Spaces:
Running
Running
| import asyncio | |
| import gradio as gr | |
| from tqdm.asyncio import tqdm as tqdm_async | |
| from graphgen.models import OpenAIModel, NetworkXStorage, TraverseStrategy, Tokenizer, JsonKVStorage | |
| from graphgen.templates import ANSWER_REPHRASING_PROMPT, QUESTION_GENERATION_PROMPT, MULTI_HOP_GENERATION_PROMPT | |
| from graphgen.utils import detect_main_language, compute_content_hash, logger | |
| from graphgen.operators.split_graph import get_batches_with_strategy | |
| async def _pre_tokenize(graph_storage: NetworkXStorage, | |
| tokenizer: Tokenizer, | |
| edges: list, | |
| nodes: list) -> tuple: | |
| sem = asyncio.Semaphore(1000) | |
| async def handle_edge(edge: tuple) -> tuple: | |
| async with sem: | |
| if 'length' not in edge[2]: | |
| edge[2]['length'] = len( | |
| await asyncio.get_event_loop().run_in_executor(None, | |
| tokenizer.encode_string, | |
| edge[2]['description'])) | |
| return edge | |
| async def handle_node(node: dict) -> dict: | |
| async with sem: | |
| if 'length' not in node[1]: | |
| node[1]['length'] = len( | |
| await asyncio.get_event_loop().run_in_executor(None, | |
| tokenizer.encode_string, | |
| node[1]['description'])) | |
| return node | |
| new_edges = [] | |
| new_nodes = [] | |
| for result in tqdm_async(asyncio.as_completed([handle_edge(edge) for edge in edges]), | |
| total=len(edges), desc="Pre-tokenizing edges"): | |
| new_edge = await result | |
| await graph_storage.update_edge(new_edge[0], new_edge[1], new_edge[2]) | |
| new_edges.append(new_edge) | |
| for result in tqdm_async(asyncio.as_completed([handle_node(node) for node in nodes]), | |
| total=len(nodes), desc="Pre-tokenizing nodes"): | |
| new_node = await result | |
| await graph_storage.update_node(new_node[0], new_node[1]) | |
| new_nodes.append(new_node) | |
| await graph_storage.index_done_callback() | |
| return new_edges, new_nodes | |
| async def _construct_rephrasing_prompt(_process_nodes: list, | |
| _process_edges: list, | |
| text_chunks_storage: JsonKVStorage, | |
| add_context: bool = False | |
| ) -> str: | |
| entities = [ | |
| f"{_process_node['node_id']}: {_process_node['description']}" for _process_node in _process_nodes | |
| ] | |
| relations = [ | |
| f"{_process_edge[0]} -- {_process_edge[1]}: {_process_edge[2]['description']}" | |
| for _process_edge in _process_edges | |
| ] | |
| entities_str = "\n".join([f"{index + 1}. {entity}" for index, entity in enumerate(entities)]) | |
| relations_str = "\n".join([f"{index + 1}. {relation}" for index, relation in enumerate(relations)]) | |
| language = "Chinese" if detect_main_language(entities_str + relations_str) == "zh" else "English" | |
| if add_context: | |
| original_ids = ([node['source_id'].split('<SEP>')[0] for node in _process_nodes] + | |
| [edge[2]['source_id'].split('<SEP>')[0] for edge in _process_edges]) | |
| original_ids = list(set(original_ids)) | |
| original_text = await text_chunks_storage.get_by_ids(original_ids) | |
| original_text = "\n".join([f"{index + 1}. {text['content']}" for index, text in enumerate(original_text)]) | |
| prompt = ANSWER_REPHRASING_PROMPT[language]['CONTEXT_TEMPLATE'].format( | |
| language=language, | |
| original_text=original_text, | |
| entities=entities_str, | |
| relationships=relations_str | |
| ) | |
| return prompt | |
| prompt = ANSWER_REPHRASING_PROMPT[language]['TEMPLATE'].format( | |
| language=language, | |
| entities=entities_str, | |
| relationships=relations_str | |
| ) | |
| return prompt | |
| def get_loss_tercile(losses: list) -> (float, float): | |
| losses = sorted(losses) | |
| q1_index = int(len(losses) * (1 / 3)) | |
| q2_index = int(len(losses) * (2 / 3)) | |
| return losses[q1_index], losses[q2_index] | |
| def get_average_loss(batch: tuple, loss_strategy: str) -> float: | |
| if loss_strategy == "only_edge": | |
| return sum(edge[2]['loss'] for edge in batch[1]) / len(batch[1]) | |
| if loss_strategy == "both": | |
| return sum(edge[2]['loss'] for edge in batch[1]) + sum(node['loss'] for node in batch[0]) / \ | |
| (len(batch[0]) + len(batch[1])) | |
| raise ValueError("Invalid loss strategy") | |
| def _post_process_synthetic_data(data): | |
| block = data.split("\n\n") | |
| qas = [] | |
| for line in block: | |
| if "Question:" in line and "Answer:" in line: | |
| question = line.split("Question:")[1].split("Answer:")[0].strip() | |
| answer = line.split("Answer:")[1].strip() | |
| qas.append({ | |
| "question": question, | |
| "answer": answer | |
| }) | |
| elif "问题:" in line and "答案:" in line: | |
| question = line.split("问题:")[1].split("答案:")[0].strip() | |
| answer = line.split("答案:")[1].strip() | |
| qas.append({ | |
| "question": question, | |
| "answer": answer | |
| }) | |
| elif "问题:" in line and "回答:" in line: | |
| question = line.split("问题:")[1].split("回答:")[0].strip() | |
| answer = line.split("回答:")[1].strip() | |
| qas.append({ | |
| "question": question, | |
| "answer": answer | |
| }) | |
| return qas | |
| async def traverse_graph_by_edge( | |
| llm_client: OpenAIModel, | |
| tokenizer: Tokenizer, | |
| graph_storage: NetworkXStorage, | |
| traverse_strategy: TraverseStrategy, | |
| text_chunks_storage: JsonKVStorage, | |
| progress_bar: gr.Progress = None, | |
| max_concurrent: int = 1000 | |
| ) -> dict: | |
| """ | |
| Traverse the graph | |
| :param llm_client | |
| :param tokenizer | |
| :param graph_storage | |
| :param traverse_strategy | |
| :param text_chunks_storage | |
| :param progress_bar | |
| :param max_concurrent | |
| :return: question and answer | |
| """ | |
| semaphore = asyncio.Semaphore(max_concurrent) | |
| async def _process_nodes_and_edges( | |
| _process_nodes: list, | |
| _process_edges: list, | |
| ) -> str: | |
| prompt = await _construct_rephrasing_prompt( | |
| _process_nodes, | |
| _process_edges, | |
| text_chunks_storage, | |
| add_context = False | |
| ) | |
| context = await llm_client.generate_answer(prompt) | |
| # post-process the context | |
| if context.startswith("Rephrased Text:"): | |
| context = context[len("Rephrased Text:"):].strip() | |
| elif context.startswith("重述文本:"): | |
| context = context[len("重述文本:"):].strip() | |
| return context | |
| async def _process_single_batch( | |
| _process_batch: tuple, | |
| question_type: str = "single" | |
| ) -> dict: | |
| async with semaphore: | |
| context = await _process_nodes_and_edges( | |
| _process_batch[0], | |
| _process_batch[1], | |
| ) | |
| language = "Chinese" if detect_main_language(context) == "zh" else "English" | |
| pre_length = sum(node['length'] for node in _process_batch[0]) \ | |
| + sum(edge[2]['length'] for edge in _process_batch[1]) | |
| if question_type == "single": | |
| question = await llm_client.generate_answer( | |
| QUESTION_GENERATION_PROMPT[language]['SINGLE_TEMPLATE'].format( | |
| answer=context | |
| ) | |
| ) | |
| if question.startswith("Question:"): | |
| question = question[len("Question:"):].strip() | |
| elif question.startswith("问题:"): | |
| question = question[len("问题:"):].strip() | |
| logger.info("%d nodes and %d edges processed", len(_process_batch[0]), len(_process_batch[1])) | |
| logger.info("Pre-length: %s", pre_length) | |
| logger.info("Question: %s", question) | |
| logger.info("Answer: %s", context) | |
| return { | |
| compute_content_hash(context): { | |
| "question": question, | |
| "answer": context, | |
| "loss": get_average_loss(_process_batch, traverse_strategy.loss_strategy) | |
| } | |
| } | |
| content = await llm_client.generate_answer( | |
| QUESTION_GENERATION_PROMPT[language]['MULTI_TEMPLATE'].format( | |
| doc=context | |
| ) | |
| ) | |
| qas = _post_process_synthetic_data(content) | |
| if len(qas) == 0: | |
| print(content) | |
| logger.error("Error occurred while processing batch, question or answer is None") | |
| return {} | |
| final_results = {} | |
| logger.info("%d nodes and %d edges processed", len(_process_batch[0]), len(_process_batch[1])) | |
| logger.info("Pre-length: %s", pre_length) | |
| for qa in qas: | |
| logger.info("Question: %s", qa['question']) | |
| logger.info("Answer: %s", qa['answer']) | |
| final_results[compute_content_hash(qa['question'])] = { | |
| "question": qa['question'], | |
| "answer": qa['answer'], | |
| "loss": get_average_loss(_process_batch, traverse_strategy.loss_strategy) | |
| } | |
| return final_results | |
| results = {} | |
| edges = list(await graph_storage.get_all_edges()) | |
| nodes = list(await graph_storage.get_all_nodes()) | |
| edges, nodes = await _pre_tokenize(graph_storage, tokenizer, edges, nodes) | |
| processing_batches = await get_batches_with_strategy( | |
| nodes, | |
| edges, | |
| graph_storage, | |
| traverse_strategy | |
| ) | |
| for result in tqdm_async(asyncio.as_completed( | |
| [_process_single_batch(batch) for batch in processing_batches] | |
| ), total=len(processing_batches), desc="[4/4]Generating QAs"): | |
| try: | |
| if progress_bar is not None: | |
| progress_bar(len(results) / len(processing_batches), desc="[4/4]Generating QAs") | |
| results.update(await result) | |
| if progress_bar is not None and len(results) == len(processing_batches): | |
| progress_bar(1, desc="[4/4]Generating QAs") | |
| except Exception as e: # pylint: disable=broad-except | |
| logger.error("Error occurred while generating QA: %s", e) | |
| return results | |
| async def traverse_graph_atomically( | |
| llm_client: OpenAIModel, | |
| tokenizer: Tokenizer, | |
| graph_storage: NetworkXStorage, | |
| traverse_strategy: TraverseStrategy, | |
| text_chunks_storage: JsonKVStorage, | |
| progress_bar: gr.Progress = None, | |
| max_concurrent: int = 1000 | |
| ) -> dict: | |
| """ | |
| Traverse the graph atomicly | |
| :param llm_client | |
| :param tokenizer | |
| :param graph_storage | |
| :param traverse_strategy | |
| :param text_chunks_storage | |
| :param progress_bar | |
| :param max_concurrent | |
| :return: question and answer | |
| """ | |
| assert traverse_strategy.qa_form == "atomic" | |
| semaphore = asyncio.Semaphore(max_concurrent) | |
| async def _generate_question( | |
| node_or_edge: tuple | |
| ): | |
| if len(node_or_edge) == 2: | |
| des = node_or_edge[0] + ": " + node_or_edge[1]['description'] | |
| loss = node_or_edge[1]['loss'] | |
| else: | |
| des = node_or_edge[2]['description'] | |
| loss = node_or_edge[2]['loss'] | |
| async with semaphore: | |
| try: | |
| language = "Chinese" if detect_main_language(des) == "zh" else "English" | |
| qa = await llm_client.generate_answer( | |
| QUESTION_GENERATION_PROMPT[language]['SINGLE_QA_TEMPLATE'].format( | |
| doc=des | |
| ) | |
| ) | |
| if "Question:" in qa and "Answer:" in qa: | |
| question = qa.split("Question:")[1].split("Answer:")[0].strip() | |
| answer = qa.split("Answer:")[1].strip() | |
| elif "问题:" in qa and "答案:" in qa: | |
| question = qa.split("问题:")[1].split("答案:")[0].strip() | |
| answer = qa.split("答案:")[1].strip() | |
| else: | |
| return {} | |
| question = question.strip("\"") | |
| answer = answer.strip("\"") | |
| logger.info("Question: %s", question) | |
| logger.info("Answer: %s", answer) | |
| return { | |
| compute_content_hash(question): { | |
| "question": question, | |
| "answer": answer, | |
| "loss": loss | |
| } | |
| } | |
| except Exception as e: # pylint: disable=broad-except | |
| logger.error("Error occurred while generating question: %s", e) | |
| return {} | |
| results = {} | |
| edges = list(await graph_storage.get_all_edges()) | |
| nodes = list(await graph_storage.get_all_nodes()) | |
| edges, nodes = await _pre_tokenize(graph_storage, tokenizer, edges, nodes) | |
| tasks = [] | |
| for node in nodes: | |
| if "<SEP>" in node[1]['description']: | |
| description_list = node[1]['description'].split("<SEP>") | |
| for item in description_list: | |
| tasks.append((node[0], {"description": item, 'loss': node[1]['loss']})) | |
| else: | |
| tasks.append((node[0], node[1])) | |
| for edge in edges: | |
| if "<SEP>" in edge[2]['description']: | |
| description_list = edge[2]['description'].split("<SEP>") | |
| for item in description_list: | |
| tasks.append((edge[0], edge[1], {"description": item, 'loss': edge[2]['loss']})) | |
| else: | |
| tasks.append((edge[0], edge[1], edge[2])) | |
| for result in tqdm_async( | |
| asyncio.as_completed([_generate_question(task) for task in tasks]), | |
| total=len(tasks), | |
| desc="[4/4]Generating QAs" | |
| ): | |
| try: | |
| if progress_bar is not None: | |
| progress_bar(len(results) / len(tasks), desc="[4/4]Generating QAs") | |
| results.update(await result) | |
| if progress_bar is not None and len(results) == len(tasks): | |
| progress_bar(1, desc="[4/4]Generating QAs") | |
| except Exception as e: # pylint: disable=broad-except | |
| logger.error("Error occurred while generating QA: %s", e) | |
| return results | |
| async def traverse_graph_for_multi_hop( | |
| llm_client: OpenAIModel, | |
| tokenizer: Tokenizer, | |
| graph_storage: NetworkXStorage, | |
| traverse_strategy: TraverseStrategy, | |
| text_chunks_storage: JsonKVStorage, | |
| progress_bar: gr.Progress = None, | |
| max_concurrent: int = 1000 | |
| ) -> dict: | |
| """ | |
| Traverse the graph for multi-hop | |
| :param llm_client | |
| :param tokenizer | |
| :param graph_storage | |
| :param traverse_strategy | |
| :param text_chunks_storage | |
| :param progress_bar | |
| :param max_concurrent | |
| :return: question and answer | |
| """ | |
| assert traverse_strategy.qa_form == "multi_hop" | |
| semaphore = asyncio.Semaphore(max_concurrent) | |
| results = {} | |
| edges = list(await graph_storage.get_all_edges()) | |
| nodes = list(await graph_storage.get_all_nodes()) | |
| edges, nodes = await _pre_tokenize(graph_storage, tokenizer, edges, nodes) | |
| processing_batches = await get_batches_with_strategy( | |
| nodes, | |
| edges, | |
| graph_storage, | |
| traverse_strategy | |
| ) | |
| async def _process_single_batch( | |
| _process_batch: tuple | |
| ) -> dict: | |
| async with semaphore: | |
| try: | |
| language = "Chinese" if detect_main_language(_process_batch[0][0]['description']) == "zh" else "English" | |
| _process_nodes = _process_batch[0] | |
| _process_edges = _process_batch[1] | |
| entities = [ | |
| f"{_process_node['node_id']}: {_process_node['description']}" for _process_node in _process_nodes | |
| ] | |
| relations = [ | |
| f"{_process_edge[0]} -- {_process_edge[1]}: {_process_edge[2]['description']}" | |
| for _process_edge in _process_edges | |
| ] | |
| entities_str = "\n".join([f"{index + 1}. {entity}" for index, entity in enumerate(entities)]) | |
| relations_str = "\n".join([f"{index + 1}. {relation}" for index, relation in enumerate(relations)]) | |
| prompt = MULTI_HOP_GENERATION_PROMPT[language].format( | |
| entities=entities_str, | |
| relationships=relations_str | |
| ) | |
| context = await llm_client.generate_answer(prompt) | |
| # post-process the context | |
| if "Question:" in context and "Answer:" in context: | |
| question = context.split("Question:")[1].split("Answer:")[0].strip() | |
| answer = context.split("Answer:")[1].strip() | |
| elif "问题:" in context and "答案:" in context: | |
| question = context.split("问题:")[1].split("答案:")[0].strip() | |
| answer = context.split("答案:")[1].strip() | |
| else: | |
| return {} | |
| question = question.strip("\"") | |
| answer = answer.strip("\"") | |
| logger.info("Question: %s", question) | |
| logger.info("Answer: %s", answer) | |
| return { | |
| compute_content_hash(question): { | |
| "question": question, | |
| "answer": answer, | |
| "loss": get_average_loss(_process_batch, traverse_strategy.loss_strategy), | |
| } | |
| } | |
| except Exception as e: # pylint: disable=broad-except | |
| logger.error("Error occurred while processing batch: %s", e) | |
| return {} | |
| async for result in tqdm_async( | |
| asyncio.as_completed([_process_single_batch(batch) for batch in processing_batches]), | |
| total=len(processing_batches), | |
| desc="[4/4]Generating QAs" | |
| ): | |
| try: | |
| if progress_bar is not None: | |
| progress_bar(len(results) / len(processing_batches), desc="[4/4]Generating QAs") | |
| results.update(await result) | |
| if progress_bar is not None and len(results) == len(processing_batches): | |
| progress_bar(1, desc="[4/4]Generating QAs") | |
| except Exception as e: # pylint: disable=broad-except | |
| logger.error("Error occurred while generating QA: %s", e) | |
| return results | |