Spaces:
Running
Running
| import asyncio | |
| import os | |
| import time | |
| from dataclasses import dataclass, field | |
| from typing import Dict, List, Union, cast | |
| import gradio as gr | |
| from tqdm.asyncio import tqdm as tqdm_async | |
| from .models import ( | |
| Chunk, | |
| JsonKVStorage, | |
| JsonListStorage, | |
| NetworkXStorage, | |
| OpenAIModel, | |
| Tokenizer, | |
| TraverseStrategy, | |
| ) | |
| from .models.storage.base_storage import StorageNameSpace | |
| from .operators import ( | |
| extract_kg, | |
| generate_cot, | |
| judge_statement, | |
| quiz, | |
| search_all, | |
| traverse_graph_atomically, | |
| traverse_graph_by_edge, | |
| traverse_graph_for_multi_hop, | |
| ) | |
| from .utils import ( | |
| compute_content_hash, | |
| create_event_loop, | |
| format_generation_results, | |
| logger, | |
| read_file, | |
| ) | |
| sys_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
| class GraphGen: | |
| unique_id: int = int(time.time()) | |
| working_dir: str = os.path.join(sys_path, "cache") | |
| config: Dict = field(default_factory=dict) | |
| # llm | |
| tokenizer_instance: Tokenizer = None | |
| synthesizer_llm_client: OpenAIModel = None | |
| trainee_llm_client: OpenAIModel = None | |
| # text chunking | |
| # TODO: make it configurable | |
| chunk_size: int = 1024 | |
| chunk_overlap_size: int = 100 | |
| # search | |
| search_config: dict = field( | |
| default_factory=lambda: {"enabled": False, "search_types": ["wikipedia"]} | |
| ) | |
| # traversal | |
| traverse_strategy: TraverseStrategy = None | |
| # webui | |
| progress_bar: gr.Progress = None | |
| def __post_init__(self): | |
| self.tokenizer_instance: Tokenizer = Tokenizer( | |
| model_name=self.config["tokenizer"] | |
| ) | |
| self.synthesizer_llm_client: OpenAIModel = OpenAIModel( | |
| model_name=os.getenv("SYNTHESIZER_MODEL"), | |
| api_key=os.getenv("SYNTHESIZER_API_KEY"), | |
| base_url=os.getenv("SYNTHESIZER_BASE_URL"), | |
| tokenizer_instance=self.tokenizer_instance, | |
| ) | |
| self.trainee_llm_client: OpenAIModel = OpenAIModel( | |
| model_name=os.getenv("TRAINEE_MODEL"), | |
| api_key=os.getenv("TRAINEE_API_KEY"), | |
| base_url=os.getenv("TRAINEE_BASE_URL"), | |
| tokenizer_instance=self.tokenizer_instance, | |
| ) | |
| self.search_config = self.config["search"] | |
| if "traverse_strategy" in self.config: | |
| self.traverse_strategy = TraverseStrategy( | |
| **self.config["traverse_strategy"] | |
| ) | |
| self.full_docs_storage: JsonKVStorage = JsonKVStorage( | |
| self.working_dir, namespace="full_docs" | |
| ) | |
| self.text_chunks_storage: JsonKVStorage = JsonKVStorage( | |
| self.working_dir, namespace="text_chunks" | |
| ) | |
| self.graph_storage: NetworkXStorage = NetworkXStorage( | |
| self.working_dir, namespace="graph" | |
| ) | |
| self.search_storage: JsonKVStorage = JsonKVStorage( | |
| self.working_dir, namespace="search" | |
| ) | |
| self.rephrase_storage: JsonKVStorage = JsonKVStorage( | |
| self.working_dir, namespace="rephrase" | |
| ) | |
| self.qa_storage: JsonListStorage = JsonListStorage( | |
| os.path.join(self.working_dir, "data", "graphgen", str(self.unique_id)), | |
| namespace=f"qa-{self.unique_id}", | |
| ) | |
| async def async_split_chunks( | |
| self, data: List[Union[List, Dict]], data_type: str | |
| ) -> dict: | |
| # TODO: configurable whether to use coreference resolution | |
| if len(data) == 0: | |
| return {} | |
| inserting_chunks = {} | |
| if data_type == "raw": | |
| assert isinstance(data, list) and isinstance(data[0], dict) | |
| # compute hash for each document | |
| new_docs = { | |
| compute_content_hash(doc["content"], prefix="doc-"): { | |
| "content": doc["content"] | |
| } | |
| for doc in data | |
| } | |
| _add_doc_keys = await self.full_docs_storage.filter_keys( | |
| list(new_docs.keys()) | |
| ) | |
| new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys} | |
| if len(new_docs) == 0: | |
| logger.warning("All docs are already in the storage") | |
| return {} | |
| logger.info("[New Docs] inserting %d docs", len(new_docs)) | |
| cur_index = 1 | |
| doc_number = len(new_docs) | |
| async for doc_key, doc in tqdm_async( | |
| new_docs.items(), desc="[1/4]Chunking documents", unit="doc" | |
| ): | |
| chunks = { | |
| compute_content_hash(dp["content"], prefix="chunk-"): { | |
| **dp, | |
| "full_doc_id": doc_key, | |
| } | |
| for dp in self.tokenizer_instance.chunk_by_token_size( | |
| doc["content"], self.chunk_overlap_size, self.chunk_size | |
| ) | |
| } | |
| inserting_chunks.update(chunks) | |
| if self.progress_bar is not None: | |
| self.progress_bar(cur_index / doc_number, f"Chunking {doc_key}") | |
| cur_index += 1 | |
| _add_chunk_keys = await self.text_chunks_storage.filter_keys( | |
| list(inserting_chunks.keys()) | |
| ) | |
| inserting_chunks = { | |
| k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys | |
| } | |
| elif data_type == "chunked": | |
| assert isinstance(data, list) and isinstance(data[0], list) | |
| new_docs = { | |
| compute_content_hash("".join(chunk["content"]), prefix="doc-"): { | |
| "content": "".join(chunk["content"]) | |
| } | |
| for doc in data | |
| for chunk in doc | |
| } | |
| _add_doc_keys = await self.full_docs_storage.filter_keys( | |
| list(new_docs.keys()) | |
| ) | |
| new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys} | |
| if len(new_docs) == 0: | |
| logger.warning("All docs are already in the storage") | |
| return {} | |
| logger.info("[New Docs] inserting %d docs", len(new_docs)) | |
| async for doc in tqdm_async( | |
| data, desc="[1/4]Chunking documents", unit="doc" | |
| ): | |
| doc_str = "".join([chunk["content"] for chunk in doc]) | |
| for chunk in doc: | |
| chunk_key = compute_content_hash(chunk["content"], prefix="chunk-") | |
| inserting_chunks[chunk_key] = { | |
| **chunk, | |
| "full_doc_id": compute_content_hash(doc_str, prefix="doc-"), | |
| } | |
| _add_chunk_keys = await self.text_chunks_storage.filter_keys( | |
| list(inserting_chunks.keys()) | |
| ) | |
| inserting_chunks = { | |
| k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys | |
| } | |
| else: | |
| raise ValueError(f"Unknown data type: {data_type}") | |
| await self.full_docs_storage.upsert(new_docs) | |
| await self.text_chunks_storage.upsert(inserting_chunks) | |
| return inserting_chunks | |
| def insert(self): | |
| loop = create_event_loop() | |
| loop.run_until_complete(self.async_insert()) | |
| async def async_insert(self): | |
| """ | |
| insert chunks into the graph | |
| """ | |
| input_file = self.config["input_file"] | |
| data_type = self.config["input_data_type"] | |
| data = read_file(input_file) | |
| inserting_chunks = await self.async_split_chunks(data, data_type) | |
| if len(inserting_chunks) == 0: | |
| logger.warning("All chunks are already in the storage") | |
| return | |
| logger.info("[New Chunks] inserting %d chunks", len(inserting_chunks)) | |
| logger.info("[Entity and Relation Extraction]...") | |
| _add_entities_and_relations = await extract_kg( | |
| llm_client=self.synthesizer_llm_client, | |
| kg_instance=self.graph_storage, | |
| tokenizer_instance=self.tokenizer_instance, | |
| chunks=[ | |
| Chunk(id=k, content=v["content"]) for k, v in inserting_chunks.items() | |
| ], | |
| progress_bar=self.progress_bar, | |
| ) | |
| if not _add_entities_and_relations: | |
| logger.warning("No entities or relations extracted") | |
| return | |
| await self._insert_done() | |
| async def _insert_done(self): | |
| tasks = [] | |
| for storage_instance in [ | |
| self.full_docs_storage, | |
| self.text_chunks_storage, | |
| self.graph_storage, | |
| self.search_storage, | |
| ]: | |
| if storage_instance is None: | |
| continue | |
| tasks.append(cast(StorageNameSpace, storage_instance).index_done_callback()) | |
| await asyncio.gather(*tasks) | |
| def search(self): | |
| loop = create_event_loop() | |
| loop.run_until_complete(self.async_search()) | |
| async def async_search(self): | |
| logger.info( | |
| "Search is %s", "enabled" if self.search_config["enabled"] else "disabled" | |
| ) | |
| if self.search_config["enabled"]: | |
| logger.info( | |
| "[Search] %s ...", ", ".join(self.search_config["search_types"]) | |
| ) | |
| all_nodes = await self.graph_storage.get_all_nodes() | |
| all_nodes_names = [node[0] for node in all_nodes] | |
| new_search_entities = await self.full_docs_storage.filter_keys( | |
| all_nodes_names | |
| ) | |
| logger.info( | |
| "[Search] Found %d entities to search", len(new_search_entities) | |
| ) | |
| _add_search_data = await search_all( | |
| search_types=self.search_config["search_types"], | |
| search_entities=new_search_entities, | |
| ) | |
| if _add_search_data: | |
| await self.search_storage.upsert(_add_search_data) | |
| logger.info("[Search] %d entities searched", len(_add_search_data)) | |
| # Format search results for inserting | |
| search_results = [] | |
| for _, search_data in _add_search_data.items(): | |
| search_results.extend( | |
| [ | |
| {"content": search_data[key]} | |
| for key in list(search_data.keys()) | |
| ] | |
| ) | |
| # TODO: fix insert after search | |
| await self.async_insert() | |
| def quiz(self): | |
| loop = create_event_loop() | |
| loop.run_until_complete(self.async_quiz()) | |
| async def async_quiz(self): | |
| max_samples = self.config["quiz_and_judge_strategy"]["quiz_samples"] | |
| await quiz( | |
| self.synthesizer_llm_client, | |
| self.graph_storage, | |
| self.rephrase_storage, | |
| max_samples, | |
| ) | |
| await self.rephrase_storage.index_done_callback() | |
| def judge(self): | |
| loop = create_event_loop() | |
| loop.run_until_complete(self.async_judge()) | |
| async def async_judge(self): | |
| re_judge = self.config["quiz_and_judge_strategy"]["re_judge"] | |
| _update_relations = await judge_statement( | |
| self.trainee_llm_client, | |
| self.graph_storage, | |
| self.rephrase_storage, | |
| re_judge, | |
| ) | |
| await _update_relations.index_done_callback() | |
| def traverse(self): | |
| loop = create_event_loop() | |
| loop.run_until_complete(self.async_traverse()) | |
| async def async_traverse(self): | |
| output_data_type = self.config["output_data_type"] | |
| if output_data_type == "atomic": | |
| results = await traverse_graph_atomically( | |
| self.synthesizer_llm_client, | |
| self.tokenizer_instance, | |
| self.graph_storage, | |
| self.traverse_strategy, | |
| self.text_chunks_storage, | |
| self.progress_bar, | |
| ) | |
| elif output_data_type == "multi_hop": | |
| results = await traverse_graph_for_multi_hop( | |
| self.synthesizer_llm_client, | |
| self.tokenizer_instance, | |
| self.graph_storage, | |
| self.traverse_strategy, | |
| self.text_chunks_storage, | |
| self.progress_bar, | |
| ) | |
| elif output_data_type == "aggregated": | |
| results = await traverse_graph_by_edge( | |
| self.synthesizer_llm_client, | |
| self.tokenizer_instance, | |
| self.graph_storage, | |
| self.traverse_strategy, | |
| self.text_chunks_storage, | |
| self.progress_bar, | |
| ) | |
| else: | |
| raise ValueError(f"Unknown qa_form: {output_data_type}") | |
| results = format_generation_results( | |
| results, output_data_format=self.config["output_data_format"] | |
| ) | |
| await self.qa_storage.upsert(results) | |
| await self.qa_storage.index_done_callback() | |
| def generate_reasoning(self, method_params): | |
| loop = create_event_loop() | |
| loop.run_until_complete(self.async_generate_reasoning(method_params)) | |
| async def async_generate_reasoning(self, method_params): | |
| results = await generate_cot( | |
| self.graph_storage, | |
| self.synthesizer_llm_client, | |
| method_params=method_params, | |
| ) | |
| results = format_generation_results( | |
| results, output_data_format=self.config["output_data_format"] | |
| ) | |
| await self.qa_storage.upsert(results) | |
| await self.qa_storage.index_done_callback() | |
| def clear(self): | |
| loop = create_event_loop() | |
| loop.run_until_complete(self.async_clear()) | |
| async def async_clear(self): | |
| await self.full_docs_storage.drop() | |
| await self.text_chunks_storage.drop() | |
| await self.search_storage.drop() | |
| await self.graph_storage.clear() | |
| await self.rephrase_storage.drop() | |
| await self.qa_storage.drop() | |
| logger.info("All caches are cleared") | |