Spaces:
Sleeping
Sleeping
Commit
·
f2874d4
1
Parent(s):
da25b85
Initial Commit
Browse files- app.py +24 -0
- models/default_lineup.json +8 -0
- models/hindi/hi_scripts.json +25 -0
- models/hindi/hi_v1_model.pth +3 -0
- models/hindi/hi_v2_model.pth +3 -0
- xlit_src.py +868 -0
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from xlit_src import XlitEngine
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def transliterate(input_text):
|
| 6 |
+
engine = XlitEngine()
|
| 7 |
+
result = engine.translit_sentence(input_text)
|
| 8 |
+
return result
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
input_box = gr.inputs.Textbox(type="str", label="Input Text")
|
| 12 |
+
target = gr.outputs.Textbox()
|
| 13 |
+
|
| 14 |
+
iface = gr.Interface(
|
| 15 |
+
transliterate,
|
| 16 |
+
input_box,
|
| 17 |
+
target,
|
| 18 |
+
title="English to Hindi Transliteration",
|
| 19 |
+
description='Model for Translating English to Hindi using a Character-level recurrent sequence-to-sequence trained with <a href="http://workshop.colips.org/news2018/dataset.html">NEWS2018 DATASET_04</a>',
|
| 20 |
+
article='Author: <a href="https://huggingface.co/anuragshas">Anurag Singh</a> . Using training and inference script from <a href="https://github.com/AI4Bharat/IndianNLP-Transliteration.git">AI4Bharat/IndianNLP-Transliteration</a>.',
|
| 21 |
+
examples=["Hi.", "Wait!", "Namaste"],
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
iface.launch(enable_queue=True)
|
models/default_lineup.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"hi": {
|
| 3 |
+
"name" : "Hindi - हिंदी",
|
| 4 |
+
"eng_name": "hindi",
|
| 5 |
+
"script" : "hindi/hi_scripts.json",
|
| 6 |
+
"weight" : "hindi/hi_v1_model.pth"
|
| 7 |
+
}
|
| 8 |
+
}
|
models/hindi/hi_scripts.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"WARNING" : " !!! Do not modify the Order of Glyph List !!!",
|
| 3 |
+
"UNICODE" : {"name": "devanagari", "begin":2304, "end":2431},
|
| 4 |
+
"LANGUAGE": "hindi",
|
| 5 |
+
|
| 6 |
+
"glyphs" : [
|
| 7 |
+
|
| 8 |
+
"ऄ", "अ", "आ", "इ", "ई", "उ", "ऊ","ऍ", "ऎ", "ए", "ऐ",
|
| 9 |
+
"ऑ", "ऒ", "ओ", "औ","ऋ","ॠ","ऌ","ॡ","ॲ", "ॐ",
|
| 10 |
+
"क", "ख", "ग", "घ", "ङ", "च", "छ", "ज", "झ", "ञ", "ट", "ठ", "ड", "ढ", "ण",
|
| 11 |
+
"त", "थ", "द", "ध", "न", "ऩ", "प", "फ", "ब", "भ", "म", "य", "र", "ऱ", "ल",
|
| 12 |
+
"ळ", "ऴ", "व", "श", "ष", "स", "ह", "क़", "ख़", "ग़", "ज़", "ड़", "ढ़", "फ़", "य़",
|
| 13 |
+
"्", "ा", "ि", "ी", "ु", "ू", "ॅ", "ॆ", "े", "ै", "ॉ", "ॊ", "ो", "ौ",
|
| 14 |
+
"ृ", "ॄ", "ॢ", "ॣ", "ँ", "ं", "ः", "़", "॑", "ऽ", "॥",
|
| 15 |
+
"\u200c", "\u200d"
|
| 16 |
+
|
| 17 |
+
],
|
| 18 |
+
|
| 19 |
+
"numsym_map" : {
|
| 20 |
+
"0" : ["०"], "1" : ["१"], "2" : ["२"], "3" : ["३"], "4" : ["४"],
|
| 21 |
+
"5" : ["५"], "6" : ["६"], "7" : ["७"], "8" : ["८"], "9" : ["९"],
|
| 22 |
+
"." : ["।", "॰"]
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
}
|
models/hindi/hi_v1_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cca1ea5d19fd507934e175eba7868f02a71826a046345fa6f4fccc3058424881
|
| 3 |
+
size 40927419
|
models/hindi/hi_v2_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:89d3dd4e5fa7ea355c194fce3ecce1fd5e953e08784db26cacbe5993d1cd4eae
|
| 3 |
+
size 40927419
|
xlit_src.py
ADDED
|
@@ -0,0 +1,868 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import numpy as np
|
| 4 |
+
import random
|
| 5 |
+
import enum
|
| 6 |
+
import traceback
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
import json
|
| 11 |
+
|
| 12 |
+
F_DIR = os.path.dirname(os.path.realpath(__file__))
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class XlitError(enum.Enum):
|
| 16 |
+
lang_err = "Unsupported langauge ID requested ;( Please check available languages."
|
| 17 |
+
string_err = "String passed is incompatable ;("
|
| 18 |
+
internal_err = "Internal crash ;("
|
| 19 |
+
unknown_err = "Unknown Failure"
|
| 20 |
+
loading_err = "Loading failed ;( Check if metadata/paths are correctly configured."
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class Encoder(nn.Module):
|
| 24 |
+
"""
|
| 25 |
+
Simple RNN based encoder network
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
input_dim,
|
| 31 |
+
embed_dim,
|
| 32 |
+
hidden_dim,
|
| 33 |
+
rnn_type="gru",
|
| 34 |
+
layers=1,
|
| 35 |
+
bidirectional=False,
|
| 36 |
+
dropout=0,
|
| 37 |
+
device="cpu",
|
| 38 |
+
):
|
| 39 |
+
super(Encoder, self).__init__()
|
| 40 |
+
|
| 41 |
+
self.input_dim = input_dim # src_vocab_sz
|
| 42 |
+
self.enc_embed_dim = embed_dim
|
| 43 |
+
self.enc_hidden_dim = hidden_dim
|
| 44 |
+
self.enc_rnn_type = rnn_type
|
| 45 |
+
self.enc_layers = layers
|
| 46 |
+
self.enc_directions = 2 if bidirectional else 1
|
| 47 |
+
self.device = device
|
| 48 |
+
|
| 49 |
+
self.embedding = nn.Embedding(self.input_dim, self.enc_embed_dim)
|
| 50 |
+
|
| 51 |
+
if self.enc_rnn_type == "gru":
|
| 52 |
+
self.enc_rnn = nn.GRU(
|
| 53 |
+
input_size=self.enc_embed_dim,
|
| 54 |
+
hidden_size=self.enc_hidden_dim,
|
| 55 |
+
num_layers=self.enc_layers,
|
| 56 |
+
bidirectional=bidirectional,
|
| 57 |
+
)
|
| 58 |
+
elif self.enc_rnn_type == "lstm":
|
| 59 |
+
self.enc_rnn = nn.LSTM(
|
| 60 |
+
input_size=self.enc_embed_dim,
|
| 61 |
+
hidden_size=self.enc_hidden_dim,
|
| 62 |
+
num_layers=self.enc_layers,
|
| 63 |
+
bidirectional=bidirectional,
|
| 64 |
+
)
|
| 65 |
+
else:
|
| 66 |
+
raise Exception("unknown RNN type mentioned")
|
| 67 |
+
|
| 68 |
+
def forward(self, x, x_sz, hidden=None):
|
| 69 |
+
"""
|
| 70 |
+
x_sz: (batch_size, 1) - Unpadded sequence lengths used for pack_pad
|
| 71 |
+
|
| 72 |
+
Return:
|
| 73 |
+
output: (batch_size, max_length, hidden_dim)
|
| 74 |
+
hidden: (n_layer*num_directions, batch_size, hidden_dim) | if LSTM tuple -(h_n, c_n)
|
| 75 |
+
|
| 76 |
+
"""
|
| 77 |
+
batch_sz = x.shape[0]
|
| 78 |
+
# x: batch_size, max_length, enc_embed_dim
|
| 79 |
+
x = self.embedding(x)
|
| 80 |
+
|
| 81 |
+
## pack the padded data
|
| 82 |
+
# x: max_length, batch_size, enc_embed_dim -> for pack_pad
|
| 83 |
+
x = x.permute(1, 0, 2)
|
| 84 |
+
x = nn.utils.rnn.pack_padded_sequence(x, x_sz, enforce_sorted=False) # unpad
|
| 85 |
+
|
| 86 |
+
# output: packed_size, batch_size, enc_embed_dim --> hidden from all timesteps
|
| 87 |
+
# hidden: n_layer**num_directions, batch_size, hidden_dim | if LSTM (h_n, c_n)
|
| 88 |
+
output, hidden = self.enc_rnn(x)
|
| 89 |
+
|
| 90 |
+
## pad the sequence to the max length in the batch
|
| 91 |
+
# output: max_length, batch_size, enc_emb_dim*directions)
|
| 92 |
+
output, _ = nn.utils.rnn.pad_packed_sequence(output)
|
| 93 |
+
|
| 94 |
+
# output: batch_size, max_length, hidden_dim
|
| 95 |
+
output = output.permute(1, 0, 2)
|
| 96 |
+
|
| 97 |
+
return output, hidden
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class Decoder(nn.Module):
|
| 101 |
+
"""
|
| 102 |
+
Used as decoder stage
|
| 103 |
+
"""
|
| 104 |
+
|
| 105 |
+
def __init__(
|
| 106 |
+
self,
|
| 107 |
+
output_dim,
|
| 108 |
+
embed_dim,
|
| 109 |
+
hidden_dim,
|
| 110 |
+
rnn_type="gru",
|
| 111 |
+
layers=1,
|
| 112 |
+
use_attention=True,
|
| 113 |
+
enc_outstate_dim=None, # enc_directions * enc_hidden_dim
|
| 114 |
+
dropout=0,
|
| 115 |
+
device="cpu",
|
| 116 |
+
):
|
| 117 |
+
super(Decoder, self).__init__()
|
| 118 |
+
|
| 119 |
+
self.output_dim = output_dim # tgt_vocab_sz
|
| 120 |
+
self.dec_hidden_dim = hidden_dim
|
| 121 |
+
self.dec_embed_dim = embed_dim
|
| 122 |
+
self.dec_rnn_type = rnn_type
|
| 123 |
+
self.dec_layers = layers
|
| 124 |
+
self.use_attention = use_attention
|
| 125 |
+
self.device = device
|
| 126 |
+
if self.use_attention:
|
| 127 |
+
self.enc_outstate_dim = enc_outstate_dim if enc_outstate_dim else hidden_dim
|
| 128 |
+
else:
|
| 129 |
+
self.enc_outstate_dim = 0
|
| 130 |
+
|
| 131 |
+
self.embedding = nn.Embedding(self.output_dim, self.dec_embed_dim)
|
| 132 |
+
|
| 133 |
+
if self.dec_rnn_type == "gru":
|
| 134 |
+
self.dec_rnn = nn.GRU(
|
| 135 |
+
input_size=self.dec_embed_dim
|
| 136 |
+
+ self.enc_outstate_dim, # to concat attention_output
|
| 137 |
+
hidden_size=self.dec_hidden_dim, # previous Hidden
|
| 138 |
+
num_layers=self.dec_layers,
|
| 139 |
+
batch_first=True,
|
| 140 |
+
)
|
| 141 |
+
elif self.dec_rnn_type == "lstm":
|
| 142 |
+
self.dec_rnn = nn.LSTM(
|
| 143 |
+
input_size=self.dec_embed_dim
|
| 144 |
+
+ self.enc_outstate_dim, # to concat attention_output
|
| 145 |
+
hidden_size=self.dec_hidden_dim, # previous Hidden
|
| 146 |
+
num_layers=self.dec_layers,
|
| 147 |
+
batch_first=True,
|
| 148 |
+
)
|
| 149 |
+
else:
|
| 150 |
+
raise Exception("unknown RNN type mentioned")
|
| 151 |
+
|
| 152 |
+
self.fc = nn.Sequential(
|
| 153 |
+
nn.Linear(self.dec_hidden_dim, self.dec_embed_dim),
|
| 154 |
+
nn.LeakyReLU(),
|
| 155 |
+
# nn.Linear(self.dec_embed_dim, self.dec_embed_dim), nn.LeakyReLU(), # removing to reduce size
|
| 156 |
+
nn.Linear(self.dec_embed_dim, self.output_dim),
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
##----- Attention ----------
|
| 160 |
+
if self.use_attention:
|
| 161 |
+
self.W1 = nn.Linear(self.enc_outstate_dim, self.dec_hidden_dim)
|
| 162 |
+
self.W2 = nn.Linear(self.dec_hidden_dim, self.dec_hidden_dim)
|
| 163 |
+
self.V = nn.Linear(self.dec_hidden_dim, 1)
|
| 164 |
+
|
| 165 |
+
def attention(self, x, hidden, enc_output):
|
| 166 |
+
"""
|
| 167 |
+
x: (batch_size, 1, dec_embed_dim) -> after Embedding
|
| 168 |
+
enc_output: batch_size, max_length, enc_hidden_dim *num_directions
|
| 169 |
+
hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)
|
| 170 |
+
"""
|
| 171 |
+
|
| 172 |
+
## perform addition to calculate the score
|
| 173 |
+
|
| 174 |
+
# hidden_with_time_axis: batch_size, 1, hidden_dim
|
| 175 |
+
## hidden_with_time_axis = hidden.permute(1, 0, 2) ## replaced with below 2lines
|
| 176 |
+
hidden_with_time_axis = torch.sum(hidden, axis=0)
|
| 177 |
+
|
| 178 |
+
hidden_with_time_axis = hidden_with_time_axis.unsqueeze(1)
|
| 179 |
+
|
| 180 |
+
# score: batch_size, max_length, hidden_dim
|
| 181 |
+
score = torch.tanh(self.W1(enc_output) + self.W2(hidden_with_time_axis))
|
| 182 |
+
|
| 183 |
+
# attention_weights: batch_size, max_length, 1
|
| 184 |
+
# we get 1 at the last axis because we are applying score to self.V
|
| 185 |
+
attention_weights = torch.softmax(self.V(score), dim=1)
|
| 186 |
+
|
| 187 |
+
# context_vector shape after sum == (batch_size, hidden_dim)
|
| 188 |
+
context_vector = attention_weights * enc_output
|
| 189 |
+
context_vector = torch.sum(context_vector, dim=1)
|
| 190 |
+
# context_vector: batch_size, 1, hidden_dim
|
| 191 |
+
context_vector = context_vector.unsqueeze(1)
|
| 192 |
+
|
| 193 |
+
# attend_out (batch_size, 1, dec_embed_dim + hidden_size)
|
| 194 |
+
attend_out = torch.cat((context_vector, x), -1)
|
| 195 |
+
|
| 196 |
+
return attend_out, attention_weights
|
| 197 |
+
|
| 198 |
+
def forward(self, x, hidden, enc_output):
|
| 199 |
+
"""
|
| 200 |
+
x: (batch_size, 1)
|
| 201 |
+
enc_output: batch_size, max_length, dec_embed_dim
|
| 202 |
+
hidden: n_layer, batch_size, hidden_size | lstm: (h_n, c_n)
|
| 203 |
+
"""
|
| 204 |
+
if (hidden is None) and (self.use_attention is False):
|
| 205 |
+
raise Exception("No use of a decoder with No attention and No Hidden")
|
| 206 |
+
|
| 207 |
+
batch_sz = x.shape[0]
|
| 208 |
+
|
| 209 |
+
if hidden is None:
|
| 210 |
+
# hidden: n_layers, batch_size, hidden_dim
|
| 211 |
+
hid_for_att = torch.zeros(
|
| 212 |
+
(self.dec_layers, batch_sz, self.dec_hidden_dim)
|
| 213 |
+
).to(self.device)
|
| 214 |
+
elif self.dec_rnn_type == "lstm":
|
| 215 |
+
hid_for_att = hidden[0] # h_n
|
| 216 |
+
else:
|
| 217 |
+
hid_for_att = hidden
|
| 218 |
+
|
| 219 |
+
# x (batch_size, 1, dec_embed_dim) -> after embedding
|
| 220 |
+
x = self.embedding(x)
|
| 221 |
+
|
| 222 |
+
if self.use_attention:
|
| 223 |
+
# x (batch_size, 1, dec_embed_dim + hidden_size) -> after attention
|
| 224 |
+
# aw: (batch_size, max_length, 1)
|
| 225 |
+
x, aw = self.attention(x, hid_for_att, enc_output)
|
| 226 |
+
else:
|
| 227 |
+
x, aw = x, 0
|
| 228 |
+
|
| 229 |
+
# passing the concatenated vector to the GRU
|
| 230 |
+
# output: (batch_size, n_layers, hidden_size)
|
| 231 |
+
# hidden: n_layers, batch_size, hidden_size | if LSTM (h_n, c_n)
|
| 232 |
+
output, hidden = (
|
| 233 |
+
self.dec_rnn(x, hidden) if hidden is not None else self.dec_rnn(x)
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# output :shp: (batch_size * 1, hidden_size)
|
| 237 |
+
output = output.view(-1, output.size(2))
|
| 238 |
+
|
| 239 |
+
# output :shp: (batch_size * 1, output_dim)
|
| 240 |
+
output = self.fc(output)
|
| 241 |
+
|
| 242 |
+
return output, hidden, aw
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
class Seq2Seq(nn.Module):
|
| 246 |
+
"""
|
| 247 |
+
Used to construct seq2seq architecture with encoder decoder objects
|
| 248 |
+
"""
|
| 249 |
+
|
| 250 |
+
def __init__(
|
| 251 |
+
self, encoder, decoder, pass_enc2dec_hid=False, dropout=0, device="cpu"
|
| 252 |
+
):
|
| 253 |
+
super(Seq2Seq, self).__init__()
|
| 254 |
+
|
| 255 |
+
self.encoder = encoder
|
| 256 |
+
self.decoder = decoder
|
| 257 |
+
self.device = device
|
| 258 |
+
self.pass_enc2dec_hid = pass_enc2dec_hid
|
| 259 |
+
|
| 260 |
+
if self.pass_enc2dec_hid:
|
| 261 |
+
assert (
|
| 262 |
+
decoder.dec_hidden_dim == encoder.enc_hidden_dim
|
| 263 |
+
), "Hidden Dimension of encoder and decoder must be same, or unset `pass_enc2dec_hid`"
|
| 264 |
+
if decoder.use_attention:
|
| 265 |
+
assert (
|
| 266 |
+
decoder.enc_outstate_dim
|
| 267 |
+
== encoder.enc_directions * encoder.enc_hidden_dim
|
| 268 |
+
), "Set `enc_out_dim` correctly in decoder"
|
| 269 |
+
assert (
|
| 270 |
+
self.pass_enc2dec_hid or decoder.use_attention
|
| 271 |
+
), "No use of a decoder with No attention and No Hidden from Encoder"
|
| 272 |
+
|
| 273 |
+
def forward(self, src, tgt, src_sz, teacher_forcing_ratio=0):
|
| 274 |
+
"""
|
| 275 |
+
src: (batch_size, sequence_len.padded)
|
| 276 |
+
tgt: (batch_size, sequence_len.padded)
|
| 277 |
+
src_sz: [batch_size, 1] - Unpadded sequence lengths
|
| 278 |
+
"""
|
| 279 |
+
batch_size = tgt.shape[0]
|
| 280 |
+
|
| 281 |
+
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
|
| 282 |
+
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
|
| 283 |
+
enc_output, enc_hidden = self.encoder(src, src_sz)
|
| 284 |
+
|
| 285 |
+
if self.pass_enc2dec_hid:
|
| 286 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
| 287 |
+
dec_hidden = enc_hidden
|
| 288 |
+
else:
|
| 289 |
+
# dec_hidden -> Will be initialized to zeros internally
|
| 290 |
+
dec_hidden = None
|
| 291 |
+
|
| 292 |
+
# pred_vecs: (batch_size, output_dim, sequence_sz) -> shape required for CELoss
|
| 293 |
+
pred_vecs = torch.zeros(batch_size, self.decoder.output_dim, tgt.size(1)).to(
|
| 294 |
+
self.device
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# dec_input: (batch_size, 1)
|
| 298 |
+
dec_input = tgt[:, 0].unsqueeze(1) # initialize to start token
|
| 299 |
+
pred_vecs[:, 1, 0] = 1 # Initialize to start tokens all batches
|
| 300 |
+
for t in range(1, tgt.size(1)):
|
| 301 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
| 302 |
+
# dec_output: batch_size, output_dim
|
| 303 |
+
# dec_input: (batch_size, 1)
|
| 304 |
+
dec_output, dec_hidden, _ = self.decoder(
|
| 305 |
+
dec_input,
|
| 306 |
+
dec_hidden,
|
| 307 |
+
enc_output,
|
| 308 |
+
)
|
| 309 |
+
pred_vecs[:, :, t] = dec_output
|
| 310 |
+
|
| 311 |
+
# # prediction: batch_size
|
| 312 |
+
prediction = torch.argmax(dec_output, dim=1)
|
| 313 |
+
|
| 314 |
+
# Teacher Forcing
|
| 315 |
+
if random.random() < teacher_forcing_ratio:
|
| 316 |
+
dec_input = tgt[:, t].unsqueeze(1)
|
| 317 |
+
else:
|
| 318 |
+
dec_input = prediction.unsqueeze(1)
|
| 319 |
+
|
| 320 |
+
return pred_vecs # (batch_size, output_dim, sequence_sz)
|
| 321 |
+
|
| 322 |
+
def inference(self, src, max_tgt_sz=50, debug=0):
|
| 323 |
+
"""
|
| 324 |
+
single input only, No batch Inferencing
|
| 325 |
+
src: (sequence_len)
|
| 326 |
+
debug: if True will return attention weights also
|
| 327 |
+
"""
|
| 328 |
+
batch_size = 1
|
| 329 |
+
start_tok = src[0]
|
| 330 |
+
end_tok = src[-1]
|
| 331 |
+
src_sz = torch.tensor([len(src)])
|
| 332 |
+
src_ = src.unsqueeze(0)
|
| 333 |
+
|
| 334 |
+
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
|
| 335 |
+
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
|
| 336 |
+
enc_output, enc_hidden = self.encoder(src_, src_sz)
|
| 337 |
+
|
| 338 |
+
if self.pass_enc2dec_hid:
|
| 339 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
| 340 |
+
dec_hidden = enc_hidden
|
| 341 |
+
else:
|
| 342 |
+
# dec_hidden -> Will be initialized to zeros internally
|
| 343 |
+
dec_hidden = None
|
| 344 |
+
|
| 345 |
+
# pred_arr: (sequence_sz, 1) -> shape required for CELoss
|
| 346 |
+
pred_arr = torch.zeros(max_tgt_sz, 1).to(self.device)
|
| 347 |
+
if debug:
|
| 348 |
+
attend_weight_arr = torch.zeros(max_tgt_sz, len(src)).to(self.device)
|
| 349 |
+
|
| 350 |
+
# dec_input: (batch_size, 1)
|
| 351 |
+
dec_input = start_tok.view(1, 1) # initialize to start token
|
| 352 |
+
pred_arr[0] = start_tok.view(1, 1) # initialize to start token
|
| 353 |
+
for t in range(max_tgt_sz):
|
| 354 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
| 355 |
+
# dec_output: batch_size, output_dim
|
| 356 |
+
# dec_input: (batch_size, 1)
|
| 357 |
+
dec_output, dec_hidden, aw = self.decoder(
|
| 358 |
+
dec_input,
|
| 359 |
+
dec_hidden,
|
| 360 |
+
enc_output,
|
| 361 |
+
)
|
| 362 |
+
# prediction :shp: (1,1)
|
| 363 |
+
prediction = torch.argmax(dec_output, dim=1)
|
| 364 |
+
dec_input = prediction.unsqueeze(1)
|
| 365 |
+
pred_arr[t] = prediction
|
| 366 |
+
if debug:
|
| 367 |
+
attend_weight_arr[t] = aw.squeeze(-1)
|
| 368 |
+
|
| 369 |
+
if torch.eq(prediction, end_tok):
|
| 370 |
+
break
|
| 371 |
+
|
| 372 |
+
if debug:
|
| 373 |
+
return pred_arr.squeeze(), attend_weight_arr
|
| 374 |
+
# pred_arr :shp: (sequence_len)
|
| 375 |
+
return pred_arr.squeeze().to(dtype=torch.long)
|
| 376 |
+
|
| 377 |
+
def active_beam_inference(self, src, beam_width=3, max_tgt_sz=50):
|
| 378 |
+
"""Active beam Search based decoding
|
| 379 |
+
src: (sequence_len)
|
| 380 |
+
"""
|
| 381 |
+
|
| 382 |
+
def _avg_score(p_tup):
|
| 383 |
+
"""Used for Sorting
|
| 384 |
+
TODO: Dividing by length of sequence power alpha as hyperparam
|
| 385 |
+
"""
|
| 386 |
+
return p_tup[0]
|
| 387 |
+
|
| 388 |
+
batch_size = 1
|
| 389 |
+
start_tok = src[0]
|
| 390 |
+
end_tok = src[-1]
|
| 391 |
+
src_sz = torch.tensor([len(src)])
|
| 392 |
+
src_ = src.unsqueeze(0)
|
| 393 |
+
|
| 394 |
+
# enc_output: (batch_size, padded_seq_length, enc_hidden_dim*num_direction)
|
| 395 |
+
# enc_hidden: (enc_layers*num_direction, batch_size, hidden_dim)
|
| 396 |
+
enc_output, enc_hidden = self.encoder(src_, src_sz)
|
| 397 |
+
|
| 398 |
+
if self.pass_enc2dec_hid:
|
| 399 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
| 400 |
+
init_dec_hidden = enc_hidden
|
| 401 |
+
else:
|
| 402 |
+
# dec_hidden -> Will be initialized to zeros internally
|
| 403 |
+
init_dec_hidden = None
|
| 404 |
+
|
| 405 |
+
# top_pred[][0] = Σ-log_softmax
|
| 406 |
+
# top_pred[][1] = sequence torch.tensor shape: (1)
|
| 407 |
+
# top_pred[][2] = dec_hidden
|
| 408 |
+
top_pred_list = [(0, start_tok.unsqueeze(0), init_dec_hidden)]
|
| 409 |
+
|
| 410 |
+
for t in range(max_tgt_sz):
|
| 411 |
+
cur_pred_list = []
|
| 412 |
+
|
| 413 |
+
for p_tup in top_pred_list:
|
| 414 |
+
if p_tup[1][-1] == end_tok:
|
| 415 |
+
cur_pred_list.append(p_tup)
|
| 416 |
+
continue
|
| 417 |
+
|
| 418 |
+
# dec_hidden: dec_layers, 1, hidden_dim
|
| 419 |
+
# dec_output: 1, output_dim
|
| 420 |
+
dec_output, dec_hidden, _ = self.decoder(
|
| 421 |
+
x=p_tup[1][-1].view(1, 1), # dec_input: (1,1)
|
| 422 |
+
hidden=p_tup[2],
|
| 423 |
+
enc_output=enc_output,
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
## π{prob} = Σ{log(prob)} -> to prevent diminishing
|
| 427 |
+
# dec_output: (1, output_dim)
|
| 428 |
+
dec_output = nn.functional.log_softmax(dec_output, dim=1)
|
| 429 |
+
# pred_topk.values & pred_topk.indices: (1, beam_width)
|
| 430 |
+
pred_topk = torch.topk(dec_output, k=beam_width, dim=1)
|
| 431 |
+
|
| 432 |
+
for i in range(beam_width):
|
| 433 |
+
sig_logsmx_ = p_tup[0] + pred_topk.values[0][i]
|
| 434 |
+
# seq_tensor_ : (seq_len)
|
| 435 |
+
seq_tensor_ = torch.cat((p_tup[1], pred_topk.indices[0][i].view(1)))
|
| 436 |
+
|
| 437 |
+
cur_pred_list.append((sig_logsmx_, seq_tensor_, dec_hidden))
|
| 438 |
+
|
| 439 |
+
cur_pred_list.sort(key=_avg_score, reverse=True) # Maximized order
|
| 440 |
+
top_pred_list = cur_pred_list[:beam_width]
|
| 441 |
+
|
| 442 |
+
# check if end_tok of all topk
|
| 443 |
+
end_flags_ = [1 if t[1][-1] == end_tok else 0 for t in top_pred_list]
|
| 444 |
+
if beam_width == sum(end_flags_):
|
| 445 |
+
break
|
| 446 |
+
|
| 447 |
+
pred_tnsr_list = [t[1] for t in top_pred_list]
|
| 448 |
+
|
| 449 |
+
return pred_tnsr_list
|
| 450 |
+
|
| 451 |
+
def passive_beam_inference(self, src, beam_width=7, max_tgt_sz=50):
|
| 452 |
+
"""
|
| 453 |
+
Passive Beam search based inference
|
| 454 |
+
src: (sequence_len)
|
| 455 |
+
"""
|
| 456 |
+
|
| 457 |
+
def _avg_score(p_tup):
|
| 458 |
+
"""Used for Sorting
|
| 459 |
+
TODO: Dividing by length of sequence power alpha as hyperparam
|
| 460 |
+
"""
|
| 461 |
+
return p_tup[0]
|
| 462 |
+
|
| 463 |
+
def _beam_search_topk(topk_obj, start_tok, beam_width):
|
| 464 |
+
"""search for sequence with maxim prob
|
| 465 |
+
topk_obj[x]: .values & .indices shape:(1, beam_width)
|
| 466 |
+
"""
|
| 467 |
+
# top_pred_list[x]: tuple(prob, seq_tensor)
|
| 468 |
+
top_pred_list = [
|
| 469 |
+
(0, start_tok.unsqueeze(0)),
|
| 470 |
+
]
|
| 471 |
+
|
| 472 |
+
for obj in topk_obj:
|
| 473 |
+
new_lst_ = list()
|
| 474 |
+
for itm in top_pred_list:
|
| 475 |
+
for i in range(beam_width):
|
| 476 |
+
sig_logsmx_ = itm[0] + obj.values[0][i]
|
| 477 |
+
seq_tensor_ = torch.cat((itm[1], obj.indices[0][i].view(1)))
|
| 478 |
+
new_lst_.append((sig_logsmx_, seq_tensor_))
|
| 479 |
+
|
| 480 |
+
new_lst_.sort(key=_avg_score, reverse=True)
|
| 481 |
+
top_pred_list = new_lst_[:beam_width]
|
| 482 |
+
return top_pred_list
|
| 483 |
+
|
| 484 |
+
batch_size = 1
|
| 485 |
+
start_tok = src[0]
|
| 486 |
+
end_tok = src[-1]
|
| 487 |
+
src_sz = torch.tensor([len(src)])
|
| 488 |
+
src_ = src.unsqueeze(0)
|
| 489 |
+
|
| 490 |
+
enc_output, enc_hidden = self.encoder(src_, src_sz)
|
| 491 |
+
|
| 492 |
+
if self.pass_enc2dec_hid:
|
| 493 |
+
# dec_hidden: dec_layers, batch_size , dec_hidden_dim
|
| 494 |
+
dec_hidden = enc_hidden
|
| 495 |
+
else:
|
| 496 |
+
# dec_hidden -> Will be initialized to zeros internally
|
| 497 |
+
dec_hidden = None
|
| 498 |
+
|
| 499 |
+
# dec_input: (1, 1)
|
| 500 |
+
dec_input = start_tok.view(1, 1) # initialize to start token
|
| 501 |
+
|
| 502 |
+
topk_obj = []
|
| 503 |
+
for t in range(max_tgt_sz):
|
| 504 |
+
dec_output, dec_hidden, aw = self.decoder(
|
| 505 |
+
dec_input,
|
| 506 |
+
dec_hidden,
|
| 507 |
+
enc_output,
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
## π{prob} = Σ{log(prob)} -> to prevent diminishing
|
| 511 |
+
# dec_output: (1, output_dim)
|
| 512 |
+
dec_output = nn.functional.log_softmax(dec_output, dim=1)
|
| 513 |
+
# pred_topk.values & pred_topk.indices: (1, beam_width)
|
| 514 |
+
pred_topk = torch.topk(dec_output, k=beam_width, dim=1)
|
| 515 |
+
|
| 516 |
+
topk_obj.append(pred_topk)
|
| 517 |
+
|
| 518 |
+
# dec_input: (1, 1)
|
| 519 |
+
dec_input = pred_topk.indices[0][0].view(1, 1)
|
| 520 |
+
if torch.eq(dec_input, end_tok):
|
| 521 |
+
break
|
| 522 |
+
|
| 523 |
+
top_pred_list = _beam_search_topk(topk_obj, start_tok, beam_width)
|
| 524 |
+
pred_tnsr_list = [t[1] for t in top_pred_list]
|
| 525 |
+
|
| 526 |
+
return pred_tnsr_list
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
class GlyphStrawboss:
|
| 530 |
+
def __init__(self, glyphs="en"):
|
| 531 |
+
"""list of letters in a language in unicode
|
| 532 |
+
lang: List with unicodes
|
| 533 |
+
"""
|
| 534 |
+
if glyphs == "en":
|
| 535 |
+
# Smallcase alone
|
| 536 |
+
self.glyphs = [chr(alpha) for alpha in range(97, 123)] + ["é", "è", "á"]
|
| 537 |
+
else:
|
| 538 |
+
self.dossier = json.load(open(glyphs, encoding="utf-8"))
|
| 539 |
+
self.numsym_map = self.dossier["numsym_map"]
|
| 540 |
+
self.glyphs = self.dossier["glyphs"]
|
| 541 |
+
|
| 542 |
+
self.indoarab_num = [chr(alpha) for alpha in range(48, 58)]
|
| 543 |
+
|
| 544 |
+
self.char2idx = {}
|
| 545 |
+
self.idx2char = {}
|
| 546 |
+
self._create_index()
|
| 547 |
+
|
| 548 |
+
def _create_index(self):
|
| 549 |
+
|
| 550 |
+
self.char2idx["_"] = 0 # pad
|
| 551 |
+
self.char2idx["$"] = 1 # start
|
| 552 |
+
self.char2idx["#"] = 2 # end
|
| 553 |
+
self.char2idx["*"] = 3 # Mask
|
| 554 |
+
self.char2idx["'"] = 4 # apostrophe U+0027
|
| 555 |
+
self.char2idx["%"] = 5 # unused
|
| 556 |
+
self.char2idx["!"] = 6 # unused
|
| 557 |
+
self.char2idx["?"] = 7
|
| 558 |
+
self.char2idx[":"] = 8
|
| 559 |
+
self.char2idx[" "] = 9
|
| 560 |
+
self.char2idx["-"] = 10
|
| 561 |
+
self.char2idx[","] = 11
|
| 562 |
+
self.char2idx["."] = 12
|
| 563 |
+
self.char2idx["("] = 13
|
| 564 |
+
self.char2idx[")"] = 14
|
| 565 |
+
self.char2idx["/"] = 15
|
| 566 |
+
self.char2idx["^"] = 16
|
| 567 |
+
|
| 568 |
+
for idx, char in enumerate(self.indoarab_num):
|
| 569 |
+
self.char2idx[char] = idx + 17
|
| 570 |
+
# letter to index mapping
|
| 571 |
+
for idx, char in enumerate(self.glyphs):
|
| 572 |
+
self.char2idx[char] = idx + 27 # +20 token initially
|
| 573 |
+
|
| 574 |
+
# index to letter mapping
|
| 575 |
+
for char, idx in self.char2idx.items():
|
| 576 |
+
self.idx2char[idx] = char
|
| 577 |
+
|
| 578 |
+
def size(self):
|
| 579 |
+
return len(self.char2idx)
|
| 580 |
+
|
| 581 |
+
def word2xlitvec(self, word):
|
| 582 |
+
"""Converts given string of gyphs(word) to vector(numpy)
|
| 583 |
+
Also adds tokens for start and end
|
| 584 |
+
"""
|
| 585 |
+
try:
|
| 586 |
+
vec = [self.char2idx["$"]] # start token
|
| 587 |
+
for i in list(word):
|
| 588 |
+
vec.append(self.char2idx[i])
|
| 589 |
+
vec.append(self.char2idx["#"]) # end token
|
| 590 |
+
|
| 591 |
+
vec = np.asarray(vec, dtype=np.int64)
|
| 592 |
+
return vec
|
| 593 |
+
|
| 594 |
+
except Exception as error:
|
| 595 |
+
print("Error In word:", word, "Error Char not in Token:", error)
|
| 596 |
+
sys.exit()
|
| 597 |
+
|
| 598 |
+
def xlitvec2word(self, vector):
|
| 599 |
+
"""Converts vector(numpy) to string of glyphs(word)"""
|
| 600 |
+
char_list = []
|
| 601 |
+
for i in vector:
|
| 602 |
+
char_list.append(self.idx2char[i])
|
| 603 |
+
|
| 604 |
+
word = "".join(char_list).replace("$", "").replace("#", "") # remove tokens
|
| 605 |
+
word = word.replace("_", "").replace("*", "") # remove tokens
|
| 606 |
+
return word
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
class XlitPiston:
|
| 610 |
+
"""
|
| 611 |
+
For handling prediction & post-processing of transliteration for a single language
|
| 612 |
+
Class dependency: Seq2Seq, GlyphStrawboss
|
| 613 |
+
Global Variables: F_DIR
|
| 614 |
+
"""
|
| 615 |
+
|
| 616 |
+
def __init__(
|
| 617 |
+
self, weight_path, tglyph_cfg_file, iglyph_cfg_file="en", device="cpu"
|
| 618 |
+
):
|
| 619 |
+
|
| 620 |
+
self.device = device
|
| 621 |
+
self.in_glyph_obj = GlyphStrawboss(iglyph_cfg_file)
|
| 622 |
+
self.tgt_glyph_obj = GlyphStrawboss(glyphs=tglyph_cfg_file)
|
| 623 |
+
|
| 624 |
+
self._numsym_set = set(
|
| 625 |
+
json.load(open(tglyph_cfg_file, encoding="utf-8"))["numsym_map"].keys()
|
| 626 |
+
)
|
| 627 |
+
self._inchar_set = set("abcdefghijklmnopqrstuvwxyzéèá")
|
| 628 |
+
self._natscr_set = set().union(
|
| 629 |
+
self.tgt_glyph_obj.glyphs, sum(self.tgt_glyph_obj.numsym_map.values(), [])
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
## Model Config Static TODO: add defining in json support
|
| 633 |
+
input_dim = self.in_glyph_obj.size()
|
| 634 |
+
output_dim = self.tgt_glyph_obj.size()
|
| 635 |
+
enc_emb_dim = 300
|
| 636 |
+
dec_emb_dim = 300
|
| 637 |
+
enc_hidden_dim = 512
|
| 638 |
+
dec_hidden_dim = 512
|
| 639 |
+
rnn_type = "lstm"
|
| 640 |
+
enc2dec_hid = True
|
| 641 |
+
attention = True
|
| 642 |
+
enc_layers = 1
|
| 643 |
+
dec_layers = 2
|
| 644 |
+
m_dropout = 0
|
| 645 |
+
enc_bidirect = True
|
| 646 |
+
enc_outstate_dim = enc_hidden_dim * (2 if enc_bidirect else 1)
|
| 647 |
+
|
| 648 |
+
enc = Encoder(
|
| 649 |
+
input_dim=input_dim,
|
| 650 |
+
embed_dim=enc_emb_dim,
|
| 651 |
+
hidden_dim=enc_hidden_dim,
|
| 652 |
+
rnn_type=rnn_type,
|
| 653 |
+
layers=enc_layers,
|
| 654 |
+
dropout=m_dropout,
|
| 655 |
+
device=self.device,
|
| 656 |
+
bidirectional=enc_bidirect,
|
| 657 |
+
)
|
| 658 |
+
dec = Decoder(
|
| 659 |
+
output_dim=output_dim,
|
| 660 |
+
embed_dim=dec_emb_dim,
|
| 661 |
+
hidden_dim=dec_hidden_dim,
|
| 662 |
+
rnn_type=rnn_type,
|
| 663 |
+
layers=dec_layers,
|
| 664 |
+
dropout=m_dropout,
|
| 665 |
+
use_attention=attention,
|
| 666 |
+
enc_outstate_dim=enc_outstate_dim,
|
| 667 |
+
device=self.device,
|
| 668 |
+
)
|
| 669 |
+
self.model = Seq2Seq(enc, dec, pass_enc2dec_hid=enc2dec_hid, device=self.device)
|
| 670 |
+
self.model = self.model.to(self.device)
|
| 671 |
+
weights = torch.load(weight_path, map_location=torch.device(self.device))
|
| 672 |
+
|
| 673 |
+
self.model.load_state_dict(weights)
|
| 674 |
+
self.model.eval()
|
| 675 |
+
|
| 676 |
+
def character_model(self, word, beam_width=1):
|
| 677 |
+
in_vec = torch.from_numpy(self.in_glyph_obj.word2xlitvec(word)).to(self.device)
|
| 678 |
+
## change to active or passive beam
|
| 679 |
+
p_out_list = self.model.active_beam_inference(in_vec, beam_width=beam_width)
|
| 680 |
+
result = [
|
| 681 |
+
self.tgt_glyph_obj.xlitvec2word(out.cpu().numpy()) for out in p_out_list
|
| 682 |
+
]
|
| 683 |
+
|
| 684 |
+
# List type
|
| 685 |
+
return result
|
| 686 |
+
|
| 687 |
+
def numsym_model(self, seg):
|
| 688 |
+
"""tgt_glyph_obj.numsym_map[x] returns a list object"""
|
| 689 |
+
if len(seg) == 1:
|
| 690 |
+
return [seg] + self.tgt_glyph_obj.numsym_map[seg]
|
| 691 |
+
|
| 692 |
+
a = [self.tgt_glyph_obj.numsym_map[n][0] for n in seg]
|
| 693 |
+
return [seg] + ["".join(a)]
|
| 694 |
+
|
| 695 |
+
def _word_segementer(self, sequence):
|
| 696 |
+
|
| 697 |
+
sequence = sequence.lower()
|
| 698 |
+
accepted = set().union(self._numsym_set, self._inchar_set, self._natscr_set)
|
| 699 |
+
# sequence = ''.join([i for i in sequence if i in accepted])
|
| 700 |
+
|
| 701 |
+
segment = []
|
| 702 |
+
idx = 0
|
| 703 |
+
seq_ = list(sequence)
|
| 704 |
+
while len(seq_):
|
| 705 |
+
# for Number-Symbol
|
| 706 |
+
temp = ""
|
| 707 |
+
while len(seq_) and seq_[0] in self._numsym_set:
|
| 708 |
+
temp += seq_[0]
|
| 709 |
+
seq_.pop(0)
|
| 710 |
+
if temp != "":
|
| 711 |
+
segment.append(temp)
|
| 712 |
+
|
| 713 |
+
# for Target Chars
|
| 714 |
+
temp = ""
|
| 715 |
+
while len(seq_) and seq_[0] in self._natscr_set:
|
| 716 |
+
temp += seq_[0]
|
| 717 |
+
seq_.pop(0)
|
| 718 |
+
if temp != "":
|
| 719 |
+
segment.append(temp)
|
| 720 |
+
|
| 721 |
+
# for Input-Roman Chars
|
| 722 |
+
temp = ""
|
| 723 |
+
while len(seq_) and seq_[0] in self._inchar_set:
|
| 724 |
+
temp += seq_[0]
|
| 725 |
+
seq_.pop(0)
|
| 726 |
+
if temp != "":
|
| 727 |
+
segment.append(temp)
|
| 728 |
+
|
| 729 |
+
temp = ""
|
| 730 |
+
while len(seq_) and seq_[0] not in accepted:
|
| 731 |
+
temp += seq_[0]
|
| 732 |
+
seq_.pop(0)
|
| 733 |
+
if temp != "":
|
| 734 |
+
segment.append(temp)
|
| 735 |
+
|
| 736 |
+
return segment
|
| 737 |
+
|
| 738 |
+
def inferencer(self, sequence, beam_width=10):
|
| 739 |
+
|
| 740 |
+
seg = self._word_segementer(sequence[:120])
|
| 741 |
+
lit_seg = []
|
| 742 |
+
|
| 743 |
+
p = 0
|
| 744 |
+
while p < len(seg):
|
| 745 |
+
if seg[p][0] in self._natscr_set:
|
| 746 |
+
lit_seg.append([seg[p]])
|
| 747 |
+
p += 1
|
| 748 |
+
|
| 749 |
+
elif seg[p][0] in self._inchar_set:
|
| 750 |
+
lit_seg.append(self.character_model(seg[p], beam_width=beam_width))
|
| 751 |
+
p += 1
|
| 752 |
+
|
| 753 |
+
elif seg[p][0] in self._numsym_set: # num & punc
|
| 754 |
+
lit_seg.append(self.numsym_model(seg[p]))
|
| 755 |
+
p += 1
|
| 756 |
+
else:
|
| 757 |
+
lit_seg.append([seg[p]])
|
| 758 |
+
p += 1
|
| 759 |
+
|
| 760 |
+
## IF segment less/equal to 2 then return combinotorial,
|
| 761 |
+
## ELSE only return top1 of each result concatenated
|
| 762 |
+
if len(lit_seg) == 1:
|
| 763 |
+
final_result = lit_seg[0]
|
| 764 |
+
|
| 765 |
+
elif len(lit_seg) == 2:
|
| 766 |
+
final_result = [""]
|
| 767 |
+
for seg in lit_seg:
|
| 768 |
+
new_result = []
|
| 769 |
+
for s in seg:
|
| 770 |
+
for f in final_result:
|
| 771 |
+
new_result.append(f + s)
|
| 772 |
+
final_result = new_result
|
| 773 |
+
|
| 774 |
+
else:
|
| 775 |
+
new_result = []
|
| 776 |
+
for seg in lit_seg:
|
| 777 |
+
new_result.append(seg[0])
|
| 778 |
+
final_result = ["".join(new_result)]
|
| 779 |
+
|
| 780 |
+
return final_result
|
| 781 |
+
|
| 782 |
+
|
| 783 |
+
class XlitEngine:
|
| 784 |
+
"""
|
| 785 |
+
For Managing the top level tasks and applications of transliteration
|
| 786 |
+
Global Variables: F_DIR
|
| 787 |
+
"""
|
| 788 |
+
|
| 789 |
+
def __init__(self, lang2use="hi", config_path="models/default_lineup.json"):
|
| 790 |
+
lineup = json.load(open(os.path.join(F_DIR, config_path), encoding="utf-8"))
|
| 791 |
+
models_path = os.path.join(F_DIR, "models")
|
| 792 |
+
self.lang_config = {}
|
| 793 |
+
if lang2use in lineup:
|
| 794 |
+
self.lang_config[lang2use] = lineup[lang2use]
|
| 795 |
+
else:
|
| 796 |
+
raise Exception(
|
| 797 |
+
"XlitError: The entered Langauge code not found. Available are {}".format(
|
| 798 |
+
lineup.keys()
|
| 799 |
+
)
|
| 800 |
+
)
|
| 801 |
+
self.langs = {}
|
| 802 |
+
self.lang_model = {}
|
| 803 |
+
for la in self.lang_config:
|
| 804 |
+
try:
|
| 805 |
+
print("Loading {}...".format(la))
|
| 806 |
+
self.lang_model[la] = XlitPiston(
|
| 807 |
+
weight_path=os.path.join(
|
| 808 |
+
models_path, self.lang_config[la]["weight"]
|
| 809 |
+
),
|
| 810 |
+
tglyph_cfg_file=os.path.join(
|
| 811 |
+
models_path, self.lang_config[la]["script"]
|
| 812 |
+
),
|
| 813 |
+
iglyph_cfg_file="en",
|
| 814 |
+
)
|
| 815 |
+
self.langs[la] = self.lang_config[la]["name"]
|
| 816 |
+
except Exception as error:
|
| 817 |
+
print("XlitError: Failure in loading {} \n".format(la), error)
|
| 818 |
+
print(XlitError.loading_err.value)
|
| 819 |
+
|
| 820 |
+
def translit_word(self, eng_word, lang_code="hi", topk=7, beam_width=10):
|
| 821 |
+
if eng_word == "":
|
| 822 |
+
return []
|
| 823 |
+
if lang_code in self.langs:
|
| 824 |
+
try:
|
| 825 |
+
res_list = self.lang_model[lang_code].inferencer(
|
| 826 |
+
eng_word, beam_width=beam_width
|
| 827 |
+
)
|
| 828 |
+
return res_list[:topk]
|
| 829 |
+
|
| 830 |
+
except Exception as error:
|
| 831 |
+
print("XlitError:", traceback.format_exc())
|
| 832 |
+
print(XlitError.internal_err.value)
|
| 833 |
+
return XlitError.internal_err
|
| 834 |
+
else:
|
| 835 |
+
print("XlitError: Unknown Langauge requested", lang_code)
|
| 836 |
+
print(XlitError.lang_err.value)
|
| 837 |
+
return XlitError.lang_err
|
| 838 |
+
|
| 839 |
+
def translit_sentence(self, eng_sentence, lang_code="hi", beam_width=10):
|
| 840 |
+
if eng_sentence == "":
|
| 841 |
+
return []
|
| 842 |
+
|
| 843 |
+
if lang_code in self.langs:
|
| 844 |
+
try:
|
| 845 |
+
out_str = ""
|
| 846 |
+
for word in eng_sentence.split():
|
| 847 |
+
res_ = self.lang_model[lang_code].inferencer(
|
| 848 |
+
word, beam_width=beam_width
|
| 849 |
+
)
|
| 850 |
+
out_str = out_str + res_[0] + " "
|
| 851 |
+
return out_str[:-1]
|
| 852 |
+
|
| 853 |
+
except Exception as error:
|
| 854 |
+
print("XlitError:", traceback.format_exc())
|
| 855 |
+
print(XlitError.internal_err.value)
|
| 856 |
+
return XlitError.internal_err
|
| 857 |
+
|
| 858 |
+
else:
|
| 859 |
+
print("XlitError: Unknown Langauge requested", lang_code)
|
| 860 |
+
print(XlitError.lang_err.value)
|
| 861 |
+
return XlitError.lang_err
|
| 862 |
+
|
| 863 |
+
|
| 864 |
+
if __name__ == "__main__":
|
| 865 |
+
|
| 866 |
+
engine = XlitEngine()
|
| 867 |
+
y = engine.translit_sentence("Hello World !")
|
| 868 |
+
print(y)
|