Spaces:
Sleeping
Sleeping
dbouget
commited on
Commit
·
9d26f07
1
Parent(s):
a53b581
Overall update to match Raidionics v1.3
Browse files- .github/workflows/deploy.yml +1 -1
- Dockerfile +4 -12
- requirements.txt +2 -2
- src/gui.py +115 -90
- src/inference.py +37 -19
.github/workflows/deploy.yml
CHANGED
|
@@ -10,7 +10,7 @@ jobs:
|
|
| 10 |
sync-to-hub:
|
| 11 |
runs-on: ubuntu-latest
|
| 12 |
steps:
|
| 13 |
-
- uses: actions/checkout@
|
| 14 |
with:
|
| 15 |
fetch-depth: 0
|
| 16 |
lfs: true
|
|
|
|
| 10 |
sync-to-hub:
|
| 11 |
runs-on: ubuntu-latest
|
| 12 |
steps:
|
| 13 |
+
- uses: actions/checkout@v4
|
| 14 |
with:
|
| 15 |
fetch-depth: 0
|
| 16 |
lfs: true
|
Dockerfile
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
# you will also find guides on how best to write your Dockerfile
|
| 3 |
-
FROM python:3.
|
| 4 |
|
| 5 |
# set language, format and stuff
|
| 6 |
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
|
@@ -30,7 +30,7 @@ COPY ./requirements.txt /code/requirements.txt
|
|
| 30 |
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 31 |
|
| 32 |
# resolve issue with tf==2.4 and gradio dependency collision issue
|
| 33 |
-
RUN pip install --force-reinstall typing_extensions==4.7.1
|
| 34 |
|
| 35 |
# Install wget
|
| 36 |
RUN apt install wget -y && \
|
|
@@ -54,16 +54,8 @@ COPY --chown=user . $HOME/app
|
|
| 54 |
|
| 55 |
# Download pretrained models
|
| 56 |
RUN mkdir -p resources/models/
|
| 57 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/
|
| 58 |
-
unzip "
|
| 59 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-MRI_GBM-ONNX-v12.zip" && \
|
| 60 |
-
unzip "Raidionics-MRI_GBM-ONNX-v12.zip" && mv MRI_GBM/ resources/models/MRI_GBM/
|
| 61 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-MRI_LGGlioma-ONNX-v12.zip" && \
|
| 62 |
-
unzip "Raidionics-MRI_LGGlioma-ONNX-v12.zip" && mv MRI_LGGlioma/ resources/models/MRI_LGGlioma/
|
| 63 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-MRI_Meningioma-ONNX-v12.zip" && \
|
| 64 |
-
unzip "Raidionics-MRI_Meningioma-ONNX-v12.zip" && mv MRI_Meningioma/ resources/models/MRI_Meningioma/
|
| 65 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-MRI_Metastasis-ONNX-v12.zip" && \
|
| 66 |
-
unzip "Raidionics-MRI_Metastasis-ONNX-v12.zip" && mv MRI_Metastasis/ resources/models/MRI_Metastasis/
|
| 67 |
|
| 68 |
RUN rm -r *.zip
|
| 69 |
|
|
|
|
| 1 |
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
FROM python:3.10-slim
|
| 4 |
|
| 5 |
# set language, format and stuff
|
| 6 |
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
|
|
|
| 30 |
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 31 |
|
| 32 |
# resolve issue with tf==2.4 and gradio dependency collision issue
|
| 33 |
+
# RUN pip install --force-reinstall typing_extensions==4.7.1
|
| 34 |
|
| 35 |
# Install wget
|
| 36 |
RUN apt install wget -y && \
|
|
|
|
| 54 |
|
| 55 |
# Download pretrained models
|
| 56 |
RUN mkdir -p resources/models/
|
| 57 |
+
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/v1.3.0-rc/Raidionics_HF_Neuro_Resources-v13.zip" && \
|
| 58 |
+
unzip "Raidionics_HF_Neuro_Resources-v13.zip" -d resources/models/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
RUN rm -r *.zip
|
| 61 |
|
requirements.txt
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
raidionicsrads
|
| 2 |
-
gradio
|
|
|
|
| 1 |
+
raidionicsrads
|
| 2 |
+
gradio
|
src/gui.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
from .inference import run_model
|
| 6 |
from .utils import load_pred_volume_to_numpy
|
|
@@ -15,50 +18,47 @@ class WebUI:
|
|
| 15 |
cwd: str = "/home/user/app/",
|
| 16 |
share: int = 1,
|
| 17 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# global states
|
| 19 |
self.images = []
|
| 20 |
self.pred_images = []
|
| 21 |
-
|
| 22 |
-
# @TODO: This should be dynamically set based on chosen volume size
|
| 23 |
-
self.nb_slider_items = 512
|
| 24 |
|
| 25 |
self.model_name = model_name
|
| 26 |
self.cwd = cwd
|
| 27 |
self.share = share
|
| 28 |
|
| 29 |
-
self.class_name = "
|
| 30 |
self.class_names = {
|
| 31 |
-
"
|
| 32 |
-
"
|
| 33 |
-
"
|
| 34 |
-
"
|
| 35 |
"brain": "MRI_Brain",
|
| 36 |
}
|
| 37 |
|
| 38 |
self.result_names = {
|
| 39 |
-
"
|
| 40 |
-
"
|
| 41 |
-
"
|
| 42 |
-
"
|
| 43 |
"brain": "Brain",
|
| 44 |
}
|
| 45 |
|
| 46 |
-
# define widgets not to be rendered immediately, but later on
|
| 47 |
-
self.slider = gr.Slider(
|
| 48 |
-
minimum=1,
|
| 49 |
-
maximum=self.nb_slider_items,
|
| 50 |
-
value=1,
|
| 51 |
-
step=1,
|
| 52 |
-
label="Which 2D slice to show",
|
| 53 |
-
interactive=True,
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
self.volume_renderer = gr.Model3D(
|
| 57 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
| 58 |
label="3D Model",
|
| 59 |
visible=True,
|
| 60 |
elem_id="model-3d",
|
| 61 |
-
|
|
|
|
| 62 |
|
| 63 |
def set_class_name(self, value):
|
| 64 |
print("Changed task to:", value)
|
|
@@ -70,35 +70,97 @@ class WebUI:
|
|
| 70 |
def upload_file(self, file):
|
| 71 |
return file.name
|
| 72 |
|
| 73 |
-
def process(self, mesh_file_name):
|
| 74 |
path = mesh_file_name.name
|
| 75 |
run_model(
|
| 76 |
path,
|
| 77 |
model_path=os.path.join(self.cwd, "resources/models/"),
|
| 78 |
task=self.class_names[self.class_name],
|
| 79 |
name=self.result_names[self.class_name],
|
|
|
|
| 80 |
)
|
| 81 |
nifti_to_glb("prediction.nii.gz")
|
| 82 |
|
| 83 |
self.images = load_to_numpy(path)
|
| 84 |
-
# @TODO. Dynamic update of the slider does not seem to work like this
|
| 85 |
-
# self.nb_slider_items = len(self.images)
|
| 86 |
-
# self.slider.update(value=int(self.nb_slider_items/2), maximum=self.nb_slider_items)
|
| 87 |
|
| 88 |
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
def get_img_pred_pair(self, k):
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
def run(self):
|
| 104 |
css = """
|
|
@@ -114,66 +176,29 @@ class WebUI:
|
|
| 114 |
}
|
| 115 |
"""
|
| 116 |
with gr.Blocks(css=css) as demo:
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
file_output.upload(self.upload_file, file_output, file_output)
|
| 120 |
-
|
| 121 |
-
model_selector = gr.Dropdown(
|
| 122 |
-
list(self.class_names.keys()),
|
| 123 |
-
label="Segmentation task",
|
| 124 |
-
info="Select the preoperative segmentation model to run",
|
| 125 |
-
multiselect=False,
|
| 126 |
-
size="sm",
|
| 127 |
-
)
|
| 128 |
-
model_selector.input(
|
| 129 |
-
fn=lambda x: self.set_class_name(x),
|
| 130 |
-
inputs=model_selector,
|
| 131 |
-
outputs=None,
|
| 132 |
-
)
|
| 133 |
-
|
| 134 |
-
run_btn = gr.Button("Run segmentation").style(
|
| 135 |
-
full_width=False, size="lg"
|
| 136 |
-
)
|
| 137 |
-
run_btn.click(
|
| 138 |
-
fn=lambda x: self.process(x),
|
| 139 |
-
inputs=file_output,
|
| 140 |
-
outputs=self.volume_renderer,
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
with gr.Row():
|
| 144 |
gr.Examples(
|
| 145 |
examples=[
|
| 146 |
os.path.join(self.cwd, "t1gd.nii.gz"),
|
| 147 |
],
|
| 148 |
-
inputs=file_output,
|
| 149 |
-
outputs=file_output,
|
| 150 |
fn=self.upload_file,
|
| 151 |
cache_examples=True,
|
| 152 |
)
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
height=512,
|
| 165 |
-
width=512,
|
| 166 |
-
)
|
| 167 |
-
image_boxes.append(t)
|
| 168 |
-
|
| 169 |
-
self.slider.input(
|
| 170 |
-
self.get_img_pred_pair, self.slider, image_boxes
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
-
self.slider.render()
|
| 174 |
-
|
| 175 |
-
with gr.Box():
|
| 176 |
-
self.volume_renderer.render()
|
| 177 |
|
| 178 |
# sharing app publicly -> share=True:
|
| 179 |
# https://gradio.app/sharing-your-app/
|
|
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import logging
|
| 6 |
+
from zipfile import ZipFile
|
| 7 |
|
| 8 |
from .inference import run_model
|
| 9 |
from .utils import load_pred_volume_to_numpy
|
|
|
|
| 18 |
cwd: str = "/home/user/app/",
|
| 19 |
share: int = 1,
|
| 20 |
):
|
| 21 |
+
self.file_output = None
|
| 22 |
+
self.model_selector = None
|
| 23 |
+
self.stripped_cb = None
|
| 24 |
+
self.registered_cb = None
|
| 25 |
+
self.run_btn = None
|
| 26 |
+
self.slider = None
|
| 27 |
+
self.download_file = None
|
| 28 |
+
|
| 29 |
# global states
|
| 30 |
self.images = []
|
| 31 |
self.pred_images = []
|
| 32 |
+
self.image_boxes = []
|
|
|
|
|
|
|
| 33 |
|
| 34 |
self.model_name = model_name
|
| 35 |
self.cwd = cwd
|
| 36 |
self.share = share
|
| 37 |
|
| 38 |
+
self.class_name = "tumorcore" # default
|
| 39 |
self.class_names = {
|
| 40 |
+
"tumorcore": "MRI_TumorCore",
|
| 41 |
+
"NETC": "MRI_Necrosis",
|
| 42 |
+
"residual-tumor": "MRI_TumorCE_Postop",
|
| 43 |
+
"cavity": "MRI_Cavity",
|
| 44 |
"brain": "MRI_Brain",
|
| 45 |
}
|
| 46 |
|
| 47 |
self.result_names = {
|
| 48 |
+
"tumorcore": "Tumor",
|
| 49 |
+
"NETC": "NETC",
|
| 50 |
+
"residual-tumor": "Tumor",
|
| 51 |
+
"cavity": "Cavity",
|
| 52 |
"brain": "Brain",
|
| 53 |
}
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
self.volume_renderer = gr.Model3D(
|
| 56 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
| 57 |
label="3D Model",
|
| 58 |
visible=True,
|
| 59 |
elem_id="model-3d",
|
| 60 |
+
height=512,
|
| 61 |
+
)
|
| 62 |
|
| 63 |
def set_class_name(self, value):
|
| 64 |
print("Changed task to:", value)
|
|
|
|
| 70 |
def upload_file(self, file):
|
| 71 |
return file.name
|
| 72 |
|
| 73 |
+
def process(self, mesh_file_name, stripped_inputs_status:bool=False):
|
| 74 |
path = mesh_file_name.name
|
| 75 |
run_model(
|
| 76 |
path,
|
| 77 |
model_path=os.path.join(self.cwd, "resources/models/"),
|
| 78 |
task=self.class_names[self.class_name],
|
| 79 |
name=self.result_names[self.class_name],
|
| 80 |
+
stripped_inputs_status=stripped_inputs_status,
|
| 81 |
)
|
| 82 |
nifti_to_glb("prediction.nii.gz")
|
| 83 |
|
| 84 |
self.images = load_to_numpy(path)
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
|
| 87 |
+
slider = gr.Slider(
|
| 88 |
+
minimum=0,
|
| 89 |
+
maximum=len(self.images) - 1,
|
| 90 |
+
value=int(len(self.images) / 2),
|
| 91 |
+
step=1,
|
| 92 |
+
label="Which 2D slice to show",
|
| 93 |
+
interactive=True,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
return "./prediction.obj", slider
|
| 97 |
|
| 98 |
def get_img_pred_pair(self, k):
|
| 99 |
+
img = self.images[k]
|
| 100 |
+
img_pil = Image.fromarray(img)
|
| 101 |
+
seg_list = []
|
| 102 |
+
seg_list.append((self.pred_images[k], self.class_name))
|
| 103 |
+
return img_pil, seg_list
|
| 104 |
+
|
| 105 |
+
def setup_interface_inputs(self):
|
| 106 |
+
with gr.Row():
|
| 107 |
+
with gr.Column():
|
| 108 |
+
self.file_output = gr.File(file_count="single", elem_id="upload")
|
| 109 |
+
|
| 110 |
+
with gr.Column():
|
| 111 |
+
self.model_selector = gr.Dropdown(
|
| 112 |
+
list(self.class_names.keys()),
|
| 113 |
+
label="Segmentation task",
|
| 114 |
+
info="Select the segmentation model to run",
|
| 115 |
+
multiselect=False,
|
| 116 |
+
# size="sm",
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
with gr.Column():
|
| 120 |
+
with gr.Row():
|
| 121 |
+
self.stripped_cb = gr.Checkbox(label="Stripped inputs")
|
| 122 |
+
self.registered_cb = gr.Checkbox(label="Co-registered inputs")
|
| 123 |
+
with gr.Row():
|
| 124 |
+
self.run_btn = gr.Button("Run segmentation", scale=1)
|
| 125 |
+
|
| 126 |
+
def setup_interface_outputs(self):
|
| 127 |
+
with gr.Row():
|
| 128 |
+
with gr.Group():
|
| 129 |
+
with gr.Column():
|
| 130 |
+
t = gr.AnnotatedImage(
|
| 131 |
+
visible=True,
|
| 132 |
+
elem_id="model-2d",
|
| 133 |
+
color_map={self.class_name: "#ffae00"},
|
| 134 |
+
height=512,
|
| 135 |
+
width=512,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
self.slider = gr.Slider(
|
| 139 |
+
minimum=0,
|
| 140 |
+
maximum=1,
|
| 141 |
+
value=0,
|
| 142 |
+
step=1,
|
| 143 |
+
label="Which 2D slice to show",
|
| 144 |
+
interactive=True,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
self.slider.change(fn=self.get_img_pred_pair, inputs=self.slider, outputs=t)
|
| 148 |
+
|
| 149 |
+
with gr.Group():
|
| 150 |
+
self.volume_renderer.render()
|
| 151 |
+
self.download_btn = gr.DownloadButton(label="Download results", visible=False)
|
| 152 |
+
self.download_file = gr.File(label="Download Zip", interactive=True, visible=False)
|
| 153 |
+
|
| 154 |
+
def package_results(self):
|
| 155 |
+
"""Generates text files and zips them."""
|
| 156 |
+
output_dir = "temp_output"
|
| 157 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 158 |
+
|
| 159 |
+
zip_filename = os.path.join(output_dir, "generated_files.zip")
|
| 160 |
+
with ZipFile(zip_filename, 'w') as zf:
|
| 161 |
+
zf.write("./prediction.nii.gz")
|
| 162 |
+
|
| 163 |
+
return zip_filename
|
| 164 |
|
| 165 |
def run(self):
|
| 166 |
css = """
|
|
|
|
| 176 |
}
|
| 177 |
"""
|
| 178 |
with gr.Blocks(css=css) as demo:
|
| 179 |
+
# Define the interface components first
|
| 180 |
+
self.setup_interface_inputs()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
with gr.Row():
|
| 182 |
gr.Examples(
|
| 183 |
examples=[
|
| 184 |
os.path.join(self.cwd, "t1gd.nii.gz"),
|
| 185 |
],
|
| 186 |
+
inputs=self.file_output,
|
| 187 |
+
outputs=self.file_output,
|
| 188 |
fn=self.upload_file,
|
| 189 |
cache_examples=True,
|
| 190 |
)
|
| 191 |
+
self.setup_interface_outputs()
|
| 192 |
+
|
| 193 |
+
# Define the signals/slots
|
| 194 |
+
self.file_output.upload(self.upload_file, self.file_output, self.file_output)
|
| 195 |
+
self.model_selector.input(fn=lambda x: self.set_class_name(x), inputs=self.model_selector, outputs=None)
|
| 196 |
+
self.run_btn.click(fn=self.process, inputs=[self.file_output, self.stripped_cb],
|
| 197 |
+
outputs=[self.volume_renderer, self.slider]).then(fn=lambda:
|
| 198 |
+
gr.DownloadButton(visible=True), inputs=None, outputs=self.download_btn)
|
| 199 |
+
self.download_btn.click(fn=self.package_results, inputs=[], outputs=self.download_file).then(fn=lambda
|
| 200 |
+
file_path: gr.File(label="Download Zip", visible=True, value=file_path), inputs=self.download_file,
|
| 201 |
+
outputs=self.download_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
# sharing app publicly -> share=True:
|
| 204 |
# https://gradio.app/sharing-your-app/
|
src/inference.py
CHANGED
|
@@ -2,14 +2,17 @@ import configparser
|
|
| 2 |
import logging
|
| 3 |
import os
|
| 4 |
import shutil
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
def run_model(
|
| 8 |
input_path: str,
|
| 9 |
model_path: str,
|
| 10 |
verbose: str = "info",
|
| 11 |
-
task: str = "
|
| 12 |
name: str = "Tumor",
|
|
|
|
| 13 |
):
|
| 14 |
logging.basicConfig()
|
| 15 |
logging.getLogger().setLevel(logging.WARNING)
|
|
@@ -55,38 +58,53 @@ def run_model(
|
|
| 55 |
rads_config.set("System", "input_folder", patient_directory)
|
| 56 |
rads_config.set("System", "output_folder", output_path)
|
| 57 |
rads_config.set("System", "model_folder", model_path)
|
| 58 |
-
rads_config.set(
|
| 59 |
-
|
| 60 |
-
"pipeline_filename",
|
| 61 |
-
os.path.join(model_path, task, "pipeline.json"),
|
| 62 |
-
)
|
| 63 |
rads_config.add_section("Runtime")
|
| 64 |
rads_config.set(
|
| 65 |
"Runtime", "reconstruction_method", "thresholding"
|
| 66 |
) # thresholding, probabilities
|
| 67 |
rads_config.set("Runtime", "reconstruction_order", "resample_first")
|
| 68 |
rads_config.set("Runtime", "use_preprocessed_data", "False")
|
|
|
|
| 69 |
|
| 70 |
with open("rads_config.ini", "w") as f:
|
| 71 |
rads_config.write(f)
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
# finally, run inference
|
| 74 |
from raidionicsrads.compute import run_rads
|
| 75 |
-
|
| 76 |
run_rads(config_filename="rads_config.ini")
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
+ ".nii.gz",
|
| 87 |
-
"./prediction.nii.gz",
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
except Exception as e:
|
| 91 |
print(e)
|
| 92 |
|
|
|
|
| 2 |
import logging
|
| 3 |
import os
|
| 4 |
import shutil
|
| 5 |
+
import json
|
| 6 |
+
import fnmatch
|
| 7 |
|
| 8 |
|
| 9 |
def run_model(
|
| 10 |
input_path: str,
|
| 11 |
model_path: str,
|
| 12 |
verbose: str = "info",
|
| 13 |
+
task: str = "MRI_TumorCore",
|
| 14 |
name: str = "Tumor",
|
| 15 |
+
stripped_inputs_status: bool = False,
|
| 16 |
):
|
| 17 |
logging.basicConfig()
|
| 18 |
logging.getLogger().setLevel(logging.WARNING)
|
|
|
|
| 58 |
rads_config.set("System", "input_folder", patient_directory)
|
| 59 |
rads_config.set("System", "output_folder", output_path)
|
| 60 |
rads_config.set("System", "model_folder", model_path)
|
| 61 |
+
rads_config.set('System', 'pipeline_filename', os.path.join(output_path,
|
| 62 |
+
'test_pipeline.json'))
|
|
|
|
|
|
|
|
|
|
| 63 |
rads_config.add_section("Runtime")
|
| 64 |
rads_config.set(
|
| 65 |
"Runtime", "reconstruction_method", "thresholding"
|
| 66 |
) # thresholding, probabilities
|
| 67 |
rads_config.set("Runtime", "reconstruction_order", "resample_first")
|
| 68 |
rads_config.set("Runtime", "use_preprocessed_data", "False")
|
| 69 |
+
rads_config.set('Runtime', 'use_stripped_data', 'True' if stripped_inputs_status else 'False')
|
| 70 |
|
| 71 |
with open("rads_config.ini", "w") as f:
|
| 72 |
rads_config.write(f)
|
| 73 |
|
| 74 |
+
pip = {}
|
| 75 |
+
step_index = 1
|
| 76 |
+
pip_num = str(step_index)
|
| 77 |
+
pip[pip_num] = {}
|
| 78 |
+
pip[pip_num]["task"] = "Classification"
|
| 79 |
+
pip[pip_num]["inputs"] = {} # Empty input means running it on all existing data for the patient
|
| 80 |
+
pip[pip_num]["target"] = ["MRSequence"]
|
| 81 |
+
pip[pip_num]["model"] = "MRI_SequenceClassifier"
|
| 82 |
+
pip[pip_num]["description"] = "Classification of the MRI sequence type for all input scans."
|
| 83 |
+
|
| 84 |
+
step_index = step_index + 1
|
| 85 |
+
pip_num = str(step_index)
|
| 86 |
+
pip[pip_num] = {}
|
| 87 |
+
pip[pip_num]["task"] = 'Model selection'
|
| 88 |
+
pip[pip_num]["model"] = task
|
| 89 |
+
pip[pip_num]["timestamp"] = 0
|
| 90 |
+
pip[pip_num]["format"] = "thresholding"
|
| 91 |
+
pip[pip_num]["description"] = f"Identifying the best {task} segmentation model for existing inputs"
|
| 92 |
+
|
| 93 |
+
with open(os.path.join(output_path, 'test_pipeline.json'), 'w', newline='\n') as outfile:
|
| 94 |
+
json.dump(pip, outfile, indent=4, sort_keys=True)
|
| 95 |
+
|
| 96 |
# finally, run inference
|
| 97 |
from raidionicsrads.compute import run_rads
|
|
|
|
| 98 |
run_rads(config_filename="rads_config.ini")
|
| 99 |
|
| 100 |
+
logging.info(f"Looking for the following pattern: {task}")
|
| 101 |
+
patterns = ["*_" + task + '.*', "*_" + name + '.*']
|
| 102 |
+
existing_files = os.listdir(os.path.join(output_path, "T0"))
|
| 103 |
+
logging.info(f"Existing files: {existing_files}")
|
| 104 |
+
fileName = str(os.path.join(output_path, "T0",
|
| 105 |
+
[x for x in existing_files if
|
| 106 |
+
any(fnmatch.fnmatch(x, pattern) for pattern in patterns)][0]))
|
| 107 |
+
os.rename(src=fileName, dst="./prediction.nii.gz")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
except Exception as e:
|
| 109 |
print(e)
|
| 110 |
|