Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -406,12 +406,9 @@ class Translators:
|
|
| 406 |
model = SeamlessM4TModel.from_pretrained(self.model_name)
|
| 407 |
src_lang = iso1toall.get(self.sl)[2] # 'deu', 'ron', 'eng', 'fra'
|
| 408 |
tgt_lang = iso1toall.get(self.tl)[2]
|
| 409 |
-
print(src_lang, tgt_lang)
|
| 410 |
text_inputs = processor(text = self.input_text, src_lang=src_lang, return_tensors="pt")
|
| 411 |
-
output_tokens = model.generate(**text_inputs, tgt_lang=tgt_lang, generate_speech=False)
|
| 412 |
-
|
| 413 |
-
print(f"{tgt_lang}: {text_inputs} {translated_text}")
|
| 414 |
-
return translated_text
|
| 415 |
|
| 416 |
def seamlessm4t2(self):
|
| 417 |
from transformers import AutoProcessor, SeamlessM4Tv2ForTextToText
|
|
@@ -419,12 +416,9 @@ class Translators:
|
|
| 419 |
model = SeamlessM4Tv2ForTextToText.from_pretrained(self.model_name)
|
| 420 |
src_lang = iso1toall.get(self.sl)[2] # 'deu', 'ron', 'eng', 'fra'
|
| 421 |
tgt_lang = iso1toall.get(self.tl)[2]
|
| 422 |
-
print(src_lang, tgt_lang)
|
| 423 |
text_inputs = processor(text=self.input_text, src_lang=src_lang, return_tensors="pt")
|
| 424 |
decoder_input_ids = model.generate(**text_inputs, tgt_lang=tgt_lang)[0].tolist()
|
| 425 |
-
|
| 426 |
-
print(f"{tgt_lang}: {text_inputs} {translated_text}")
|
| 427 |
-
return translated_text
|
| 428 |
|
| 429 |
def wingpt(self):
|
| 430 |
model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -613,10 +607,10 @@ def translate_text(input_text: str, s_language: str, t_language: str, model_name
|
|
| 613 |
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_one()
|
| 614 |
|
| 615 |
elif model_name == "facebook/seamless-m4t-v2-large":
|
| 616 |
-
translated_text = Translators(model_name,
|
| 617 |
|
| 618 |
elif "m4t-medium" in model_name or "m4t-large" in model_name:
|
| 619 |
-
translated_text = Translators(model_name,
|
| 620 |
|
| 621 |
elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
|
| 622 |
translated_text = Translators(model_name, s_language, t_language, input_text).eurollm_instruct()
|
|
|
|
| 406 |
model = SeamlessM4TModel.from_pretrained(self.model_name)
|
| 407 |
src_lang = iso1toall.get(self.sl)[2] # 'deu', 'ron', 'eng', 'fra'
|
| 408 |
tgt_lang = iso1toall.get(self.tl)[2]
|
|
|
|
| 409 |
text_inputs = processor(text = self.input_text, src_lang=src_lang, return_tensors="pt")
|
| 410 |
+
output_tokens = model.generate(**text_inputs, tgt_lang=tgt_lang, generate_speech=False)
|
| 411 |
+
return processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 412 |
|
| 413 |
def seamlessm4t2(self):
|
| 414 |
from transformers import AutoProcessor, SeamlessM4Tv2ForTextToText
|
|
|
|
| 416 |
model = SeamlessM4Tv2ForTextToText.from_pretrained(self.model_name)
|
| 417 |
src_lang = iso1toall.get(self.sl)[2] # 'deu', 'ron', 'eng', 'fra'
|
| 418 |
tgt_lang = iso1toall.get(self.tl)[2]
|
|
|
|
| 419 |
text_inputs = processor(text=self.input_text, src_lang=src_lang, return_tensors="pt")
|
| 420 |
decoder_input_ids = model.generate(**text_inputs, tgt_lang=tgt_lang)[0].tolist()
|
| 421 |
+
return processor.decode(decoder_input_ids, skip_special_tokens=True)
|
|
|
|
|
|
|
| 422 |
|
| 423 |
def wingpt(self):
|
| 424 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 607 |
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_one()
|
| 608 |
|
| 609 |
elif model_name == "facebook/seamless-m4t-v2-large":
|
| 610 |
+
translated_text = Translators(model_name, sl, tl, input_text).seamlessm4t2()
|
| 611 |
|
| 612 |
elif "m4t-medium" in model_name or "m4t-large" in model_name:
|
| 613 |
+
translated_text = Translators(model_name, sl, tl, input_text).seamlessm4t1()
|
| 614 |
|
| 615 |
elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
|
| 616 |
translated_text = Translators(model_name, s_language, t_language, input_text).eurollm_instruct()
|