Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from dotenv import load_dotenv | |
| # Load environment variables | |
| load_dotenv() | |
| # Initialize Hugging Face client | |
| client = InferenceClient( | |
| provider="novita", | |
| api_key=os.getenv("HF_TOKEN") | |
| ) | |
| def chat(message, history): | |
| """ | |
| Process chat messages using Hugging Face's Inference Provider | |
| """ | |
| try: | |
| # Format the conversation history | |
| messages = [] | |
| for human, assistant in history: | |
| messages.append({"role": "user", "content": human}) | |
| messages.append({"role": "assistant", "content": assistant}) | |
| messages.append({"role": "user", "content": message}) | |
| # Get response from the model | |
| completion = client.chat.completions.create( | |
| model="deepseek-ai/DeepSeek-V3-0324", | |
| messages=messages, | |
| temperature=0.7, | |
| max_tokens=1000 | |
| ) | |
| return completion.choices[0].message.content | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| # Create Gradio interface | |
| with gr.Blocks(title="DeepSearch - AI Search Assistant") as demo: | |
| gr.Markdown("# DeepSearch") | |
| gr.Markdown("Ask anything and get AI-powered responses using state-of-the-art language models.") | |
| chatbot = gr.ChatInterface( | |
| fn=chat, | |
| examples=[ | |
| "What is the capital of France?", | |
| "Explain quantum computing in simple terms", | |
| "Write a short poem about artificial intelligence" | |
| ], | |
| title="DeepSearch Chat", | |
| description="Ask me anything!", | |
| theme=gr.themes.Soft(), | |
| retry_btn=None, | |
| undo_btn=None, | |
| clear_btn="Clear", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) |