not outputs:
|
| 106 |
return None, "⚠️ No humans detected"
|
| 107 |
+
|
| 108 |
+
# Export first person as GLB via trimesh
|
| 109 |
person = outputs[0]
|
| 110 |
vertices = person["pred_vertices"]
|
| 111 |
+
|
| 112 |
+
# Create trimesh mesh
|
| 113 |
+
mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
|
| 114 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
# Save GLB
|
| 116 |
output_dir = tempfile.mkdtemp()
|
| 117 |
glb_path = f"{output_dir}/body_{uuid.uuid4().hex[:8]}.glb"
|
| 118 |
+
mesh.export(glb_path, file_type='glb')
|
| 119 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
return glb_path, f"✓ Reconstructed {len(outputs)} person(s)"
|
| 121 |
|
| 122 |
except Exception as e:
|
requirements.txt
CHANGED
|
@@ -3,7 +3,7 @@ torchvision>=0.17.0
|
|
| 3 |
gradio>=6.0.2
|
| 4 |
huggingface_hub>=0.26.0
|
| 5 |
spaces>=0.30.0
|
| 6 |
-
|
| 7 |
numpy>=1.26.0
|
| 8 |
opencv-python>=4.8.0
|
| 9 |
Pillow>=10.0.0
|
|
|
|
| 3 |
gradio>=6.0.2
|
| 4 |
huggingface_hub>=0.26.0
|
| 5 |
spaces>=0.30.0
|
| 6 |
+
trimesh>=4.0.0
|
| 7 |
numpy>=1.26.0
|
| 8 |
opencv-python>=4.8.0
|
| 9 |
Pillow>=10.0.0
|