File size: 10,444 Bytes
44669ca
 
 
 
 
 
 
 
 
 
ce96f36
 
44669ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce96f36
 
44669ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce96f36
44669ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce96f36
 
44669ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# =============================================================
# πŸ“˜ USTP Student Handbook Assistant (2023 Edition)
# =============================================================
# Enhanced: dynamic model selection + real (printed) page numbering

import os
import glob
import json
import time
from typing import List, Dict, Any
import numpy as np
import streamlit as st
import PyPDF2
import requests
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, login
from streamlit_chat import message as st_message

# Optional: FAISS for fast vector search
try:
    import faiss
except ImportError:
    faiss = None

# =============================================================
# 🌐 Startup Fix for PermissionError
# =============================================================
os.environ["STREAMLIT_HOME"] = "/tmp/.streamlit"
os.makedirs("/tmp/.streamlit", exist_ok=True)

# =============================================================
# βš™οΈ Streamlit Page Setup
# =============================================================
st.set_page_config(page_title="πŸ“˜ Handbook Assistant", page_icon="πŸ“˜", layout="wide")
st.title("πŸ“˜ USTP Student Handbook Assistant (2023 Edition)")
st.caption("Answers sourced only from the official *USTP Student Handbook 2023 Edition.pdf*.")

load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

if not HF_TOKEN:
    st.warning("⚠️ No Hugging Face API token found in .env file. Online models will be unavailable.")
else:
    try:
        login(HF_TOKEN)
    except Exception:
        pass

hf_client = InferenceClient(token=HF_TOKEN) if HF_TOKEN else None

# =============================================================
# βš™οΈ Sidebar Configuration
# =============================================================
with st.sidebar:
    st.header("βš™οΈ Settings")

    model_options = {
        "Qwen 2.5 14B Instruct": "Qwen/Qwen2.5-14B-Instruct",
        "Mistral 7B Instruct": "mistralai/Mistral-7B-Instruct-v0.3",
        "Llama 3 8B Instruct": "meta-llama/Meta-Llama-3-8B-Instruct",
        "Mixtral 8x7B Instruct": "mistralai/Mixtral-8x7B-Instruct-v0.1",
        "Falcon 7B Instruct": "tiiuae/falcon-7b-instruct",
    }
    model_choice = st.selectbox("Select reasoning model", list(model_options.keys()), index=0)
    DEFAULT_MODEL = model_options[model_choice]

    st.markdown("---")
    similarity_threshold = st.slider("Similarity threshold", 0.3, 1.0, 0.6, 0.01)
    top_k = st.slider("Top K retrieved chunks", 1, 10, 4)
    chunk_size_chars = st.number_input("Chunk size (chars)", 400, 2500, 1200, 100)
    chunk_overlap = st.number_input("Chunk overlap (chars)", 20, 600, 150, 10)
    front_matter_pages = st.number_input(
        "Pages before main content (e.g. table of contents, cover)", min_value=0, max_value=50, value=12
    )
    regenerate_index = st.button("πŸ” Rebuild handbook index")

# =============================================================
# πŸ“‚ File Config
# =============================================================
INDEX_FILE = "handbook_faiss.index"
META_FILE = "handbook_metadata.json"
EMB_DIM_FILE = "handbook_emb_dim.json"
EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2"

# =============================================================
# 🧩 Utility Functions
# =============================================================
def find_handbook() -> List[str]:
    preferred = "USTP Student Handbook 2023 Edition.pdf"
    pdfs = glob.glob("*.pdf")
    for f in pdfs:
        if preferred.lower() in f.lower():
            st.success(f"πŸ“˜ Found handbook: {f}")
            return [f]
    if pdfs:
        st.warning(f"⚠️ Preferred handbook not found. Using {os.path.basename(pdfs[0])}.")
        return [pdfs[0]]
    st.error("❌ No PDF found in current folder.")
    return []


def load_pdf_texts(pdf_paths: List[str]) -> List[Dict[str, Any]]:
    """Extract page text while adjusting page numbering to printed handbook numbers."""
    pages = []
    for path in pdf_paths:
        with open(path, "rb") as f:
            reader = PyPDF2.PdfReader(f)
            for i, page in enumerate(reader.pages):
                text = page.extract_text() or ""
                if text.strip():
                    # Adjust logical page number to printed numbering
                    logical_page = i + 1
                    printed_page = logical_page - front_matter_pages
                    if printed_page < 1:
                        printed_page = 1
                    pages.append({
                        "filename": os.path.basename(path),
                        "page": printed_page,
                        "text": text.strip()
                    })
    return pages


def chunk_text(pages: List[Dict[str, Any]], size: int, overlap: int) -> List[Dict[str, Any]]:
    chunks = []
    for p in pages:
        text = p["text"]
        start = 0
        while start < len(text):
            end = start + size
            chunk = text[start:end]
            chunks.append({
                "filename": p["filename"],
                "page": p["page"],
                "content": chunk.strip()
            })
            start += size - overlap
    return chunks


def embed_texts(texts: List[str]) -> np.ndarray:
    """Generate embeddings using Hugging Face feature extraction."""
    if not HF_TOKEN or not hf_client:
        st.error("❌ Missing Hugging Face token or client.")
        return np.zeros((len(texts), 768))
    try:
        embeddings = hf_client.feature_extraction(texts, model=EMBED_MODEL)
        if isinstance(embeddings[0][0], list):
            embeddings = [np.mean(np.array(e), axis=0) for e in embeddings]
        return np.array(embeddings)
    except Exception as e1:
        st.warning(f"⚠️ feature_extraction failed, using REST API fallback: {e1}")
        headers = {"Authorization": f"Bearer {HF_TOKEN}"}
        resp = requests.post(
            f"https://api-inference.huggingface.co/models/{EMBED_MODEL}",
            headers=headers,
            json={"inputs": texts}
        )
        data = resp.json()
        if isinstance(data[0][0], list):
            data = [np.mean(np.array(e), axis=0) for e in data]
        return np.array(data)


def build_faiss_index(chunks: List[Dict[str, Any]]):
    """Build FAISS index for chunks."""
    texts = [c["content"] for c in chunks]
    embeddings = embed_texts(texts)
    if embeddings.size == 0:
        st.error("❌ Embedding generation failed.")
        return
    dim = embeddings.shape[1]
    index = faiss.IndexFlatL2(dim)
    index.add(embeddings.astype("float32"))
    faiss.write_index(index, INDEX_FILE)
    with open(META_FILE, "w") as f:
        json.dump(chunks, f)
    with open(EMB_DIM_FILE, "w") as f:
        json.dump({"dim": dim}, f)
    st.success(f"βœ… Indexed {len(chunks)} chunks.")


def load_faiss_index():
    if not os.path.exists(INDEX_FILE) or not os.path.exists(META_FILE):
        return None, None
    index = faiss.read_index(INDEX_FILE)
    with open(META_FILE) as f:
        meta = json.load(f)
    return index, meta


def search_index(query: str, index, meta, top_k: int, threshold: float):
    query_emb = embed_texts([query])
    distances, indices = index.search(query_emb.astype("float32"), top_k)
    results = []
    for i, dist in zip(indices[0], distances[0]):
        if i < len(meta):
            r = meta[i]
            r["distance"] = float(dist)
            results.append(r)
    return results


def generate_answer(context: str, query: str) -> str:
    """Generate model-based answer using selected open-source model."""
    prompt = f"""
You are a precise academic assistant specialized in university policy.
Use only the *USTP Student Handbook 2023 Edition* below.
If the answer is not in the text, reply:
"The handbook does not specify that."

---
πŸ“˜ Context:
{context}
---
🧭 Question:
{query}
---
🎯 Instructions:
- Be factual and concise.
- Cite the correct printed page number.
- Never make assumptions.
"""

    try:
        response = hf_client.text_generation(
            model=DEFAULT_MODEL,
            prompt=prompt,
            max_new_tokens=400,
            temperature=0.25
        )
        return response if isinstance(response, str) else str(response)
    except Exception as e1:
        try:
            chat_response = hf_client.chat.completions.create(
                model=DEFAULT_MODEL,
                messages=[{"role": "user", "content": prompt}],
                max_tokens=400
            )
            return chat_response.choices[0].message["content"]
        except Exception as e2:
            return f"⚠️ Error generating answer: {e2}"


def ensure_index():
    """Ensure FAISS index exists or rebuild."""
    if regenerate_index or not os.path.exists(INDEX_FILE):
        pdfs = find_handbook()
        if not pdfs:
            st.stop()
        st.info("πŸ“„ Extracting handbook text...")
        pages = load_pdf_texts(pdfs)
        chunks = chunk_text(pages, chunk_size_chars, chunk_overlap)
        build_faiss_index(chunks)
    index, meta = load_faiss_index()
    if index is None or meta is None:
        st.error("❌ Could not load FAISS index.")
        st.stop()
    return index, meta

# =============================================================
# πŸ’¬ Chat Interface
# =============================================================
st.divider()
st.subheader("πŸ’¬ Ask about the Handbook")

if "history" not in st.session_state:
    st.session_state.history = []

user_query = st.text_input("Enter your question:")
index, meta = ensure_index()

if st.button("Ask") and user_query.strip():
    results = search_index(user_query, index, meta, top_k, similarity_threshold)
    if not results:
        st.warning("No relevant section found in the handbook.")
    else:
        context = "\n\n".join(
            [f"(πŸ“„ Page {r['page']})\n{r['content']}" for r in results]
        )
        answer = generate_answer(context, user_query)
        st.session_state.history.append({
            "user": user_query,
            "assistant": answer,
            "timestamp": time.time()
        })

# βœ… Ensure unique keys to prevent StreamlitDuplicateElementId
for i, chat in enumerate(st.session_state.history):
    st_message(chat["user"], is_user=True, key=f"user_{i}")
    st_message(chat["assistant"], key=f"assistant_{i}")

st.caption("⚑ Powered by FAISS + Open Source Models + Accurate Page Referencing")