Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,47 +3,64 @@ import glob
|
|
| 3 |
from docx import Document
|
| 4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 5 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
-
|
| 7 |
import torch
|
| 8 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def get_blocks_from_docx():
|
| 11 |
docx_list = glob.glob("*.docx")
|
| 12 |
if not docx_list:
|
| 13 |
-
return []
|
| 14 |
doc = Document(docx_list[0])
|
| 15 |
blocks = []
|
|
|
|
| 16 |
for p in doc.paragraphs:
|
| 17 |
txt = p.text.strip()
|
| 18 |
-
# Исключаем короткие и заголовочные блоки
|
| 19 |
if (
|
| 20 |
txt
|
| 21 |
and not (len(txt) <= 3 and txt.isdigit())
|
| 22 |
-
and not (
|
| 23 |
-
len(txt) < 35
|
| 24 |
-
and txt == txt.upper()
|
| 25 |
-
and txt.endswith(('.', ':', '?', '!')) is False
|
| 26 |
-
)
|
| 27 |
and len(txt.split()) > 3
|
| 28 |
):
|
| 29 |
blocks.append(txt)
|
|
|
|
|
|
|
|
|
|
| 30 |
for table in doc.tables:
|
| 31 |
for row in table.rows:
|
| 32 |
row_text = " | ".join(cell.text.strip() for cell in row.cells if cell.text.strip())
|
| 33 |
-
if row_text and len(row_text) >
|
| 34 |
blocks.append(row_text)
|
|
|
|
|
|
|
|
|
|
| 35 |
seen = set()
|
| 36 |
-
|
|
|
|
| 37 |
for b in blocks:
|
| 38 |
-
if b not in seen
|
| 39 |
-
|
| 40 |
seen.add(b)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
blocks = ["База знаний пуста: проверьте содержание и формат вашего .docx!"]
|
|
|
|
| 47 |
|
| 48 |
vectorizer = TfidfVectorizer(lowercase=True).fit(blocks)
|
| 49 |
matrix = vectorizer.transform(blocks)
|
|
@@ -65,30 +82,46 @@ def rut5_answer(question, context):
|
|
| 65 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 66 |
|
| 67 |
def ask_chatbot(question):
|
| 68 |
-
# Регистронезависимый поиск! (lowercase everywhere)
|
| 69 |
question = question.strip()
|
| 70 |
if not question:
|
| 71 |
return "Пожалуйста, введите вопрос."
|
| 72 |
-
if not
|
| 73 |
return "Ошибка: база знаний пуста. Проверьте .docx и перезапустите Space."
|
|
|
|
| 74 |
user_vec = vectorizer.transform([question.lower()])
|
| 75 |
sims = cosine_similarity(user_vec, matrix)
|
| 76 |
n_blocks = min(3, len(blocks))
|
|
|
|
|
|
|
|
|
|
| 77 |
top_idxs = list(reversed(sims.argsort()[-n_blocks:]))
|
|
|
|
| 78 |
context_blocks = []
|
| 79 |
for rank, idx in enumerate(top_idxs):
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
if len(blocks[idx].split()) > 3 and len(blocks[idx]) > 20:
|
| 83 |
-
context_blocks.append(blocks[idx])
|
| 84 |
context = " ".join(context_blocks)
|
| 85 |
-
#
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
answer = rut5_answer(question, context)
|
| 89 |
-
#
|
| 90 |
if len(answer.strip().split()) < 8 or answer.count('.') < 2:
|
| 91 |
-
answer += "\n\n" +
|
|
|
|
|
|
|
|
|
|
| 92 |
return answer
|
| 93 |
|
| 94 |
EXAMPLES = [
|
|
|
|
| 3 |
from docx import Document
|
| 4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 5 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
| 6 |
import torch
|
| 7 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
| 8 |
|
| 9 |
+
def is_header(txt):
|
| 10 |
+
# Абсолютно короткая фраза без знака препинания и вся в верхнем регистре — заголовок
|
| 11 |
+
if not txt or len(txt) < 35:
|
| 12 |
+
if txt == txt.upper() and not txt.endswith(('.', ':', '?', '!')):
|
| 13 |
+
return True
|
| 14 |
+
# Также часто заголовок — просто пара слов с заглавных (мало слов и нет в конце точки):
|
| 15 |
+
if txt.istitle() and len(txt.split()) < 6 and not txt.endswith(('.', ':', '?', '!')):
|
| 16 |
+
return True
|
| 17 |
+
return False
|
| 18 |
+
|
| 19 |
def get_blocks_from_docx():
|
| 20 |
docx_list = glob.glob("*.docx")
|
| 21 |
if not docx_list:
|
| 22 |
+
return [], []
|
| 23 |
doc = Document(docx_list[0])
|
| 24 |
blocks = []
|
| 25 |
+
non_header_blocks = []
|
| 26 |
for p in doc.paragraphs:
|
| 27 |
txt = p.text.strip()
|
|
|
|
| 28 |
if (
|
| 29 |
txt
|
| 30 |
and not (len(txt) <= 3 and txt.isdigit())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
and len(txt.split()) > 3
|
| 32 |
):
|
| 33 |
blocks.append(txt)
|
| 34 |
+
if not is_header(txt) and len(txt) > 25:
|
| 35 |
+
non_header_blocks.append(txt)
|
| 36 |
+
# Таблицы
|
| 37 |
for table in doc.tables:
|
| 38 |
for row in table.rows:
|
| 39 |
row_text = " | ".join(cell.text.strip() for cell in row.cells if cell.text.strip())
|
| 40 |
+
if row_text and len(row_text.split()) > 3 and len(row_text) > 25:
|
| 41 |
blocks.append(row_text)
|
| 42 |
+
if not is_header(row_text):
|
| 43 |
+
non_header_blocks.append(row_text)
|
| 44 |
+
# Убираем дубли
|
| 45 |
seen = set()
|
| 46 |
+
blocks_clean = []
|
| 47 |
+
non_hdr_clean = []
|
| 48 |
for b in blocks:
|
| 49 |
+
if b not in seen:
|
| 50 |
+
blocks_clean.append(b)
|
| 51 |
seen.add(b)
|
| 52 |
+
seen = set()
|
| 53 |
+
for b in non_header_blocks:
|
| 54 |
+
if b not in seen:
|
| 55 |
+
non_hdr_clean.append(b)
|
| 56 |
+
seen.add(b)
|
| 57 |
+
return blocks_clean, non_hdr_clean
|
| 58 |
|
| 59 |
+
blocks, normal_blocks = get_blocks_from_docx()
|
| 60 |
+
if not blocks or not normal_blocks:
|
| 61 |
+
# Если ничего не нашли — фэйк заглушка
|
| 62 |
blocks = ["База знаний пуста: проверьте содержание и формат вашего .docx!"]
|
| 63 |
+
normal_blocks = ["База знаний пуста: проверьте содержание и формат вашего .docx!"]
|
| 64 |
|
| 65 |
vectorizer = TfidfVectorizer(lowercase=True).fit(blocks)
|
| 66 |
matrix = vectorizer.transform(blocks)
|
|
|
|
| 82 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 83 |
|
| 84 |
def ask_chatbot(question):
|
|
|
|
| 85 |
question = question.strip()
|
| 86 |
if not question:
|
| 87 |
return "Пожалуйста, введите вопрос."
|
| 88 |
+
if not normal_blocks or normal_blocks == ["База знаний пуста: проверьте содержание и формат вашего .docx!"]:
|
| 89 |
return "Ошибка: база знаний пуста. Проверьте .docx и перезапустите Space."
|
| 90 |
+
|
| 91 |
user_vec = vectorizer.transform([question.lower()])
|
| 92 |
sims = cosine_similarity(user_vec, matrix)
|
| 93 |
n_blocks = min(3, len(blocks))
|
| 94 |
+
if n_blocks == 0:
|
| 95 |
+
return "База знаний пуста: загрузите методичку с осмысленными абзацами!"
|
| 96 |
+
# Получаем индексы лучших блоков среди ВСЕХ
|
| 97 |
top_idxs = list(reversed(sims.argsort()[-n_blocks:]))
|
| 98 |
+
# Для генерации контекста используем все блоки, но...
|
| 99 |
context_blocks = []
|
| 100 |
for rank, idx in enumerate(top_idxs):
|
| 101 |
+
if 0 <= idx < len(blocks):
|
| 102 |
+
context_blocks.append(blocks[idx])
|
|
|
|
|
|
|
| 103 |
context = " ".join(context_blocks)
|
| 104 |
+
# ...для финального ответа ищем САМЫЙ релевантный не-заголовок (абзац)!
|
| 105 |
+
# (обычно первый релевантен)
|
| 106 |
+
best_normal_block = ""
|
| 107 |
+
max_sim = -1
|
| 108 |
+
for idx, nb in enumerate(normal_blocks):
|
| 109 |
+
v_nb = vectorizer.transform([nb.lower()])
|
| 110 |
+
sim = cosine_similarity(user_vec, v_nb)[0]
|
| 111 |
+
if sim > max_sim:
|
| 112 |
+
max_sim = sim
|
| 113 |
+
best_normal_block = nb
|
| 114 |
+
# Если совсем всё плохо — fallback на обычный context
|
| 115 |
+
if not best_normal_block:
|
| 116 |
+
best_normal_block = context_blocks if context_blocks else ""
|
| 117 |
+
# Генерируем развернутый ответ с подложкой из максимального контекста
|
| 118 |
answer = rut5_answer(question, context)
|
| 119 |
+
# Если слишком кратко — дублируем релевантный фрагмент (абзац)
|
| 120 |
if len(answer.strip().split()) < 8 or answer.count('.') < 2:
|
| 121 |
+
answer += "\n\n" + best_normal_block
|
| 122 |
+
# Финальный ответ — если сгенерированный ответ случайно "превратился" в заголовок, заменяем его на абзац!
|
| 123 |
+
if is_header(answer):
|
| 124 |
+
answer = best_normal_block
|
| 125 |
return answer
|
| 126 |
|
| 127 |
EXAMPLES = [
|