Spaces:
Sleeping
Sleeping
Upload main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from fastapi import FastAPI, HTTPException, Body
|
| 4 |
+
from fastapi.responses import FileResponse
|
| 5 |
+
from pydantic import BaseModel, Field
|
| 6 |
+
from typing import List, Dict, Any, Optional, Union
|
| 7 |
+
from datasets import load_dataset, Dataset, DatasetDict
|
| 8 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 9 |
+
from datetime import datetime, timezone
|
| 10 |
+
import logging
|
| 11 |
+
import uvicorn
|
| 12 |
+
import random
|
| 13 |
+
import mimetypes
|
| 14 |
+
# --- Constants and Config ---
|
| 15 |
+
HF_DATASET_ID = "agents-course/unit4-students-scores"
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
logging.basicConfig(level=logging.INFO)
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
task_file_paths: Dict[str, str] = {}
|
| 22 |
+
tool_threshold = 3
|
| 23 |
+
step_threshold = 6
|
| 24 |
+
questions_for_api: List[Dict[str, Any]] = []
|
| 25 |
+
ground_truth_answers: Dict[str, str] = {}
|
| 26 |
+
filtered_dataset = None
|
| 27 |
+
|
| 28 |
+
ALLOWED_CACHE_BASE = os.path.abspath("/app/.cache")
|
| 29 |
+
|
| 30 |
+
class ErrorResponse(BaseModel):
|
| 31 |
+
detail: str
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def load_questions():
|
| 35 |
+
"""
|
| 36 |
+
Loads the GAIA dataset, filters questions based on tool/step counts,
|
| 37 |
+
populates 'questions_for_api' with data for the API (excluding sensitive/internal fields),
|
| 38 |
+
stores ground truth answers, and maps task IDs to their local file paths on the server.
|
| 39 |
+
"""
|
| 40 |
+
global filtered_dataset
|
| 41 |
+
global questions_for_api
|
| 42 |
+
global ground_truth_answers
|
| 43 |
+
global task_file_paths
|
| 44 |
+
|
| 45 |
+
tempo_filtered = []
|
| 46 |
+
questions_for_api.clear()
|
| 47 |
+
ground_truth_answers.clear()
|
| 48 |
+
task_file_paths.clear()
|
| 49 |
+
|
| 50 |
+
logger.info("Starting to load and filter GAIA dataset (validation split)...")
|
| 51 |
+
try:
|
| 52 |
+
dataset = load_dataset("gaia-benchmark/GAIA", "2023_level1", split="validation", trust_remote_code=True)
|
| 53 |
+
logger.info(f"GAIA dataset validation split loaded. Features: {dataset.features}")
|
| 54 |
+
except Exception as e:
|
| 55 |
+
logger.error(f"Failed to load GAIA dataset: {e}", exc_info=True)
|
| 56 |
+
raise RuntimeError("Could not load the primary GAIA dataset.") from e
|
| 57 |
+
|
| 58 |
+
# --- Filtering Logic based on Annotator Metadata ---
|
| 59 |
+
for item in dataset:
|
| 60 |
+
metadata = item.get('Annotator Metadata')
|
| 61 |
+
|
| 62 |
+
if metadata:
|
| 63 |
+
num_tools_str = metadata.get('Number of tools')
|
| 64 |
+
num_steps_str = metadata.get('Number of steps')
|
| 65 |
+
|
| 66 |
+
if num_tools_str is not None and num_steps_str is not None:
|
| 67 |
+
try:
|
| 68 |
+
num_tools = int(num_tools_str)
|
| 69 |
+
num_steps = int(num_steps_str)
|
| 70 |
+
if num_tools < tool_threshold and num_steps < step_threshold:
|
| 71 |
+
tempo_filtered.append(item)
|
| 72 |
+
except ValueError:
|
| 73 |
+
logger.warning(f"Skipping Task ID: {item.get('task_id', 'N/A')} - Could not convert tool/step count in metadata: tools='{num_tools_str}', steps='{num_steps_str}'.")
|
| 74 |
+
else:
|
| 75 |
+
logger.warning(f"Skipping Task ID: {item.get('task_id', 'N/A')} - 'Number of tools' or 'Number of steps' missing in Metadata.")
|
| 76 |
+
else:
|
| 77 |
+
logger.warning(f"Skipping Task ID: {item.get('task_id', 'N/A')} - Missing 'Annotator Metadata'.")
|
| 78 |
+
|
| 79 |
+
filtered_dataset = tempo_filtered
|
| 80 |
+
logger.info(f"Found {len(filtered_dataset)} questions matching the criteria (tools < {tool_threshold}, steps < {step_threshold}).")
|
| 81 |
+
|
| 82 |
+
processed_count = 0
|
| 83 |
+
for item in filtered_dataset:
|
| 84 |
+
# Extract data from the dataset item
|
| 85 |
+
task_id = item.get('task_id')
|
| 86 |
+
original_question_text = item.get('Question')
|
| 87 |
+
final_answer = item.get('Final answer')
|
| 88 |
+
local_file_path = item.get('file_path')
|
| 89 |
+
file_name = item.get('file_name')
|
| 90 |
+
|
| 91 |
+
if task_id and original_question_text and final_answer is not None:
|
| 92 |
+
|
| 93 |
+
# 1. Create the dictionary to be exposed via the API
|
| 94 |
+
# (Includes 'file_name' for info, but excludes 'file_path')
|
| 95 |
+
processed_item = {
|
| 96 |
+
"task_id": str(task_id),
|
| 97 |
+
"question": str(original_question_text),
|
| 98 |
+
"Level": item.get("Level"),
|
| 99 |
+
"file_name": file_name,
|
| 100 |
+
}
|
| 101 |
+
processed_item = {k: v for k, v in processed_item.items() if v is not None}
|
| 102 |
+
|
| 103 |
+
questions_for_api.append(processed_item)
|
| 104 |
+
|
| 105 |
+
# 2. Store the ground truth answer separately
|
| 106 |
+
ground_truth_answers[str(task_id)] = str(final_answer)
|
| 107 |
+
|
| 108 |
+
# 3. Store the file path mapping if file details exist and are valid
|
| 109 |
+
if local_file_path and file_name:
|
| 110 |
+
# Log if the path from the dataset isn't absolute (might indicate issues)
|
| 111 |
+
if not os.path.isabs(local_file_path):
|
| 112 |
+
logger.warning(f"Task {task_id}: Path '{local_file_path}' from dataset is not absolute. This might cause issues finding the file on the server.")
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
if os.path.exists(local_file_path) and os.path.isfile(local_file_path):
|
| 116 |
+
task_file_paths[str(task_id)] = local_file_path
|
| 117 |
+
logger.debug(f"Stored file path mapping for task_id {task_id}: {local_file_path}")
|
| 118 |
+
else:
|
| 119 |
+
logger.warning(f"File path '{local_file_path}' for task_id {task_id} does NOT exist or is not a file on server. Mapping skipped.")
|
| 120 |
+
elif task_id:
|
| 121 |
+
|
| 122 |
+
if not local_file_path and not file_name:
|
| 123 |
+
logger.debug(f"Task {task_id}: No 'file_path' or 'file_name' found in dataset item. No file mapping stored.")
|
| 124 |
+
elif not local_file_path:
|
| 125 |
+
logger.debug(f"Task {task_id}: 'file_path' is missing in dataset item (file_name: '{file_name}'). No file mapping stored.")
|
| 126 |
+
else: # Not file_name
|
| 127 |
+
logger.debug(f"Task {task_id}: 'file_name' is missing in dataset item (file_path: '{local_file_path}'). No file mapping stored.")
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
processed_count += 1
|
| 131 |
+
else:
|
| 132 |
+
logger.warning(f"Skipping item processing due to missing essential fields: task_id={task_id}, has_question={original_question_text is not None}, has_answer={final_answer is not None}")
|
| 133 |
+
|
| 134 |
+
logger.info(f"Successfully processed {processed_count} questions for the API.")
|
| 135 |
+
logger.info(f"Stored file path mappings for {len(task_file_paths)} tasks.")
|
| 136 |
+
|
| 137 |
+
if not questions_for_api:
|
| 138 |
+
logger.error("CRITICAL: No valid questions were loaded after filtering and processing. API endpoints like /questions will fail.")
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class Question(BaseModel):
|
| 144 |
+
task_id: str
|
| 145 |
+
question: str
|
| 146 |
+
Level: Optional[str] = None
|
| 147 |
+
file_name: Optional[str] = None
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# --- The rest of your Pydantic models remain the same ---
|
| 151 |
+
class AnswerItem(BaseModel):
|
| 152 |
+
task_id: str
|
| 153 |
+
submitted_answer: str = Field(..., description="The agent's answer for the task_id")
|
| 154 |
+
|
| 155 |
+
class Submission(BaseModel):
|
| 156 |
+
username: str = Field(..., description="Hugging Face username", min_length=1)
|
| 157 |
+
agent_code: str = Field(..., description="The Python class code for the agent")
|
| 158 |
+
answers: List[AnswerItem] = Field(..., description="List of answers submitted by the agent")
|
| 159 |
+
|
| 160 |
+
class ScoreResponse(BaseModel):
|
| 161 |
+
username: str
|
| 162 |
+
score: float
|
| 163 |
+
correct_count: int
|
| 164 |
+
total_attempted: int
|
| 165 |
+
message: str
|
| 166 |
+
timestamp: str
|
| 167 |
+
|
| 168 |
+
class ErrorResponse(BaseModel):
|
| 169 |
+
detail: str
|
| 170 |
+
|
| 171 |
+
class AnswerItem(BaseModel):
|
| 172 |
+
task_id: str
|
| 173 |
+
submitted_answer: Union[str, int, float] = Field(..., description="The agent's answer for the task_id. Accepts str, int and float")
|
| 174 |
+
|
| 175 |
+
class Submission(BaseModel):
|
| 176 |
+
username: str = Field(..., description="Hugging Face username", min_length=1)
|
| 177 |
+
agent_code: str = Field(..., description="The Python class code for the agent", min_length=10)
|
| 178 |
+
answers: List[AnswerItem] = Field(..., description="List of answers submitted by the agent")
|
| 179 |
+
|
| 180 |
+
class ScoreResponse(BaseModel):
|
| 181 |
+
username: str
|
| 182 |
+
score: float
|
| 183 |
+
correct_count: int
|
| 184 |
+
total_attempted: int
|
| 185 |
+
message: str
|
| 186 |
+
timestamp: str
|
| 187 |
+
|
| 188 |
+
class ErrorResponse(BaseModel):
|
| 189 |
+
detail: str
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
# --- FastAPI Application ---
|
| 193 |
+
app = FastAPI(
|
| 194 |
+
title="Agent Evaluation API",
|
| 195 |
+
description="API to fetch questions and submit agent answers for scoring.",
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# --- Startup Event ---
|
| 199 |
+
@app.on_event("startup")
|
| 200 |
+
async def startup_event():
|
| 201 |
+
logger.info("Application startup: Loading questions...")
|
| 202 |
+
try:
|
| 203 |
+
load_questions()
|
| 204 |
+
if not questions_for_api:
|
| 205 |
+
logger.error("CRITICAL: No questions were loaded during startup.")
|
| 206 |
+
else:
|
| 207 |
+
logger.info(f"Successfully loaded {len(questions_for_api)} questions.")
|
| 208 |
+
except Exception as e:
|
| 209 |
+
logger.error(f"CRITICAL ERROR DURING STARTUP while loading questions: {e}", exc_info=True)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
@app.get("/files/{task_id}",
|
| 214 |
+
summary="Get Associated File by Task ID",
|
| 215 |
+
description="Downloads the file associated with the given task_id, if one exists and is mapped.",
|
| 216 |
+
responses={
|
| 217 |
+
200: {
|
| 218 |
+
"description": "File content.",
|
| 219 |
+
"content": {"*/*": {}}
|
| 220 |
+
},
|
| 221 |
+
403: {"model": ErrorResponse, "description": "Access denied (e.g., path traversal attempt)."},
|
| 222 |
+
404: {"model": ErrorResponse, "description": "Task ID not found, no file associated, or file missing on server."},
|
| 223 |
+
500: {"model": ErrorResponse, "description": "Server error reading file."}
|
| 224 |
+
})
|
| 225 |
+
async def get_task_file(task_id: str):
|
| 226 |
+
"""
|
| 227 |
+
Serves the file associated with a specific task ID.
|
| 228 |
+
Includes security checks to prevent accessing arbitrary files.
|
| 229 |
+
"""
|
| 230 |
+
logger.info(f"Request received for file associated with task_id: {task_id}")
|
| 231 |
+
|
| 232 |
+
if task_id not in task_file_paths:
|
| 233 |
+
logger.warning(f"File request failed: task_id '{task_id}' not found in file path mapping.")
|
| 234 |
+
raise HTTPException(status_code=404, detail=f"No file path associated with task_id {task_id}.")
|
| 235 |
+
|
| 236 |
+
# --- ASSIGNMENT HAPPENS HERE ---
|
| 237 |
+
local_file_path = task_file_paths[task_id]
|
| 238 |
+
logger.debug(f"Mapped task_id '{task_id}' to local path: {local_file_path}")
|
| 239 |
+
|
| 240 |
+
# --- CRUCIAL SECURITY CHECK ---
|
| 241 |
+
try:
|
| 242 |
+
|
| 243 |
+
abs_file_path = os.path.abspath(local_file_path)
|
| 244 |
+
abs_base_path = ALLOWED_CACHE_BASE # Already absolute
|
| 245 |
+
|
| 246 |
+
if not abs_file_path.startswith(abs_base_path):
|
| 247 |
+
logger.error(f"SECURITY ALERT: Path traversal attempt denied for task_id '{task_id}'. Path '{local_file_path}' resolves outside base '{abs_base_path}'.")
|
| 248 |
+
raise HTTPException(status_code=403, detail="File access denied.")
|
| 249 |
+
|
| 250 |
+
if not os.path.exists(abs_file_path) or not os.path.isfile(abs_file_path):
|
| 251 |
+
logger.error(f"File not found on server for task_id '{task_id}' at expected path: {abs_file_path}")
|
| 252 |
+
raise HTTPException(status_code=404, detail=f"File associated with task_id {task_id} not found on server disk.")
|
| 253 |
+
|
| 254 |
+
except HTTPException as http_exc:
|
| 255 |
+
raise http_exc
|
| 256 |
+
except Exception as path_err:
|
| 257 |
+
logger.error(f"Error resolving or checking path '{local_file_path}' for task_id '{task_id}': {path_err}", exc_info=True)
|
| 258 |
+
raise HTTPException(status_code=500, detail="Server error validating file path.")
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
mime_type, _ = mimetypes.guess_type(abs_file_path)
|
| 262 |
+
media_type = mime_type if mime_type else "application/octet-stream"
|
| 263 |
+
|
| 264 |
+
file_name_for_download = os.path.basename(abs_file_path)
|
| 265 |
+
|
| 266 |
+
logger.info(f"Serving file '{file_name_for_download}' (type: {media_type}) for task_id '{task_id}' from path: {abs_file_path}")
|
| 267 |
+
|
| 268 |
+
return FileResponse(path=abs_file_path, media_type=media_type, filename=file_name_for_download)
|
| 269 |
+
|
| 270 |
+
def update_huggingface_dataset(username: str, score: float, code_link: str):
|
| 271 |
+
"""
|
| 272 |
+
Loads the dataset, updates the score and code link if the score is higher,
|
| 273 |
+
and pushes back to the Hugging Face Hub.
|
| 274 |
+
|
| 275 |
+
Args:
|
| 276 |
+
username: The username of the participant.
|
| 277 |
+
score: The new score achieved by the participant.
|
| 278 |
+
code_link: The link to the code submission associated with this score.
|
| 279 |
+
|
| 280 |
+
Returns:
|
| 281 |
+
True if the dataset was updated and pushed, False otherwise.
|
| 282 |
+
|
| 283 |
+
Raises:
|
| 284 |
+
HTTPException: If there's an error interacting with the dataset.
|
| 285 |
+
"""
|
| 286 |
+
try:
|
| 287 |
+
# Define the expected schema including the 'code' column
|
| 288 |
+
expected_columns = {
|
| 289 |
+
'username': 'str',
|
| 290 |
+
'score': 'float',
|
| 291 |
+
'timestamp': 'str',
|
| 292 |
+
'code': 'str' # Added the code column
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
# 1. Attempt to load the dataset
|
| 296 |
+
logger.info(f"Attempting to load dataset '{HF_DATASET_ID}'...")
|
| 297 |
+
ds_dict = None
|
| 298 |
+
df = None
|
| 299 |
+
try:
|
| 300 |
+
|
| 301 |
+
ds_dict = load_dataset(HF_DATASET_ID, trust_remote_code=True) # Added trust_remote_code=True if needed
|
| 302 |
+
logger.info("Dataset loaded successfully.")
|
| 303 |
+
if "train" in ds_dict:
|
| 304 |
+
df = ds_dict['train'].to_pandas()
|
| 305 |
+
else:
|
| 306 |
+
logger.warning(f"Dataset '{HF_DATASET_ID}' loaded but no 'train' split found. Creating structure.")
|
| 307 |
+
#df = pd.DataFrame({col: pd.Series(dtype=dtype) for col, dtype in expected_columns.items()})
|
| 308 |
+
|
| 309 |
+
except Exception as load_error:
|
| 310 |
+
logger.error(f"CRITICAL: Could not load dataset '{HF_DATASET_ID}'. Error: {load_error}", exc_info=True)
|
| 311 |
+
raise HTTPException(
|
| 312 |
+
status_code=500,
|
| 313 |
+
detail=f"Failed to load required dataset '{HF_DATASET_ID}': {load_error}"
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
for col, dtype in expected_columns.items():
|
| 317 |
+
if col not in df.columns:
|
| 318 |
+
logger.warning(f"Column '{col}' not found in loaded data. Adding it.")
|
| 319 |
+
|
| 320 |
+
df[col] = pd.Series(dtype=dtype)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
df['score'] = pd.to_numeric(df['score'], errors='coerce').fillna(0.0)
|
| 324 |
+
|
| 325 |
+
df['username'] = df['username'].astype(str).fillna('')
|
| 326 |
+
df['timestamp'] = df['timestamp'].astype(str).fillna('')
|
| 327 |
+
df['code'] = df['code'].astype(str).fillna('')
|
| 328 |
+
|
| 329 |
+
# 2. Find existing score for the user
|
| 330 |
+
existing_entries = df[df['username'] == username]
|
| 331 |
+
current_timestamp = datetime.now(timezone.utc).isoformat()
|
| 332 |
+
needs_update = False
|
| 333 |
+
|
| 334 |
+
if not existing_entries.empty:
|
| 335 |
+
# User exists, find their highest score
|
| 336 |
+
max_existing_score = existing_entries['score'].max() # Already numeric
|
| 337 |
+
if score > max_existing_score:
|
| 338 |
+
logger.info(f"New score {score} is higher than existing max {max_existing_score} for {username}. Updating entry.")
|
| 339 |
+
df = df[df['username'] != username].copy()
|
| 340 |
+
new_entry = pd.DataFrame([{
|
| 341 |
+
'username': username,
|
| 342 |
+
'score': score,
|
| 343 |
+
'timestamp': current_timestamp,
|
| 344 |
+
'code': code_link # Add the code link here
|
| 345 |
+
}])
|
| 346 |
+
df = pd.concat([df, new_entry], ignore_index=True)
|
| 347 |
+
needs_update = True
|
| 348 |
+
else:
|
| 349 |
+
logger.info(f"New score {score} is not higher than existing max {max_existing_score} for {username}. No update needed.")
|
| 350 |
+
else:
|
| 351 |
+
# User does not exist, add them
|
| 352 |
+
logger.info(f"User {username} not found. Adding new entry with score {score}.")
|
| 353 |
+
new_entry = pd.DataFrame([{
|
| 354 |
+
'username': username,
|
| 355 |
+
'score': score,
|
| 356 |
+
'timestamp': current_timestamp,
|
| 357 |
+
'code': code_link # Add the code link here
|
| 358 |
+
}])
|
| 359 |
+
df = pd.concat([df, new_entry], ignore_index=True)
|
| 360 |
+
needs_update = True
|
| 361 |
+
|
| 362 |
+
# 3. Push updated data back to Hugging Face Hub if changes were made
|
| 363 |
+
if needs_update:
|
| 364 |
+
logger.info(f"Preparing to push updated dataset to '{HF_DATASET_ID}'...")
|
| 365 |
+
|
| 366 |
+
df = df[list(expected_columns.keys())]
|
| 367 |
+
for col, dtype in expected_columns.items():
|
| 368 |
+
if dtype == 'str':
|
| 369 |
+
df[col] = df[col].astype(str).fillna('')
|
| 370 |
+
elif dtype == 'float':
|
| 371 |
+
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0.0) # Ensure float conversion
|
| 372 |
+
|
| 373 |
+
logger.info(f"Final DataFrame columns and types:\n{df.dtypes}")
|
| 374 |
+
logger.info(f"Sample data before push:\n{df.head().to_string()}")
|
| 375 |
+
|
| 376 |
+
updated_ds = Dataset.from_pandas(df)
|
| 377 |
+
final_ds_dict = DatasetDict({'train': updated_ds})
|
| 378 |
+
|
| 379 |
+
logger.info(f"Dataset structure to push: {final_ds_dict}")
|
| 380 |
+
|
| 381 |
+
final_ds_dict.push_to_hub(HF_DATASET_ID)
|
| 382 |
+
logger.warning("Dataset push to hub is currently commented out in the code.")
|
| 383 |
+
return True
|
| 384 |
+
else:
|
| 385 |
+
logger.info("No changes needed, dataset not pushed.")
|
| 386 |
+
return False # No update was pushed
|
| 387 |
+
|
| 388 |
+
except Exception as e:
|
| 389 |
+
logger.error(f"Error interacting with Hugging Face dataset '{HF_DATASET_ID}': {e}", exc_info=True)
|
| 390 |
+
|
| 391 |
+
raise HTTPException(status_code=500, detail=f"Failed to update Hugging Face dataset: {e}")
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
@app.get("/questions",
|
| 395 |
+
# Return a list of dictionaries with arbitrary keys/values
|
| 396 |
+
response_model=List[Dict[str, Any]],
|
| 397 |
+
summary="Get All Filtered Questions (Full Data)",
|
| 398 |
+
description="Returns the complete list of questions with all associated data (excluding answer/annotation) filtered based on criteria.")
|
| 399 |
+
async def get_questions():
|
| 400 |
+
"""
|
| 401 |
+
Provides the list of questions (with extended data) that agents should answer.
|
| 402 |
+
"""
|
| 403 |
+
if not questions_for_api:
|
| 404 |
+
logger.error("GET /questions requested but no questions are loaded.")
|
| 405 |
+
raise HTTPException(status_code=404, detail="No questions available.")
|
| 406 |
+
# questions_for_api now contains the richer dictionaries
|
| 407 |
+
return questions_for_api
|
| 408 |
+
|
| 409 |
+
@app.get("/random-question",
|
| 410 |
+
# Return a single dictionary with arbitrary keys/values
|
| 411 |
+
response_model=Dict[str, Any],
|
| 412 |
+
summary="Get One Random Question (Full Data)",
|
| 413 |
+
description="Returns a single random question with all associated data (excluding answer/annotation) from the available filtered set.",
|
| 414 |
+
responses={
|
| 415 |
+
200: {"description": "A random question with its full data."},
|
| 416 |
+
404: {"model": ErrorResponse, "description": "No questions available to choose from."}
|
| 417 |
+
})
|
| 418 |
+
async def get_random_question():
|
| 419 |
+
"""
|
| 420 |
+
Provides a single, randomly selected question with its extended data.
|
| 421 |
+
"""
|
| 422 |
+
if not questions_for_api:
|
| 423 |
+
logger.warning("GET /random-question requested but no questions are loaded.")
|
| 424 |
+
raise HTTPException(status_code=404, detail="No questions available to choose from.")
|
| 425 |
+
|
| 426 |
+
# Select and return a random question dictionary
|
| 427 |
+
random_question = random.choice(questions_for_api)
|
| 428 |
+
logger.info(f"Returning random question with task_id: {random_question.get('task_id', 'N/A')}")
|
| 429 |
+
# random_question is already the richer dictionary
|
| 430 |
+
return random_question
|
| 431 |
+
|
| 432 |
+
# --- Submit Endpoint (remains the same, uses ground_truth_answers) ---
|
| 433 |
+
@app.post("/submit",
|
| 434 |
+
response_model=ScoreResponse,
|
| 435 |
+
summary="Submit Agent Answers",
|
| 436 |
+
description="Submit answers from an agent, calculate score, and update leaderboard on Hugging Face.",
|
| 437 |
+
responses={
|
| 438 |
+
200: {"description": "Submission successful, score calculated."},
|
| 439 |
+
400: {"model": ErrorResponse, "description": "Invalid input data."},
|
| 440 |
+
404: {"model": ErrorResponse, "description": "Task ID not found in submission or ground truth."},
|
| 441 |
+
500: {"model": ErrorResponse, "description": "Server error (e.g., failed to update dataset)."}
|
| 442 |
+
})
|
| 443 |
+
async def submit_answers(submission: Submission = Body(...)):
|
| 444 |
+
"""
|
| 445 |
+
Receives agent submissions:
|
| 446 |
+
- Validates input.
|
| 447 |
+
- Checks presence of agent code (basic anti-cheat).
|
| 448 |
+
- Calculates score based on submitted answers vs ground truth.
|
| 449 |
+
- Updates the score on the Hugging Face dataset if it's a new high score for the user.
|
| 450 |
+
"""
|
| 451 |
+
logger.info(f"Received submission from username: {submission.username}")
|
| 452 |
+
|
| 453 |
+
# Basic check for agent code presence
|
| 454 |
+
if not submission.agent_code or len(submission.agent_code.strip()) < 10:
|
| 455 |
+
logger.warning(f"Submission rejected for {submission.username}: Agent code missing or too short.")
|
| 456 |
+
raise HTTPException(status_code=400, detail="Agent code is required and must be sufficiently long.")
|
| 457 |
+
|
| 458 |
+
if not submission.answers:
|
| 459 |
+
logger.warning(f"Submission rejected for {submission.username}: No answers provided.")
|
| 460 |
+
raise HTTPException(status_code=400, detail="No answers provided in the submission.")
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
correct_count = 0
|
| 464 |
+
total_attempted_in_payload = len(submission.answers)
|
| 465 |
+
valid_attempted_count = 0
|
| 466 |
+
processed_ids = set()
|
| 467 |
+
|
| 468 |
+
for answer_item in submission.answers:
|
| 469 |
+
task_id = str(answer_item.task_id)
|
| 470 |
+
submitted = str(answer_item.submitted_answer)
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
if task_id in processed_ids:
|
| 474 |
+
logger.warning(f"Duplicate task_id '{task_id}' in submission from {submission.username}. Skipping.")
|
| 475 |
+
continue
|
| 476 |
+
processed_ids.add(task_id)
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
if task_id not in ground_truth_answers:
|
| 481 |
+
logger.warning(f"Task ID '{task_id}' submitted by {submission.username} not found in ground truth list. Skipping this answer.")
|
| 482 |
+
continue
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
valid_attempted_count += 1
|
| 486 |
+
ground_truth = ground_truth_answers[task_id]
|
| 487 |
+
# Compare answers (case-insensitive, strip whitespace)
|
| 488 |
+
if submitted.strip().lower() == ground_truth.strip().lower():
|
| 489 |
+
correct_count += 1
|
| 490 |
+
logger.debug(f"Correct answer for {task_id} from {submission.username}")
|
| 491 |
+
else:
|
| 492 |
+
logger.debug(f"Incorrect answer for {task_id} from {submission.username}. Submitted: '{submitted}', Expected: '{ground_truth}'")
|
| 493 |
+
|
| 494 |
+
if valid_attempted_count == 0:
|
| 495 |
+
score = 0.0
|
| 496 |
+
message = f"Submission received, but no valid/matching task IDs were found in the {total_attempted_in_payload} answers provided."
|
| 497 |
+
logger.warning(f"No valid answers processed for {submission.username} out of {total_attempted_in_payload} submitted.")
|
| 498 |
+
elif not ground_truth_answers: # Prevent division by zero if no questions loaded
|
| 499 |
+
score = 0.0
|
| 500 |
+
message = "Score cannot be calculated because no ground truth answers are loaded."
|
| 501 |
+
logger.error(f"Cannot calculate score for {submission.username}: ground_truth_answers is empty.")
|
| 502 |
+
else:
|
| 503 |
+
# Score is based on correct answers divided by the TOTAL number of questions in the filtered set
|
| 504 |
+
score = round((correct_count / len(ground_truth_answers)) * 100, 2)
|
| 505 |
+
message = f"Score calculated successfully: {correct_count}/{len(ground_truth_answers)} total questions answered correctly ({valid_attempted_count} valid tasks attempted)."
|
| 506 |
+
if valid_attempted_count < total_attempted_in_payload:
|
| 507 |
+
message += f" ({total_attempted_in_payload - valid_attempted_count} submitted answers had invalid or duplicate task IDs)."
|
| 508 |
+
logger.info(f"Score for {submission.username}: {score}% ({correct_count}/{len(ground_truth_answers)} correct, based on {valid_attempted_count} valid attempts)")
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
# Update Hugging Face dataset
|
| 512 |
+
try:
|
| 513 |
+
updated = update_huggingface_dataset(submission.username, score, submission.agent_code)
|
| 514 |
+
if updated:
|
| 515 |
+
message += " High score updated on leaderboard."
|
| 516 |
+
logger.info(f"Leaderboard updated for {submission.username}.")
|
| 517 |
+
else:
|
| 518 |
+
message += " Score did not improve previous record, leaderboard not updated."
|
| 519 |
+
logger.info(f"Leaderboard not updated for {submission.username} as score was not higher.")
|
| 520 |
+
|
| 521 |
+
except HTTPException as http_exc:
|
| 522 |
+
# Propagate HTTPException from the helper function (e.g., 500 error)
|
| 523 |
+
raise http_exc
|
| 524 |
+
except Exception as e:
|
| 525 |
+
# Catch any other unexpected errors during HF update
|
| 526 |
+
logger.error(f"Unexpected error during dataset update for {submission.username}: {e}", exc_info=True)
|
| 527 |
+
raise HTTPException(status_code=500, detail="An unexpected error occurred while updating the leaderboard.")
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
return ScoreResponse(
|
| 531 |
+
username=submission.username,
|
| 532 |
+
score=score,
|
| 533 |
+
correct_count=correct_count,
|
| 534 |
+
# Return the count of *valid* attempts for clarity
|
| 535 |
+
total_attempted=valid_attempted_count,
|
| 536 |
+
message=message,
|
| 537 |
+
timestamp=datetime.now(timezone.utc).isoformat()
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
# --- Run the application ---
|
| 541 |
+
if __name__ == "__main__":
|
| 542 |
+
logger.info("Starting FastAPI server for local development...")
|
| 543 |
+
try:
|
| 544 |
+
load_questions() # Load questions before starting server
|
| 545 |
+
if not questions_for_api:
|
| 546 |
+
logger.error("EXITING: Cannot start server without loaded questions.")
|
| 547 |
+
# Optional: exit if questions are essential
|
| 548 |
+
# import sys
|
| 549 |
+
# sys.exit(1)
|
| 550 |
+
else:
|
| 551 |
+
local_port = int(os.getenv("PORT", "8000"))
|
| 552 |
+
logger.info(f"Running Uvicorn locally on http://127.0.0.1:{local_port}")
|
| 553 |
+
uvicorn.run(app, host="127.0.0.1", port=local_port, log_level="info")
|
| 554 |
+
except Exception as e:
|
| 555 |
+
logger.error(f"Failed to start server: {e}", exc_info=True)
|