app file
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from FlagEmbedding import BGEM3FlagModel
|
| 3 |
+
from FlagEmbedding import FlagReranker
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
@st.cache_resource
|
| 8 |
+
def load_model():
|
| 9 |
+
return BGEM3FlagModel('BAAI/bge-m3',
|
| 10 |
+
use_fp16=True)
|
| 11 |
+
@st.cache_resource
|
| 12 |
+
def load_reranker():
|
| 13 |
+
return FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True)
|
| 14 |
+
|
| 15 |
+
@st.cache_data
|
| 16 |
+
def load_embed(path):
|
| 17 |
+
embeddings_2 = np.load(path)
|
| 18 |
+
return embeddings_2
|
| 19 |
+
|
| 20 |
+
model = load_model()
|
| 21 |
+
reranker = load_reranker()
|
| 22 |
+
|
| 23 |
+
embeddings_2 = load_embed('D:/AI_Builder/BGE_embeddings_2.npy')
|
| 24 |
+
|
| 25 |
+
data = pd.DataFrame(pd.read_csv('D:/AI_Builder/ActualProject/DataCollection/TESTUNCLEANbookquestions.csv'))
|
| 26 |
+
data2 = pd.DataFrame(pd.read_csv('D:/AI_Builder/ActualProject/DataCollection/TRAINbookquestions.csv'))
|
| 27 |
+
data3 = pd.read_csv("D:/AI_Builder/ActualProject/DataCollection/booksummaries.txt",
|
| 28 |
+
header=None,sep="\t",
|
| 29 |
+
names=["ID", "Freebase ID", "Book Name", "Book Author", "Pub date", "Genres", "Summary"])
|
| 30 |
+
df = pd.concat([data, data2])
|
| 31 |
+
df = df.merge(data3, on='ID', how='left')
|
| 32 |
+
df = df.rename(columns={'Book Name_x': 'Book Name'})
|
| 33 |
+
df = df[['ID', 'Book Name', 'Book Author', 'Questions', 'Summary']]
|
| 34 |
+
|
| 35 |
+
st.header(":books: Book Identifier")
|
| 36 |
+
|
| 37 |
+
k = 10
|
| 38 |
+
with st.form(key='my_form'):
|
| 39 |
+
sen1 = st.text_area("Book description:")
|
| 40 |
+
submit_button = st.form_submit_button(label='Submit')
|
| 41 |
+
|
| 42 |
+
if submit_button:
|
| 43 |
+
embeddings_1 = model.encode(sen1,
|
| 44 |
+
batch_size=12,
|
| 45 |
+
max_length=8192,
|
| 46 |
+
)['dense_vecs']
|
| 47 |
+
similarity = embeddings_1 @ embeddings_2.T
|
| 48 |
+
|
| 49 |
+
top_k_qs = []
|
| 50 |
+
topk = np.argsort(similarity)[-k:]
|
| 51 |
+
|
| 52 |
+
for t in topk:
|
| 53 |
+
pred_sum = df['Summary'].iloc[t]
|
| 54 |
+
pred_ques = sen1
|
| 55 |
+
pred = [pred_ques, pred_sum]
|
| 56 |
+
top_k_qs.append(pred)
|
| 57 |
+
rrscore = reranker.compute_score(top_k_qs, normalize=True)
|
| 58 |
+
rrscore_index = np.argsort(rrscore)
|
| 59 |
+
|
| 60 |
+
pred_book = []
|
| 61 |
+
for rr in rrscore_index:
|
| 62 |
+
pred_book.append(f"{df['Book Name'][topk[rr]]} by {df['Book Author'][topk[rr]]}")
|
| 63 |
+
|
| 64 |
+
finalpred = []
|
| 65 |
+
pred_book.reverse()
|
| 66 |
+
st.write("Here is your prediction")
|
| 67 |
+
for n, pred in enumerate(pred_book):
|
| 68 |
+
st.write(f"{n+1}: {pred}")
|