Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,44 +1,86 @@
|
|
| 1 |
# app.py
|
| 2 |
from fastapi import FastAPI
|
|
|
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
import uvicorn
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
app = FastAPI(title="WAN2 GGUF API", version="1.0")
|
| 8 |
|
| 9 |
-
# ✅
|
| 10 |
MODEL_REPO = "calcuis/wan2-gguf"
|
| 11 |
-
MODEL_FILE = "wan2.2-animate-14b-q4_0.gguf" #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
|
|
|
| 13 |
model_path = hf_hub_download(
|
| 14 |
repo_id=MODEL_REPO,
|
| 15 |
filename=MODEL_FILE,
|
| 16 |
-
local_dir=
|
| 17 |
)
|
| 18 |
-
|
| 19 |
print("✅ Model downloaded to:", model_path)
|
| 20 |
|
|
|
|
| 21 |
# Request schema
|
| 22 |
class PromptRequest(BaseModel):
|
| 23 |
prompt: str
|
| 24 |
steps: int = 20
|
| 25 |
|
|
|
|
| 26 |
@app.get("/")
|
| 27 |
def root():
|
| 28 |
return {"message": "WAN2 GGUF API is running!"}
|
| 29 |
|
|
|
|
| 30 |
@app.post("/generate")
|
| 31 |
def generate_video(request: PromptRequest):
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
return {
|
| 34 |
"status": "success",
|
| 35 |
"model_file": MODEL_FILE,
|
| 36 |
-
"model_path": model_path,
|
| 37 |
"prompt": request.prompt,
|
| 38 |
"steps": request.steps,
|
|
|
|
| 39 |
"note": "Replace this with actual inference code."
|
| 40 |
}
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
if __name__ == "__main__":
|
| 44 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 1 |
# app.py
|
| 2 |
from fastapi import FastAPI
|
| 3 |
+
from fastapi.staticfiles import StaticFiles
|
| 4 |
from pydantic import BaseModel
|
| 5 |
from huggingface_hub import hf_hub_download
|
| 6 |
import uvicorn
|
| 7 |
+
import os
|
| 8 |
+
import uuid
|
| 9 |
+
import shutil
|
| 10 |
|
| 11 |
app = FastAPI(title="WAN2 GGUF API", version="1.0")
|
| 12 |
|
| 13 |
+
# ✅ Directories
|
| 14 |
MODEL_REPO = "calcuis/wan2-gguf"
|
| 15 |
+
MODEL_FILE = "wan2.2-animate-14b-q4_0.gguf" # big model
|
| 16 |
+
MODEL_DIR = "models"
|
| 17 |
+
OUTPUT_DIR = "outputs"
|
| 18 |
+
|
| 19 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
| 20 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 21 |
|
| 22 |
+
# ✅ Download model file at startup
|
| 23 |
model_path = hf_hub_download(
|
| 24 |
repo_id=MODEL_REPO,
|
| 25 |
filename=MODEL_FILE,
|
| 26 |
+
local_dir=MODEL_DIR
|
| 27 |
)
|
|
|
|
| 28 |
print("✅ Model downloaded to:", model_path)
|
| 29 |
|
| 30 |
+
|
| 31 |
# Request schema
|
| 32 |
class PromptRequest(BaseModel):
|
| 33 |
prompt: str
|
| 34 |
steps: int = 20
|
| 35 |
|
| 36 |
+
|
| 37 |
@app.get("/")
|
| 38 |
def root():
|
| 39 |
return {"message": "WAN2 GGUF API is running!"}
|
| 40 |
|
| 41 |
+
|
| 42 |
@app.post("/generate")
|
| 43 |
def generate_video(request: PromptRequest):
|
| 44 |
+
"""
|
| 45 |
+
Dummy video generator — for now just copies a placeholder .mp4.
|
| 46 |
+
Replace this later with actual WAN2 inference code.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
# Unique filename
|
| 50 |
+
file_id = str(uuid.uuid4())
|
| 51 |
+
file_path = os.path.join(OUTPUT_DIR, f"{file_id}.mp4")
|
| 52 |
+
|
| 53 |
+
# Use a Hugging Face placeholder video
|
| 54 |
+
placeholder_url = (
|
| 55 |
+
"https://huggingface.co/datasets/huggingface/documentation-images/"
|
| 56 |
+
"resolve/main/video-placeholder.mp4"
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Download placeholder only once
|
| 60 |
+
placeholder_file = os.path.join(OUTPUT_DIR, "placeholder.mp4")
|
| 61 |
+
if not os.path.exists(placeholder_file):
|
| 62 |
+
import requests
|
| 63 |
+
r = requests.get(placeholder_url, stream=True)
|
| 64 |
+
with open(placeholder_file, "wb") as f:
|
| 65 |
+
shutil.copyfileobj(r.raw, f)
|
| 66 |
+
|
| 67 |
+
# Copy placeholder to simulate unique output
|
| 68 |
+
shutil.copy(placeholder_file, file_path)
|
| 69 |
+
|
| 70 |
return {
|
| 71 |
"status": "success",
|
| 72 |
"model_file": MODEL_FILE,
|
|
|
|
| 73 |
"prompt": request.prompt,
|
| 74 |
"steps": request.steps,
|
| 75 |
+
"video_url": f"/file/{file_id}.mp4",
|
| 76 |
"note": "Replace this with actual inference code."
|
| 77 |
}
|
| 78 |
|
| 79 |
+
|
| 80 |
+
# ✅ Serve output videos
|
| 81 |
+
app.mount("/file", StaticFiles(directory=OUTPUT_DIR), name="file")
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# ✅ Run server in HF Spaces
|
| 85 |
if __name__ == "__main__":
|
| 86 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|