Spaces:
Running
Running
File size: 9,555 Bytes
a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 505f1d7 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 505f1d7 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 a1dbd9c 79ef7e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# app/main.py – FastAPI + Aida AI Agent (Production with ML Integration)
# ============================================================
from fastapi import FastAPI, Request, WebSocket, WebSocketDisconnect
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from fastapi.exceptions import RequestValidationError
from contextlib import asynccontextmanager
import logging
import os
# ---------- core imports ----------
try:
from app.config import settings
from app.database import connect_db, disconnect_db, ensure_indexes as ensure_auth_indexes
from app.routes import auth
from app.utils.logger import setup_logger
from app.core.exceptions import AuthException
setup_logger()
except ImportError as e:
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.error(f"Import error: {e}")
class AuthException(Exception):
def __init__(self, status_code=500, detail="Error", error_code="ERROR", message="Error"):
self.status_code = status_code
self.detail = detail
self.error_code = error_code
self.message = message
self.data = {}
logger = logging.getLogger(__name__)
# ---------- AI imports ----------
from app.ai.routes.chat import router as ai_chat_router
from app.models.listing import ensure_listing_indexes
from app.ai.config import redis_client, qdrant_client
from app.ml.models.ml_listing_extractor import get_ml_extractor # ✅ NEW
# ====================================================================
# ML Startup Validation - NEW
# ====================================================================
async def validate_ml_startup():
"""Validate ML extractor and models at startup"""
try:
ml = get_ml_extractor()
logger.info("✅ ML Extractor initialized")
# Check if models are trained
if ml.field_models and ml.field_models.get("location_classifier") is not None:
logger.info("✅ ML field models loaded")
else:
logger.warning("âš ï¸ ML field models not trained - limited accuracy")
logger.warning(" Run: python app/ml/training/train_complete_model.py")
# Test currency manager (non-blocking)
try:
currency, country, city, conf = await ml.currency_mgr.get_currency_for_location("Lagos")
if currency:
logger.info(f"✅ Currency Manager working (Lagos → {currency})")
except Exception as e:
logger.warning(f"âš ï¸ Currency Manager test failed: {e}")
# Check embedder
if ml.embedder is not None:
logger.info("✅ Sentence embedder ready")
else:
logger.warning("âš ï¸ Sentence embedder not available")
logger.info("✅ All ML checks passed")
return True
except Exception as e:
logger.error("⌠ML Extractor initialization failed", exc_info=e)
logger.warning("âš ï¸ Continuing without ML features (degraded mode)")
return False
# ====================================================================
# Lifespan – non-blocking external services
# ====================================================================
@asynccontextmanager
async def lifespan(app: FastAPI):
logger.info("🚀 Starting Lojiz Platform + Aida AI with ML Integration")
# 1. MongoDB – critical, must succeed
try:
await connect_db()
await ensure_auth_indexes()
await ensure_listing_indexes()
logger.info("✅ MongoDB connected & indexed")
except Exception as e:
logger.critical("⌠MongoDB unavailable – aborting start", exc_info=e)
raise
# 2. Redis – optional at boot
try:
await redis_client.ping()
logger.info("✅ Redis connected")
except Exception as e:
logger.warning("âš ï¸ Redis unreachable at start-up (ok for now)", exc_info=e)
# 3. Qdrant – optional at boot
try:
await qdrant_client.get_collections()
logger.info("✅ Qdrant connected")
except Exception as e:
logger.warning("âš ï¸ Qdrant unreachable at start-up (ok for now)", exc_info=e)
# 4. ML Extractor – optional but recommended
try:
ml_ready = await validate_ml_startup()
if not ml_ready:
logger.warning("âš ï¸ Running in degraded mode without ML features")
except Exception as e:
logger.error("⌠ML validation failed", exc_info=e)
logger.warning("âš ï¸ Continuing without ML features")
yield
logger.info("🛑 Shutting down Lojiz Platform")
try:
# Clear ML caches
try:
ml = get_ml_extractor()
ml.currency_mgr.clear_cache()
logger.info("✅ ML caches cleared")
except:
pass
await disconnect_db()
await redis_client.close()
logger.info("✅ Cleanup complete")
except Exception as e:
logger.warning("âš ï¸ Shutdown warning", exc_info=e)
# ====================================================================
# FastAPI instance
# ====================================================================
app = FastAPI(
title="Lojiz Platform + Aida AI",
description="Conversational real-estate agent with secure auth & ML features",
version="1.0.0",
lifespan=lifespan,
)
# ====================================================================
# CORS
# ====================================================================
environment = os.getenv("ENVIRONMENT", "development")
is_production = environment == "production"
cors_origins = [
"https://lojiz.onrender.com",
"https://lojiz.com",
"https://www.lojiz.com",
] if is_production else [
"http://localhost",
"http://localhost:3000",
"http://localhost:55211",
"http://127.0.0.1",
"http://127.0.0.1:3000",
"http://127.0.0.1:5000",
"http://127.0.0.1:8080",
"http://127.0.0.1:56205",
]
app.add_middleware(
CORSMiddleware,
allow_origins=cors_origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
expose_headers=["*"],
max_age=600,
)
# ====================================================================
# Exception handlers
# ====================================================================
@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
logger.error(f"Validation error: {exc}")
errors = []
for error in exc.errors():
field = ".".join(str(loc) for loc in error["loc"][1:])
errors.append({"field": field, "message": error["msg"]})
return JSONResponse(
status_code=400,
content={
"success": False,
"message": "Validation error. Please check your input.",
"error_code": "VALIDATION_ERROR",
"errors": errors,
},
)
@app.exception_handler(AuthException)
async def auth_exception_handler(request: Request, exc: AuthException):
logger.warning(f"Auth error [{exc.error_code}]: {exc.message}")
response = {"success": False, "message": exc.message, "error_code": exc.error_code}
if exc.data:
response["data"] = exc.data
return JSONResponse(status_code=exc.status_code, content=response)
@app.exception_handler(Exception)
async def general_exception_handler(request: Request, exc: Exception):
logger.error(f"Unexpected error: {str(exc)}", exc_info=True)
return JSONResponse(
status_code=500,
content={
"success": False,
"message": "An unexpected error occurred. Please try again later.",
"error_code": "INTERNAL_SERVER_ERROR",
"error": str(exc) if not is_production else None,
},
)
# ====================================================================
# Routers
# ====================================================================
app.include_router(auth.router, prefix="/api/auth", tags=["Authentication"])
app.include_router(ai_chat_router, prefix="/ai", tags=["Aida AI"])
# ====================================================================
# Health
# ====================================================================
@app.get("/health", tags=["Health"])
async def health_check():
"""Health check endpoint with ML status"""
try:
ml = get_ml_extractor()
ml_ready = ml.field_models.get("location_classifier") is not None if ml.field_models else False
except:
ml_ready = False
return {
"status": "ok",
"service": "Lojiz Platform + Aida AI",
"version": "1.0.0",
"environment": environment,
"ml_ready": ml_ready, # ✅ NEW
}
@app.get("/", tags=["Root"])
async def root():
return {
"message": "Welcome to Lojiz Platform + Aida AI",
"docs": "/docs",
"health": "/health",
"environment": environment,
}
@app.options("/{full_path:path}", include_in_schema=False)
async def options_handler(full_path: str):
return JSONResponse(status_code=200, content={})
# ====================================================================
# Run: uvicorn app.main:app --reload
# ==================================================================== |