File size: 10,465 Bytes
311d820 1089dab 311d820 1089dab 311d820 1089dab 311d820 1089dab 311d820 1089dab 311d820 d6fe098 311d820 d6fe098 311d820 d6fe098 311d820 1089dab 311d820 1089dab 311d820 1089dab 311d820 d6fe098 311d820 d6fe098 311d820 d6fe098 311d820 1089dab 311d820 1089dab 311d820 1089dab 311d820 1089dab 311d820 1089dab 311d820 1089dab 311d820 1089dab 311d820 1089dab 311d820 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# app.py
# Streamlit Chat UI with robust model + PEFT loading (English interface)
# Requirements:
# pip install streamlit torch transformers peft accelerate safetensors huggingface_hub
import os
import threading
import time
import streamlit as st
import torch
import importlib
from huggingface_hub import login
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TextIteratorStreamer,
)
from peft import PeftModel, PeftConfig
# -------------------- Configuration --------------------
# Edit these to the model/adapter you want. Adapter repo can be adapter-only (PEFT).
BASE_MODEL_ID = os.environ.get("BASE_MODEL_ID", "unsloth/Llama-3.2-3B-Instruct-bnb-4bit")
ADAPTER_REPO_ID = os.environ.get("ADAPTER_REPO_ID", None) # set to adapter repo id or leave None
HF_TOKEN = os.environ.get("HF_TOKEN") or os.environ.get("hugface")
MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", 256))
TEMPERATURE = float(os.environ.get("TEMP", 0.6))
TOP_P = float(os.environ.get("TOP_P", 0.9))
# -------------------- Helpers --------------------
def is_package_installed(name: str) -> bool:
"""Return True if distribution metadata or importable."""
try:
import importlib.metadata as md
try:
md.distribution(name)
return True
except Exception:
return False
except Exception:
try:
importlib.import_module(name)
return True
except Exception:
return False
def try_login_hf(token: str):
if not token:
st.info("HF_TOKEN not provided β private models may fail.")
return
try:
login(token=token)
st.success("Logged into Hugging Face Hub")
except Exception as e:
st.warning(f"Hugging Face login failed: {e}")
# -------------------- Streamlit Page --------------------
st.set_page_config(page_title="AI Chatbot Assistant", page_icon="π€", layout="wide")
st.title("π€ AI Chatbot Assistant")
st.write("Type your message in English and get a response from the AI model. Keep messages short for better results.")
# Sidebar for status/config
with st.sidebar:
st.header("Model / Environment")
st.text(f"BASE_MODEL_ID: {BASE_MODEL_ID}")
st.text(f"ADAPTER_REPO_ID: {ADAPTER_REPO_ID or 'None'}")
st.text(f"Device: {'cuda' if torch.cuda.is_available() else 'cpu'}")
st.text(f"bitsandbytes installed: {is_package_installed('bitsandbytes')}")
# Attempt HF login (for private repos)
try_login_hf(HF_TOKEN)
# -------------------- Model loader (cached) --------------------
@st.cache_resource(show_spinner=False)
def load_models():
"""Loads tokenizer, base model, and optional adapter; returns (tokenizer, model, device)."""
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device == "cuda" else torch.float32
BNB_AVAILABLE = is_package_installed("bitsandbytes")
st.write(f"bitsandbytes available: {BNB_AVAILABLE}")
# Load tokenizer (prefer base)
try:
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, use_fast=True)
st.write("Tokenizer loaded from base model.")
except Exception as e:
st.write(f"Warning: failed to load tokenizer from base: {e}")
if ADAPTER_REPO_ID:
tokenizer = AutoTokenizer.from_pretrained(ADAPTER_REPO_ID, use_fast=True)
st.write("Tokenizer loaded from adapter repo.")
else:
raise RuntimeError("Failed to load tokenizer from base and no adapter set.")
# Prepare device_map (never None)
if torch.cuda.is_available():
device_map = "auto"
else:
device_map = {"": "cpu"} # force all weights on CPU to avoid NoneType iteration
st.write(f"Using device_map = {device_map}")
# Build kwargs for from_pretrained
base_kwargs = dict(
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
device_map=device_map,
trust_remote_code=True,
)
# Only request load_in_4bit if bitsandbytes present and CUDA available
if BNB_AVAILABLE and torch.cuda.is_available():
base_kwargs["load_in_4bit"] = True
st.write("Attempting to load base model in 4-bit (bitsandbytes + CUDA detected).")
else:
st.write("Not using 4-bit load (either no CUDA or bitsandbytes not available).")
# Load base model
try:
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_ID, **base_kwargs)
st.write("Base model loaded.")
except Exception as e:
raise RuntimeError(f"Failed to load base model {BASE_MODEL_ID}: {e}")
# If adapter specified, load PEFT
if ADAPTER_REPO_ID:
try:
# attempt to read peft config (optional)
try:
_ = PeftConfig.from_pretrained(ADAPTER_REPO_ID)
st.write("PEFT config loaded from adapter repo.")
except Exception:
st.write("Warning: could not load PeftConfig (continuing to attempt adapter load).")
model = PeftModel.from_pretrained(
model,
ADAPTER_REPO_ID,
device_map=device_map,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
)
st.write("PEFT adapter loaded and applied.")
except Exception as e:
raise RuntimeError(f"Failed to load/apply PEFT adapter from {ADAPTER_REPO_ID}: {e}")
return tokenizer, model, device
# Load models (blocking; shows spinner)
with st.spinner("Loading model(s), this may take a minute..."):
try:
tokenizer, model, device = load_models()
except Exception as e:
st.error(f"Model loading failed: {e}")
st.stop()
# -------------------- Chat state --------------------
if "chat_history" not in st.session_state:
# list of tuples (user, assistant)
st.session_state.chat_history = []
# Input area
user_input = st.text_area("Your message (English):", height=120, key="user_input")
col1, col2 = st.columns([1, 1])
with col1:
send_btn = st.button("Send")
with col2:
clear_btn = st.button("Clear chat")
# Chat display container
chat_container = st.container()
def stream_generate_and_stream_to_ui(prompt, tokenizer, model, max_new_tokens=MAX_NEW_TOKENS):
"""
Uses TextIteratorStreamer and a thread to stream tokens to the UI.
Returns the final generated string.
"""
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
input_ids=prompt["input_ids"].to(next(model.parameters()).device),
attention_mask=prompt.get("attention_mask", None),
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=TEMPERATURE,
top_p=TOP_P,
streamer=streamer,
eos_token_id=getattr(tokenizer, "eos_token_id", None),
)
# start generation in background thread
gen_thread = threading.Thread(target=model.generate, kwargs=generation_kwargs, daemon=True)
gen_thread.start()
# stream into UI
output_text = ""
placeholder = chat_container.empty()
# show current conversation and streaming answer
while True:
try:
token = next(streamer)
except StopIteration:
break
output_text += token
# Display chat history with the current streaming token appended
with placeholder:
for user_msg, assistant_msg in st.session_state.chat_history[:-1]:
st.markdown(f"**π§ You:** {user_msg}")
st.markdown(f"**π€ Assistant:** {assistant_msg}")
# Current user (last) and streaming assistant
last_user, _ = st.session_state.chat_history[-1]
st.markdown(f"**π§ You:** {last_user}")
st.markdown(f"**π€ Assistant:** {output_text}")
# small sleep to allow UI update
time.sleep(0.01)
# finish: ensure final display
with chat_container:
for user_msg, assistant_msg in st.session_state.chat_history[:-1]:
st.markdown(f"**π§ You:** {user_msg}")
st.markdown(f"**π€ Assistant:** {assistant_msg}")
last_user, _ = st.session_state.chat_history[-1]
st.markdown(f"**π§ You:** {last_user}")
st.markdown(f"**π€ Assistant:** {output_text}")
return output_text
# Handle Send
if send_btn:
if not user_input or not user_input.strip():
st.warning("Please type a message before sending.")
else:
# Add user message and placeholder assistant reply
st.session_state.chat_history.append((user_input.strip(), ""))
# Build prompt from history (system prompt + conversation)
system_prompt = "You are a helpful assistant. Answer briefly and accurately in English."
prompt_lines = [system_prompt]
for u, a in st.session_state.chat_history:
if u:
prompt_lines.append("User: " + u)
if a:
prompt_lines.append("Assistant: " + a)
prompt_lines.append("Assistant: ")
final_prompt = "\n".join(prompt_lines)
# tokenize
inputs = tokenizer(final_prompt, return_tensors="pt")
# move to model device
model_device = next(model.parameters()).device
inputs = {k: v.to(model_device) for k, v in inputs.items()}
# Stream generate and update UI
try:
reply_text = stream_generate_and_stream_to_ui(inputs, tokenizer, model, max_new_tokens=MAX_NEW_TOKENS)
except Exception as e:
st.error(f"Generation failed: {e}")
reply_text = "Error generating response."
# replace the last placeholder assistant reply
st.session_state.chat_history[-1] = (user_input.strip(), reply_text)
# clear input box
st.session_state.user_input = ""
# Handle Clear
if clear_btn:
st.session_state.chat_history = []
st.experimental_rerun()
# If there is chat history but user didn't just send (page load), display it
if st.session_state.chat_history and not send_btn:
with chat_container:
for user_msg, assistant_msg in st.session_state.chat_history:
st.markdown(f"**π§ You:** {user_msg}")
st.markdown(f"**π€ Assistant:** {assistant_msg}")
# Footer / tips
st.markdown("---")
st.caption("Tip: Keep prompts short. If model loading fails, check HF_TOKEN, CUDA availability and install bitsandbytes for 4-bit models.")
|