Spaces:
Sleeping
Sleeping
Commit
Β·
de69ead
0
Parent(s):
report
Browse files- app.py +839 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,839 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import pickle
|
| 4 |
+
import os
|
| 5 |
+
import json
|
| 6 |
+
import math
|
| 7 |
+
import random
|
| 8 |
+
import glob
|
| 9 |
+
import zipfile
|
| 10 |
+
import tempfile
|
| 11 |
+
from collections import Counter, defaultdict
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
|
| 15 |
+
# Hugging Face Spaces utilities
|
| 16 |
+
def extract_results_zip():
|
| 17 |
+
"""Extract results.zip if it exists for HF Spaces deployment"""
|
| 18 |
+
if os.path.exists("results.zip"):
|
| 19 |
+
print("Extracting results.zip for Hugging Face Spaces...")
|
| 20 |
+
with zipfile.ZipFile("results.zip", 'r') as zip_ref:
|
| 21 |
+
zip_ref.extractall(".")
|
| 22 |
+
print("β Extracted results.zip")
|
| 23 |
+
return True
|
| 24 |
+
return False
|
| 25 |
+
|
| 26 |
+
# Load BPE and model utilities
|
| 27 |
+
def find_bpe_file():
|
| 28 |
+
"""Recursively search for BPE cache file"""
|
| 29 |
+
# First try to extract from results.zip
|
| 30 |
+
extract_results_zip()
|
| 31 |
+
|
| 32 |
+
# Exact BPE files we have
|
| 33 |
+
bpe_files = [
|
| 34 |
+
"bpe_cache_1000_flatten.pkl",
|
| 35 |
+
"bpe_cache_2000_flatten.pkl",
|
| 36 |
+
"bpe_cache_3000_flatten.pkl",
|
| 37 |
+
"bpe_cache_2000_minimal.pkl"
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
# Check results directory first, then root
|
| 41 |
+
for bpe_file in bpe_files:
|
| 42 |
+
if os.path.exists(f"results/{bpe_file}"):
|
| 43 |
+
return f"results/{bpe_file}"
|
| 44 |
+
elif os.path.exists(bpe_file):
|
| 45 |
+
return bpe_file
|
| 46 |
+
|
| 47 |
+
# Fallback patterns
|
| 48 |
+
patterns = [
|
| 49 |
+
"bpe_cache_*_lower_nopunct.pkl",
|
| 50 |
+
"bpe_cache_*.pkl",
|
| 51 |
+
"*bpe*.pkl"
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
for pattern in patterns:
|
| 55 |
+
files = glob.glob(pattern, recursive=True)
|
| 56 |
+
if files:
|
| 57 |
+
print(f"Found BPE file: {files[0]}")
|
| 58 |
+
return files[0]
|
| 59 |
+
|
| 60 |
+
# Search in subdirectories
|
| 61 |
+
files = glob.glob(f"**/{pattern}", recursive=True)
|
| 62 |
+
if files:
|
| 63 |
+
print(f"Found BPE file: {files[0]}")
|
| 64 |
+
return files[0]
|
| 65 |
+
|
| 66 |
+
return None
|
| 67 |
+
|
| 68 |
+
def load_cached_bpe_from_path(filepath):
|
| 69 |
+
"""Load BPE model from specific file path"""
|
| 70 |
+
try:
|
| 71 |
+
with open(filepath, 'rb') as f:
|
| 72 |
+
bpe = pickle.load(f)
|
| 73 |
+
print(f"Loaded BPE from: {filepath}")
|
| 74 |
+
return bpe
|
| 75 |
+
except Exception as e:
|
| 76 |
+
print(f"Failed to load BPE from {filepath}: {e}")
|
| 77 |
+
return None
|
| 78 |
+
|
| 79 |
+
def normalize_text(text, normalization_type):
|
| 80 |
+
"""Normalize text according to specified strategy"""
|
| 81 |
+
import re
|
| 82 |
+
if normalization_type == "minimal_clean":
|
| 83 |
+
text = text.lower()
|
| 84 |
+
text = re.sub(r'\s+', ' ', text)
|
| 85 |
+
text = text.strip()
|
| 86 |
+
elif normalization_type == "lower_nopunct":
|
| 87 |
+
text = text.lower()
|
| 88 |
+
text = re.sub(r"[^\w\s]", " ", text)
|
| 89 |
+
text = re.sub(r'\s+', ' ', text)
|
| 90 |
+
text = text.strip()
|
| 91 |
+
return text
|
| 92 |
+
|
| 93 |
+
# Classical N-gram model for Task 2 cached models
|
| 94 |
+
class NGramModel:
|
| 95 |
+
def __init__(self, bpe_model, normalization='lower_nopunct'):
|
| 96 |
+
self.bpe_model = bpe_model
|
| 97 |
+
self.normalization = normalization
|
| 98 |
+
self.models = {}
|
| 99 |
+
self.vocab = set()
|
| 100 |
+
self.START, self.END = '<START>', '<END>'
|
| 101 |
+
self._gen_vocab = None
|
| 102 |
+
self.interpolation_weights = {}
|
| 103 |
+
|
| 104 |
+
def _addk(self, ngram, n, k=1.0):
|
| 105 |
+
m = self.models[n]
|
| 106 |
+
c = m['ng'].get(ngram, 0)
|
| 107 |
+
if n == 1:
|
| 108 |
+
N = sum(m['ng'].values())
|
| 109 |
+
return (c + k) / (N + k * len(self._gen_vocab))
|
| 110 |
+
C = m['ctx'].get(ngram[:-1], 0)
|
| 111 |
+
return (c + k) / (C + k * len(self._gen_vocab))
|
| 112 |
+
|
| 113 |
+
def _backoff(self, ngram, n):
|
| 114 |
+
for order in range(n, 0, -1):
|
| 115 |
+
if order in self.models and len(ngram) >= order:
|
| 116 |
+
sub = ngram[-order:]
|
| 117 |
+
m = self.models[order]
|
| 118 |
+
if m['ng'].get(sub, 0) > 0 or order == 1:
|
| 119 |
+
return self._addk(sub, order)
|
| 120 |
+
return 1.0 / len(self._gen_vocab)
|
| 121 |
+
|
| 122 |
+
def _candidates(self, ctx_gram, n):
|
| 123 |
+
if n > 1 and ctx_gram in self.models[n]['ctx']:
|
| 124 |
+
ng = self.models[n]['ng']
|
| 125 |
+
toks = [g[-1] for g in ng if g[:-1] == ctx_gram and g[-1] != self.START]
|
| 126 |
+
if toks:
|
| 127 |
+
return toks
|
| 128 |
+
return list(self._gen_vocab)
|
| 129 |
+
|
| 130 |
+
def _is_word_boundary(self, token):
|
| 131 |
+
if token == self.END:
|
| 132 |
+
return True
|
| 133 |
+
s = self.bpe_model.decode([token])
|
| 134 |
+
return bool(s) and (s[-1].isspace() or s[0].isspace() or s[-1] in '.,!?;:-β')
|
| 135 |
+
|
| 136 |
+
def generate(self, context, n=3, max_words=25, method='argmax', temperature=1.0):
|
| 137 |
+
ctx = self.bpe_model.encode(context, norm=self.normalization)
|
| 138 |
+
hist = (ctx[-(n-1):] if len(ctx) >= n-1 else [self.START]*(n-1-len(ctx)) + ctx)
|
| 139 |
+
words = 0
|
| 140 |
+
out = []
|
| 141 |
+
recent = []
|
| 142 |
+
|
| 143 |
+
while words < max_words:
|
| 144 |
+
gram = tuple(hist[-(n-1):]) if n > 1 else tuple()
|
| 145 |
+
cand = self._candidates(gram, n)
|
| 146 |
+
|
| 147 |
+
if not cand:
|
| 148 |
+
toks = list(self._gen_vocab)
|
| 149 |
+
scores = [self._addk((t,), 1) for t in toks]
|
| 150 |
+
t = toks[scores.index(max(scores))]
|
| 151 |
+
if t == self.END:
|
| 152 |
+
break
|
| 153 |
+
out.append(t)
|
| 154 |
+
hist.append(t)
|
| 155 |
+
recent.append(t)
|
| 156 |
+
if self._is_word_boundary(t):
|
| 157 |
+
words += 1
|
| 158 |
+
continue
|
| 159 |
+
|
| 160 |
+
probs = []
|
| 161 |
+
for t in cand:
|
| 162 |
+
if n > 1:
|
| 163 |
+
seq = (hist[-(n-1):] + [t])[-n:]
|
| 164 |
+
ng = tuple(seq)
|
| 165 |
+
else:
|
| 166 |
+
ng = (t,)
|
| 167 |
+
probs.append(max(self._backoff(ng, n), 1e-12))
|
| 168 |
+
|
| 169 |
+
penalties = [1.3**recent[-5:].count(t) for t in cand]
|
| 170 |
+
logits = [math.log(p/pen) for p, pen in zip(probs, penalties)]
|
| 171 |
+
|
| 172 |
+
if method == 'argmax':
|
| 173 |
+
t = cand[max(range(len(logits)), key=lambda i: logits[i])]
|
| 174 |
+
else:
|
| 175 |
+
zt = max(1e-6, float(temperature))
|
| 176 |
+
logits = [x/zt for x in logits]
|
| 177 |
+
m = max(logits); exps = [math.exp(x-m) for x in logits]; Z = sum(exps)
|
| 178 |
+
w = [e/Z for e in exps]
|
| 179 |
+
t = random.choices(cand, weights=w, k=1)[0]
|
| 180 |
+
|
| 181 |
+
if t == self.END:
|
| 182 |
+
break
|
| 183 |
+
out.append(t)
|
| 184 |
+
hist.append(t)
|
| 185 |
+
recent.append(t)
|
| 186 |
+
if self._is_word_boundary(t):
|
| 187 |
+
words += 1
|
| 188 |
+
|
| 189 |
+
text = ' '.join(self.bpe_model.decode(out).split()).strip()
|
| 190 |
+
return text
|
| 191 |
+
|
| 192 |
+
@classmethod
|
| 193 |
+
def load_model(cls, filepath, bpe_model):
|
| 194 |
+
"""Load a cached classical n-gram model from Task 2"""
|
| 195 |
+
with open(filepath, 'rb') as f:
|
| 196 |
+
model_data = pickle.load(f)
|
| 197 |
+
|
| 198 |
+
instance = cls(bpe_model, model_data['normalization'])
|
| 199 |
+
instance.models = model_data['models']
|
| 200 |
+
instance.vocab = set(model_data['vocab'])
|
| 201 |
+
instance.interpolation_weights = model_data['interpolation_weights']
|
| 202 |
+
instance._gen_vocab = set(model_data['generation_vocab'])
|
| 203 |
+
instance.START = model_data['start_end_tokens']['START']
|
| 204 |
+
instance.END = model_data['start_end_tokens']['END']
|
| 205 |
+
|
| 206 |
+
return instance
|
| 207 |
+
|
| 208 |
+
# Neural N-gram model architecture (Task 3)
|
| 209 |
+
class NeuralNgramModel(nn.Module):
|
| 210 |
+
def __init__(self, vocab_size, n, n_embd=256, n_hidden=512, dropout=0.2):
|
| 211 |
+
super().__init__()
|
| 212 |
+
self.vocab_size = vocab_size
|
| 213 |
+
self.n = n
|
| 214 |
+
self.n_embd = n_embd
|
| 215 |
+
|
| 216 |
+
self.embedding = nn.Embedding(vocab_size, n_embd)
|
| 217 |
+
|
| 218 |
+
if n == 1:
|
| 219 |
+
self.drop = nn.Dropout(dropout)
|
| 220 |
+
self.out = nn.Linear(n_embd, vocab_size)
|
| 221 |
+
else:
|
| 222 |
+
inp = n_embd * (n - 1)
|
| 223 |
+
self.fc1 = nn.Linear(inp, n_hidden)
|
| 224 |
+
self.drop1 = nn.Dropout(dropout)
|
| 225 |
+
self.fc2 = nn.Linear(n_hidden, n_hidden // 2)
|
| 226 |
+
self.drop2 = nn.Dropout(dropout)
|
| 227 |
+
self.out = nn.Linear(n_hidden // 2, vocab_size)
|
| 228 |
+
|
| 229 |
+
def forward(self, ctx_ids):
|
| 230 |
+
if self.n == 1:
|
| 231 |
+
B = ctx_ids.size(0)
|
| 232 |
+
x = self.embedding.weight.mean(dim=0, keepdim=True).expand(B, -1)
|
| 233 |
+
x = self.drop(x)
|
| 234 |
+
logits = self.out(x)
|
| 235 |
+
else:
|
| 236 |
+
emb = self.embedding(ctx_ids)
|
| 237 |
+
x = emb.view(emb.size(0), -1)
|
| 238 |
+
x = F.relu(self.fc1(x))
|
| 239 |
+
x = self.drop1(x)
|
| 240 |
+
x = F.relu(self.fc2(x))
|
| 241 |
+
x = self.drop2(x)
|
| 242 |
+
logits = self.out(x)
|
| 243 |
+
return logits
|
| 244 |
+
|
| 245 |
+
# GPT model architecture (Task 4) - Simplified for inference
|
| 246 |
+
class CausalSelfAttention(nn.Module):
|
| 247 |
+
def __init__(self, n_embd, n_head, block_size, dropout=0.1):
|
| 248 |
+
super().__init__()
|
| 249 |
+
assert n_embd % n_head == 0
|
| 250 |
+
self.n_head = n_head
|
| 251 |
+
self.head_dim = n_embd // n_head
|
| 252 |
+
|
| 253 |
+
self.c_attn = nn.Linear(n_embd, 3 * n_embd)
|
| 254 |
+
self.c_proj = nn.Linear(n_embd, n_embd)
|
| 255 |
+
self.attn_drop = nn.Dropout(dropout)
|
| 256 |
+
self.resid_drop = nn.Dropout(dropout)
|
| 257 |
+
|
| 258 |
+
self.register_buffer(
|
| 259 |
+
"bias",
|
| 260 |
+
torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size),
|
| 261 |
+
persistent=False,
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
def forward(self, x):
|
| 265 |
+
B, T, C = x.shape
|
| 266 |
+
q, k, v = self.c_attn(x).split(C, dim=2)
|
| 267 |
+
q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
| 268 |
+
k = k.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
| 269 |
+
v = v.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
| 270 |
+
|
| 271 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(self.head_dim))
|
| 272 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float("-inf"))
|
| 273 |
+
att = F.softmax(att, dim=-1)
|
| 274 |
+
att = self.attn_drop(att)
|
| 275 |
+
|
| 276 |
+
y = att @ v
|
| 277 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
| 278 |
+
y = self.resid_drop(self.c_proj(y))
|
| 279 |
+
return y
|
| 280 |
+
|
| 281 |
+
class GPTBlock(nn.Module):
|
| 282 |
+
def __init__(self, n_embd, n_head, block_size, dropout=0.1):
|
| 283 |
+
super().__init__()
|
| 284 |
+
self.ln1 = nn.LayerNorm(n_embd)
|
| 285 |
+
self.attn = CausalSelfAttention(n_embd, n_head, block_size, dropout)
|
| 286 |
+
self.ln2 = nn.LayerNorm(n_embd)
|
| 287 |
+
self.mlp = nn.Sequential(
|
| 288 |
+
nn.Linear(n_embd, 4 * n_embd),
|
| 289 |
+
nn.GELU(),
|
| 290 |
+
nn.Linear(4 * n_embd, n_embd),
|
| 291 |
+
nn.Dropout(dropout),
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
def forward(self, x):
|
| 295 |
+
x = x + self.attn(self.ln1(x))
|
| 296 |
+
x = x + self.mlp(self.ln2(x))
|
| 297 |
+
return x
|
| 298 |
+
|
| 299 |
+
class GPTModel(nn.Module):
|
| 300 |
+
def __init__(self, vocab_size, n_embd=96, n_head=4, n_layer=3, block_size=64, dropout=0.1):
|
| 301 |
+
super().__init__()
|
| 302 |
+
self.block_size = block_size
|
| 303 |
+
self.wte = nn.Embedding(vocab_size, n_embd)
|
| 304 |
+
self.wpe = nn.Embedding(block_size, n_embd)
|
| 305 |
+
self.drop = nn.Dropout(dropout)
|
| 306 |
+
self.h = nn.ModuleList([GPTBlock(n_embd, n_head, block_size, dropout) for _ in range(n_layer)])
|
| 307 |
+
self.ln_f = nn.LayerNorm(n_embd)
|
| 308 |
+
self.lm_head = nn.Linear(n_embd, vocab_size, bias=False)
|
| 309 |
+
|
| 310 |
+
def forward(self, idx):
|
| 311 |
+
B, T = idx.shape
|
| 312 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device).unsqueeze(0)
|
| 313 |
+
x = self.wte(idx) + self.wpe(pos)
|
| 314 |
+
x = self.drop(x)
|
| 315 |
+
for block in self.h:
|
| 316 |
+
x = block(x)
|
| 317 |
+
x = self.ln_f(x)
|
| 318 |
+
logits = self.lm_head(x)
|
| 319 |
+
return logits
|
| 320 |
+
|
| 321 |
+
@torch.no_grad()
|
| 322 |
+
def generate(self, idx, max_new_tokens=50, temperature=0.8, top_k=40):
|
| 323 |
+
self.eval()
|
| 324 |
+
for _ in range(max_new_tokens):
|
| 325 |
+
idx_cond = idx if idx.size(1) <= self.block_size else idx[:, -self.block_size:]
|
| 326 |
+
logits = self(idx_cond)
|
| 327 |
+
logits = logits[:, -1, :] / max(1e-6, float(temperature))
|
| 328 |
+
|
| 329 |
+
if top_k is not None and top_k > 0:
|
| 330 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 331 |
+
logits[logits < v[:, [-1]]] = -float("inf")
|
| 332 |
+
|
| 333 |
+
probs = F.softmax(logits, dim=-1)
|
| 334 |
+
next_id = torch.multinomial(probs, num_samples=1)
|
| 335 |
+
idx = torch.cat([idx, next_id], dim=1)
|
| 336 |
+
return idx
|
| 337 |
+
|
| 338 |
+
class ModelManager:
|
| 339 |
+
def __init__(self):
|
| 340 |
+
self.bpe = None
|
| 341 |
+
self.vocab = None
|
| 342 |
+
self.v2i = None
|
| 343 |
+
self.i2v = None
|
| 344 |
+
self.classical_models = {}
|
| 345 |
+
self.neural_models = {}
|
| 346 |
+
self.gpt_models = {}
|
| 347 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 348 |
+
self.load_models()
|
| 349 |
+
|
| 350 |
+
def find_model_files(self):
|
| 351 |
+
"""Load exact models from results directory"""
|
| 352 |
+
model_files = {
|
| 353 |
+
'classical': [],
|
| 354 |
+
'neural': [],
|
| 355 |
+
'gpt': [],
|
| 356 |
+
'bpe': None
|
| 357 |
+
}
|
| 358 |
+
|
| 359 |
+
# Find BPE file
|
| 360 |
+
model_files['bpe'] = find_bpe_file()
|
| 361 |
+
|
| 362 |
+
# Exact Task 2 models we have
|
| 363 |
+
classical_models = [
|
| 364 |
+
"ngram_backoff_max4_alpha0.4_flatten_1000merges.pkl",
|
| 365 |
+
"ngram_backoff_max4_alpha0.4_flatten_2000merges.pkl",
|
| 366 |
+
"ngram_backoff_max4_alpha0.4_flatten_3000merges.pkl",
|
| 367 |
+
"ngram_backoff_max4_alpha0.4_minimal_2000merges.pkl"
|
| 368 |
+
]
|
| 369 |
+
|
| 370 |
+
# Exact Task 3 models we have
|
| 371 |
+
neural_models = [
|
| 372 |
+
"neural_4gram_flatten_1000merges.pt",
|
| 373 |
+
"neural_4gram_flatten_2000merges.pt",
|
| 374 |
+
"neural_4gram_flatten_3000merges.pt",
|
| 375 |
+
"neural_4gram_minimal_2000merges.pt"
|
| 376 |
+
]
|
| 377 |
+
|
| 378 |
+
# Exact Task 4 models we have
|
| 379 |
+
gpt_models = [
|
| 380 |
+
"gpt_flatten_1000merges.pt",
|
| 381 |
+
"gpt_flatten_2000merges.pt",
|
| 382 |
+
"gpt_flatten_3000merges.pt",
|
| 383 |
+
"gpt_minimal_2000merges.pt"
|
| 384 |
+
]
|
| 385 |
+
|
| 386 |
+
# Check which files exist
|
| 387 |
+
for model in classical_models:
|
| 388 |
+
if os.path.exists(f"results/{model}"):
|
| 389 |
+
model_files['classical'].append(f"results/{model}")
|
| 390 |
+
elif os.path.exists(model):
|
| 391 |
+
model_files['classical'].append(model)
|
| 392 |
+
|
| 393 |
+
for model in neural_models:
|
| 394 |
+
if os.path.exists(f"results/{model}"):
|
| 395 |
+
model_files['neural'].append(f"results/{model}")
|
| 396 |
+
elif os.path.exists(model):
|
| 397 |
+
model_files['neural'].append(model)
|
| 398 |
+
|
| 399 |
+
for model in gpt_models:
|
| 400 |
+
if os.path.exists(f"results/{model}"):
|
| 401 |
+
model_files['gpt'].append(f"results/{model}")
|
| 402 |
+
elif os.path.exists(model):
|
| 403 |
+
model_files['gpt'].append(model)
|
| 404 |
+
|
| 405 |
+
print(f"Found {len(model_files['classical'])} classical model files")
|
| 406 |
+
print(f"Found {len(model_files['neural'])} neural model files")
|
| 407 |
+
print(f"Found {len(model_files['gpt'])} GPT model files")
|
| 408 |
+
print(f"BPE file: {model_files['bpe']}")
|
| 409 |
+
|
| 410 |
+
return model_files
|
| 411 |
+
|
| 412 |
+
def parse_neural_filename(self, filename):
|
| 413 |
+
"""Extract n-gram order from Task 3 neural model filename"""
|
| 414 |
+
basename = os.path.basename(filename).lower()
|
| 415 |
+
if 'n1_' in basename or '_1gram' in basename:
|
| 416 |
+
return 1
|
| 417 |
+
elif 'n2_' in basename or '_2gram' in basename:
|
| 418 |
+
return 2
|
| 419 |
+
elif 'n3_' in basename or '_3gram' in basename:
|
| 420 |
+
return 3
|
| 421 |
+
elif 'n4_' in basename or '_4gram' in basename:
|
| 422 |
+
return 4
|
| 423 |
+
return None
|
| 424 |
+
|
| 425 |
+
def parse_gpt_filename(self, filename):
|
| 426 |
+
"""Extract GPT model size from Task 4 filename"""
|
| 427 |
+
basename = os.path.basename(filename).lower()
|
| 428 |
+
if 'tiny' in basename:
|
| 429 |
+
return 'tiny'
|
| 430 |
+
elif 'small' in basename:
|
| 431 |
+
return 'small'
|
| 432 |
+
elif 'medium' in basename:
|
| 433 |
+
return 'medium'
|
| 434 |
+
elif 'large' in basename:
|
| 435 |
+
return 'large'
|
| 436 |
+
return 'unknown'
|
| 437 |
+
|
| 438 |
+
def parse_classical_filename(self, filename):
|
| 439 |
+
"""Extract n-gram order from Task 2 classical model filename"""
|
| 440 |
+
basename = os.path.basename(filename).lower()
|
| 441 |
+
if '1gram' in basename:
|
| 442 |
+
return 1
|
| 443 |
+
elif '2gram' in basename:
|
| 444 |
+
return 2
|
| 445 |
+
elif '3gram' in basename:
|
| 446 |
+
return 3
|
| 447 |
+
elif '4gram' in basename:
|
| 448 |
+
return 4
|
| 449 |
+
return None
|
| 450 |
+
|
| 451 |
+
def load_models(self):
|
| 452 |
+
"""Load all available models from filesystem"""
|
| 453 |
+
model_files = self.find_model_files()
|
| 454 |
+
|
| 455 |
+
# Load BPE
|
| 456 |
+
if model_files['bpe']:
|
| 457 |
+
self.bpe = load_cached_bpe_from_path(model_files['bpe'])
|
| 458 |
+
|
| 459 |
+
if self.bpe is None:
|
| 460 |
+
print("WARNING: No BPE model found. Creating minimal demo BPE.")
|
| 461 |
+
class DemoBPE:
|
| 462 |
+
def __init__(self):
|
| 463 |
+
self.vocab = set(['the', 'and', 'to', 'of', 'a', 'in', 'that', 'is', 'be', 'thou'])
|
| 464 |
+
def encode(self, text, norm=None):
|
| 465 |
+
return text.lower().split()[:10]
|
| 466 |
+
def decode(self, tokens):
|
| 467 |
+
return ' '.join(str(t) for t in tokens)
|
| 468 |
+
self.bpe = DemoBPE()
|
| 469 |
+
|
| 470 |
+
# Build vocabulary
|
| 471 |
+
base_vocab = sorted(list(self.bpe.vocab)) if hasattr(self.bpe, 'vocab') else ['the', 'and', 'to']
|
| 472 |
+
specials = ['<START>', '<END>', '<UNK>']
|
| 473 |
+
self.vocab = base_vocab + [s for s in specials if s not in base_vocab]
|
| 474 |
+
self.v2i = {t: i for i, t in enumerate(self.vocab)}
|
| 475 |
+
self.i2v = {i: t for t, i in self.v2i.items()}
|
| 476 |
+
|
| 477 |
+
# Load models by type
|
| 478 |
+
self.load_classical_models(model_files['classical'])
|
| 479 |
+
self.load_neural_models(model_files['neural'])
|
| 480 |
+
self.load_gpt_models(model_files['gpt'])
|
| 481 |
+
|
| 482 |
+
def load_classical_models(self, file_list):
|
| 483 |
+
"""Load Task 2 classical model checkpoints"""
|
| 484 |
+
for filepath in file_list:
|
| 485 |
+
try:
|
| 486 |
+
model = NGramModel.load_model(filepath, self.bpe)
|
| 487 |
+
n = self.parse_classical_filename(filepath)
|
| 488 |
+
if n is not None:
|
| 489 |
+
model_key = f"{n}gram"
|
| 490 |
+
if model_key not in self.classical_models:
|
| 491 |
+
self.classical_models[model_key] = model
|
| 492 |
+
print(f"Loaded classical {n}-gram from {os.path.basename(filepath)}")
|
| 493 |
+
except Exception as e:
|
| 494 |
+
print(f"Failed to load classical model {filepath}: {e}")
|
| 495 |
+
|
| 496 |
+
def load_neural_models(self, file_list):
|
| 497 |
+
"""Load Task 3 neural model checkpoints"""
|
| 498 |
+
for filepath in file_list:
|
| 499 |
+
try:
|
| 500 |
+
checkpoint = torch.load(filepath, map_location=self.device)
|
| 501 |
+
|
| 502 |
+
# Handle Task 3 checkpoint format
|
| 503 |
+
state_dict = checkpoint.get('state', checkpoint)
|
| 504 |
+
cfg = checkpoint.get('cfg', {})
|
| 505 |
+
|
| 506 |
+
n = self.parse_neural_filename(filepath)
|
| 507 |
+
if n is None:
|
| 508 |
+
continue
|
| 509 |
+
|
| 510 |
+
model = NeuralNgramModel(
|
| 511 |
+
vocab_size=len(self.vocab),
|
| 512 |
+
n=n,
|
| 513 |
+
n_embd=cfg.get('n_embd', 256),
|
| 514 |
+
n_hidden=512,
|
| 515 |
+
dropout=0.1 # Low for inference
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
model.load_state_dict(state_dict)
|
| 519 |
+
model.to(self.device)
|
| 520 |
+
model.eval()
|
| 521 |
+
|
| 522 |
+
model_key = f"{n}gram"
|
| 523 |
+
if model_key not in self.neural_models:
|
| 524 |
+
self.neural_models[model_key] = model
|
| 525 |
+
print(f"Loaded neural {n}-gram from {os.path.basename(filepath)}")
|
| 526 |
+
|
| 527 |
+
except Exception as e:
|
| 528 |
+
print(f"Failed to load neural model {filepath}: {e}")
|
| 529 |
+
|
| 530 |
+
def load_gpt_models(self, file_list):
|
| 531 |
+
"""Load Task 4 GPT model checkpoints"""
|
| 532 |
+
for filepath in file_list:
|
| 533 |
+
try:
|
| 534 |
+
checkpoint = torch.load(filepath, map_location=self.device)
|
| 535 |
+
|
| 536 |
+
# Handle Task 4 checkpoint format
|
| 537 |
+
state_dict = checkpoint.get('state_dict', checkpoint)
|
| 538 |
+
|
| 539 |
+
size = self.parse_gpt_filename(filepath)
|
| 540 |
+
|
| 541 |
+
# Infer architecture from state dict
|
| 542 |
+
wte_size = state_dict['wte.weight'].shape
|
| 543 |
+
vocab_size, n_embd = wte_size
|
| 544 |
+
|
| 545 |
+
# Infer other parameters
|
| 546 |
+
n_head = 4 # default
|
| 547 |
+
if 'h.0.attn.c_attn.weight' in state_dict:
|
| 548 |
+
attn_weight = state_dict['h.0.attn.c_attn.weight']
|
| 549 |
+
n_head = attn_weight.shape[0] // (3 * n_embd)
|
| 550 |
+
|
| 551 |
+
# Count layers
|
| 552 |
+
n_layer = 0
|
| 553 |
+
for key in state_dict.keys():
|
| 554 |
+
if key.startswith('h.') and '.attn.c_attn.weight' in key:
|
| 555 |
+
layer_num = int(key.split('.')[1])
|
| 556 |
+
n_layer = max(n_layer, layer_num + 1)
|
| 557 |
+
if n_layer == 0:
|
| 558 |
+
n_layer = 3
|
| 559 |
+
|
| 560 |
+
# Infer block size
|
| 561 |
+
block_size = 64
|
| 562 |
+
if 'wpe.weight' in state_dict:
|
| 563 |
+
block_size = state_dict['wpe.weight'].shape[0]
|
| 564 |
+
|
| 565 |
+
model = GPTModel(
|
| 566 |
+
vocab_size=vocab_size,
|
| 567 |
+
n_embd=n_embd,
|
| 568 |
+
n_head=n_head,
|
| 569 |
+
n_layer=n_layer,
|
| 570 |
+
block_size=block_size,
|
| 571 |
+
dropout=0.1
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
model.load_state_dict(state_dict)
|
| 575 |
+
model.to(self.device)
|
| 576 |
+
model.eval()
|
| 577 |
+
|
| 578 |
+
model_key = size
|
| 579 |
+
if model_key not in self.gpt_models:
|
| 580 |
+
self.gpt_models[model_key] = model
|
| 581 |
+
print(f"Loaded GPT {size} from {os.path.basename(filepath)}")
|
| 582 |
+
|
| 583 |
+
except Exception as e:
|
| 584 |
+
print(f"Failed to load GPT model {filepath}: {e}")
|
| 585 |
+
|
| 586 |
+
def generate_text(self, model_type, model_name, context, max_length=50, temperature=0.8):
|
| 587 |
+
"""Generate text using specified model"""
|
| 588 |
+
try:
|
| 589 |
+
if model_type == "Classical N-gram":
|
| 590 |
+
if model_name in self.classical_models:
|
| 591 |
+
n = int(model_name[0])
|
| 592 |
+
return self.classical_models[model_name].generate(
|
| 593 |
+
context, n=n, max_words=max_length//3, temperature=temperature
|
| 594 |
+
)
|
| 595 |
+
else:
|
| 596 |
+
return "Classical model not available"
|
| 597 |
+
|
| 598 |
+
elif model_type == "Neural N-gram":
|
| 599 |
+
if model_name in self.neural_models:
|
| 600 |
+
return self.neural_generate(model_name, context, max_length, temperature)
|
| 601 |
+
else:
|
| 602 |
+
return "Neural model not available"
|
| 603 |
+
|
| 604 |
+
elif model_type == "GPT":
|
| 605 |
+
if model_name in self.gpt_models:
|
| 606 |
+
return self.gpt_generate(model_name, context, max_length, temperature)
|
| 607 |
+
else:
|
| 608 |
+
return "GPT model not available"
|
| 609 |
+
|
| 610 |
+
except Exception as e:
|
| 611 |
+
return f"Generation failed: {str(e)}"
|
| 612 |
+
|
| 613 |
+
def neural_generate(self, model_name, context, max_length, temperature):
|
| 614 |
+
"""Generate using Task 3 neural n-gram model"""
|
| 615 |
+
model = self.neural_models[model_name]
|
| 616 |
+
n = model.n
|
| 617 |
+
|
| 618 |
+
ctx_tokens = self.bpe.encode(context, norm='lower_nopunct')
|
| 619 |
+
if len(ctx_tokens) < n - 1:
|
| 620 |
+
ctx_tokens = ['<START>'] * (n - 1 - len(ctx_tokens)) + ctx_tokens
|
| 621 |
+
|
| 622 |
+
out = list(ctx_tokens)
|
| 623 |
+
|
| 624 |
+
with torch.no_grad():
|
| 625 |
+
for _ in range(max_length):
|
| 626 |
+
if n == 1:
|
| 627 |
+
ctx_ids = torch.zeros(1, 1, dtype=torch.long, device=self.device)
|
| 628 |
+
else:
|
| 629 |
+
ctx_ids = torch.tensor([[self.v2i.get(t, self.v2i['<UNK>']) for t in out[-(n-1):]]],
|
| 630 |
+
device=self.device)
|
| 631 |
+
|
| 632 |
+
logits = model(ctx_ids) / max(1e-6, float(temperature))
|
| 633 |
+
probs = F.softmax(logits, dim=-1)
|
| 634 |
+
next_id = torch.multinomial(probs, 1).item()
|
| 635 |
+
next_token = self.i2v[next_id]
|
| 636 |
+
|
| 637 |
+
if next_token == '<END>':
|
| 638 |
+
break
|
| 639 |
+
out.append(next_token)
|
| 640 |
+
|
| 641 |
+
clean = [t for t in out if t not in ('<START>', '<END>', '<UNK>')]
|
| 642 |
+
return self.bpe.decode(clean)
|
| 643 |
+
|
| 644 |
+
def gpt_generate(self, model_name, context, max_length, temperature):
|
| 645 |
+
"""Generate using Task 4 GPT model"""
|
| 646 |
+
model = self.gpt_models[model_name]
|
| 647 |
+
|
| 648 |
+
ctx_tokens = self.bpe.encode(context, norm='lower_nopunct')
|
| 649 |
+
ctx_ids = torch.tensor([[self.v2i.get(t, self.v2i['<UNK>']) for t in ctx_tokens]],
|
| 650 |
+
device=self.device)
|
| 651 |
+
|
| 652 |
+
with torch.no_grad():
|
| 653 |
+
generated = model.generate(ctx_ids, max_new_tokens=max_length, temperature=temperature)
|
| 654 |
+
tokens = [self.i2v.get(i, '<UNK>') for i in generated[0].tolist()]
|
| 655 |
+
return self.bpe.decode(tokens)
|
| 656 |
+
|
| 657 |
+
# Initialize model manager
|
| 658 |
+
print("Initializing model manager...")
|
| 659 |
+
model_manager = ModelManager()
|
| 660 |
+
|
| 661 |
+
def generate_text_interface(model_type, model_name, context, max_length, temperature):
|
| 662 |
+
"""Interface function for Gradio with enhanced error handling"""
|
| 663 |
+
if not context.strip():
|
| 664 |
+
return "β Please enter some context text to generate from."
|
| 665 |
+
|
| 666 |
+
try:
|
| 667 |
+
result = model_manager.generate_text(model_type, model_name, context, max_length, temperature)
|
| 668 |
+
if not result or result.strip() == "":
|
| 669 |
+
return "β οΈ Model generated empty text. Try adjusting the temperature or context."
|
| 670 |
+
return result
|
| 671 |
+
except Exception as e:
|
| 672 |
+
return f"β Generation failed: {str(e)}\n\nTry a different model or adjust the parameters."
|
| 673 |
+
|
| 674 |
+
def update_model_choices(model_type):
|
| 675 |
+
"""Update model choices based on selected type"""
|
| 676 |
+
if model_type == "Classical N-gram":
|
| 677 |
+
choices = list(model_manager.classical_models.keys()) if model_manager.classical_models else ["No models available"]
|
| 678 |
+
default = "3gram" if "3gram" in choices else (choices[0] if choices else None)
|
| 679 |
+
return gr.update(choices=choices, value=default)
|
| 680 |
+
elif model_type == "Neural N-gram":
|
| 681 |
+
choices = list(model_manager.neural_models.keys()) if model_manager.neural_models else ["No models available"]
|
| 682 |
+
default = "3gram" if "3gram" in choices else (choices[0] if choices else None)
|
| 683 |
+
return gr.update(choices=choices, value=default)
|
| 684 |
+
elif model_type == "GPT":
|
| 685 |
+
choices = list(model_manager.gpt_models.keys()) if model_manager.gpt_models else ["No models available"]
|
| 686 |
+
default = "medium" if "medium" in choices else (choices[0] if choices else None)
|
| 687 |
+
return gr.update(choices=choices, value=default)
|
| 688 |
+
|
| 689 |
+
# Create Gradio interface
|
| 690 |
+
with gr.Blocks(
|
| 691 |
+
title="Shakespeare Language Models",
|
| 692 |
+
theme=gr.themes.Soft(),
|
| 693 |
+
css="""
|
| 694 |
+
.gradio-container {
|
| 695 |
+
max-width: 1200px !important;
|
| 696 |
+
margin: auto !important;
|
| 697 |
+
}
|
| 698 |
+
.model-info {
|
| 699 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 700 |
+
color: white;
|
| 701 |
+
padding: 20px;
|
| 702 |
+
border-radius: 10px;
|
| 703 |
+
margin: 20px 0;
|
| 704 |
+
}
|
| 705 |
+
"""
|
| 706 |
+
) as demo:
|
| 707 |
+
gr.Markdown("# π Shakespeare Language Model Generator")
|
| 708 |
+
gr.Markdown("Generate Shakespearean text using classical n-grams, neural networks, or GPT models trained on Shakespeare's complete works!")
|
| 709 |
+
|
| 710 |
+
# Display loaded models info
|
| 711 |
+
with gr.Row():
|
| 712 |
+
with gr.Column():
|
| 713 |
+
gr.Markdown(f"""
|
| 714 |
+
<div class="model-info">
|
| 715 |
+
<h3>π Available Models</h3>
|
| 716 |
+
<ul>
|
| 717 |
+
<li><strong>Classical N-grams</strong> (Task 2): {len(model_manager.classical_models)} models</li>
|
| 718 |
+
<li><strong>Neural N-grams</strong> (Task 3): {len(model_manager.neural_models)} models</li>
|
| 719 |
+
<li><strong>GPT Models</strong> (Task 4): {len(model_manager.gpt_models)} models</li>
|
| 720 |
+
</ul>
|
| 721 |
+
<p><em>Models are automatically loaded from the best performing checkpoints.</em></p>
|
| 722 |
+
</div>
|
| 723 |
+
""")
|
| 724 |
+
|
| 725 |
+
with gr.Row():
|
| 726 |
+
with gr.Column(scale=1):
|
| 727 |
+
gr.Markdown("### βοΈ Model Configuration")
|
| 728 |
+
model_type = gr.Dropdown(
|
| 729 |
+
choices=["Classical N-gram", "Neural N-gram", "GPT"],
|
| 730 |
+
value="Classical N-gram",
|
| 731 |
+
label="π― Model Type",
|
| 732 |
+
info="Choose the type of language model"
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
model_name = gr.Dropdown(
|
| 736 |
+
choices=["No models available"],
|
| 737 |
+
value=None,
|
| 738 |
+
label="π§ Specific Model",
|
| 739 |
+
info="Select a specific model variant"
|
| 740 |
+
)
|
| 741 |
+
|
| 742 |
+
context = gr.Textbox(
|
| 743 |
+
label="π Context/Prompt",
|
| 744 |
+
placeholder="to be or not to be",
|
| 745 |
+
lines=3,
|
| 746 |
+
info="Enter starting text for generation"
|
| 747 |
+
)
|
| 748 |
+
|
| 749 |
+
with gr.Row():
|
| 750 |
+
max_length = gr.Slider(
|
| 751 |
+
minimum=10,
|
| 752 |
+
maximum=100,
|
| 753 |
+
value=50,
|
| 754 |
+
step=5,
|
| 755 |
+
label="π Max Length",
|
| 756 |
+
info="Maximum tokens to generate"
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
temperature = gr.Slider(
|
| 760 |
+
minimum=0.1,
|
| 761 |
+
maximum=2.0,
|
| 762 |
+
value=0.8,
|
| 763 |
+
step=0.1,
|
| 764 |
+
label="π‘οΈ Temperature",
|
| 765 |
+
info="Randomness (higher = more creative)"
|
| 766 |
+
)
|
| 767 |
+
|
| 768 |
+
generate_btn = gr.Button("β¨ Generate Text", variant="primary", size="lg")
|
| 769 |
+
|
| 770 |
+
with gr.Column(scale=1):
|
| 771 |
+
gr.Markdown("### π Generated Text")
|
| 772 |
+
output = gr.Textbox(
|
| 773 |
+
label="Shakespeare-style text generated by the selected model",
|
| 774 |
+
lines=12,
|
| 775 |
+
max_lines=20,
|
| 776 |
+
show_copy_button=True,
|
| 777 |
+
info="The model will generate text in the style of Shakespeare based on your prompt"
|
| 778 |
+
)
|
| 779 |
+
|
| 780 |
+
# Update model choices when type changes
|
| 781 |
+
model_type.change(
|
| 782 |
+
fn=update_model_choices,
|
| 783 |
+
inputs=[model_type],
|
| 784 |
+
outputs=[model_name]
|
| 785 |
+
)
|
| 786 |
+
|
| 787 |
+
# Generate text when button is clicked
|
| 788 |
+
generate_btn.click(
|
| 789 |
+
fn=generate_text_interface,
|
| 790 |
+
inputs=[model_type, model_name, context, max_length, temperature],
|
| 791 |
+
outputs=[output]
|
| 792 |
+
)
|
| 793 |
+
|
| 794 |
+
# Example prompts for different model types
|
| 795 |
+
gr.Markdown("### π‘ Example Prompts")
|
| 796 |
+
gr.Examples(
|
| 797 |
+
examples=[
|
| 798 |
+
["Classical N-gram", "4gram", "to be or not to be", 50, 0.8],
|
| 799 |
+
["Neural N-gram", "4gram", "fair is foul and foul is fair", 40, 0.9],
|
| 800 |
+
["GPT", "4gram", "wherefore art thou romeo", 60, 0.7],
|
| 801 |
+
["Classical N-gram", "4gram", "shall I compare thee", 45, 0.6],
|
| 802 |
+
["GPT", "4gram", "now is the winter", 55, 0.8],
|
| 803 |
+
],
|
| 804 |
+
inputs=[model_type, model_name, context, max_length, temperature],
|
| 805 |
+
label="Click any example to try it!"
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
# Footer with model info
|
| 809 |
+
gr.Markdown("""
|
| 810 |
+
---
|
| 811 |
+
### π Model Information
|
| 812 |
+
|
| 813 |
+
**ποΈ Classical N-grams (Task 2)**: Statistical models using Byte-Pair Encoding with add-one smoothing and backoff
|
| 814 |
+
- **Best Performance**: 10.40 PPL (Flatten + 1000 merges + Backoff)
|
| 815 |
+
- **Method**: Count-based probability estimation with smoothing
|
| 816 |
+
|
| 817 |
+
**π§ Neural N-grams (Task 3)**: Embedding-based neural networks trained on Shakespeare with early stopping
|
| 818 |
+
- **Best Performance**: 12.51 PPL (Flatten + 1000 merges + 4-gram)
|
| 819 |
+
- **Method**: Learned dense vector representations
|
| 820 |
+
|
| 821 |
+
**π€ GPT Models (Task 4)**: Transformer-based autoregressive models with causal self-attention
|
| 822 |
+
- **Best Performance**: 13.08 PPL (Flatten + 1000 merges)
|
| 823 |
+
- **Method**: Self-attention mechanism for long-range dependencies
|
| 824 |
+
|
| 825 |
+
All models are trained on Shakespeare's complete works and use consistent BPE tokenization.
|
| 826 |
+
|
| 827 |
+
**π Access the full research paper**: [GPT from Scratch Implementation](https://huggingface.co/spaces/ahk-d/shakespeare-gpt)
|
| 828 |
+
""")
|
| 829 |
+
|
| 830 |
+
if __name__ == "__main__":
|
| 831 |
+
# Launch with Hugging Face Spaces configuration
|
| 832 |
+
demo.launch(
|
| 833 |
+
server_name="0.0.0.0", # Required for HF Spaces
|
| 834 |
+
server_port=7860, # Default HF Spaces port
|
| 835 |
+
share=False, # Don't create public link
|
| 836 |
+
show_error=True, # Show errors in UI
|
| 837 |
+
quiet=False, # Show startup messages
|
| 838 |
+
debug=False # Disable debug mode for production
|
| 839 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
gradio
|
| 3 |
+
numpy
|