Spaces:
Running
Running
Mandark-droid
commited on
Commit
·
c040b82
1
Parent(s):
cb9eb3c
Add Trends tab with time series visualization
Browse files- app.py +16 -0
- components/__init__.py +13 -6
- components/analytics_charts.py +745 -0
app.py
CHANGED
|
@@ -13,6 +13,7 @@ load_dotenv()
|
|
| 13 |
# Import data loader and components
|
| 14 |
from data_loader import create_data_loader_from_env
|
| 15 |
from components.leaderboard_table import generate_leaderboard_html
|
|
|
|
| 16 |
|
| 17 |
# Initialize data loader
|
| 18 |
data_loader = create_data_loader_from_env()
|
|
@@ -73,6 +74,13 @@ def load_drilldown(agent_type, provider):
|
|
| 73 |
return display_df
|
| 74 |
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
# Build Gradio app
|
| 77 |
with gr.Blocks(title="TraceMind-AI") as app:
|
| 78 |
gr.Markdown("# 🧠 TraceMind-AI")
|
|
@@ -128,6 +136,9 @@ with gr.Blocks(title="TraceMind-AI") as app:
|
|
| 128 |
interactive=False
|
| 129 |
)
|
| 130 |
|
|
|
|
|
|
|
|
|
|
| 131 |
# Hidden textbox for row selection (JavaScript bridge)
|
| 132 |
selected_row_index = gr.Textbox(visible=False, elem_id="selected_row_index")
|
| 133 |
|
|
@@ -137,6 +148,11 @@ with gr.Blocks(title="TraceMind-AI") as app:
|
|
| 137 |
outputs=[leaderboard_by_model, model_filter]
|
| 138 |
)
|
| 139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
apply_filters_btn.click(
|
| 141 |
fn=apply_filters,
|
| 142 |
inputs=[model_filter, provider_filter, sort_by],
|
|
|
|
| 13 |
# Import data loader and components
|
| 14 |
from data_loader import create_data_loader_from_env
|
| 15 |
from components.leaderboard_table import generate_leaderboard_html
|
| 16 |
+
from components.analytics_charts import create_trends_plot
|
| 17 |
|
| 18 |
# Initialize data loader
|
| 19 |
data_loader = create_data_loader_from_env()
|
|
|
|
| 74 |
return display_df
|
| 75 |
|
| 76 |
|
| 77 |
+
def load_trends():
|
| 78 |
+
"""Load trends visualization"""
|
| 79 |
+
df = data_loader.load_leaderboard()
|
| 80 |
+
fig = create_trends_plot(df)
|
| 81 |
+
return fig
|
| 82 |
+
|
| 83 |
+
|
| 84 |
# Build Gradio app
|
| 85 |
with gr.Blocks(title="TraceMind-AI") as app:
|
| 86 |
gr.Markdown("# 🧠 TraceMind-AI")
|
|
|
|
| 136 |
interactive=False
|
| 137 |
)
|
| 138 |
|
| 139 |
+
with gr.TabItem("📈 Trends"):
|
| 140 |
+
trends_plot = gr.Plot()
|
| 141 |
+
|
| 142 |
# Hidden textbox for row selection (JavaScript bridge)
|
| 143 |
selected_row_index = gr.Textbox(visible=False, elem_id="selected_row_index")
|
| 144 |
|
|
|
|
| 148 |
outputs=[leaderboard_by_model, model_filter]
|
| 149 |
)
|
| 150 |
|
| 151 |
+
app.load(
|
| 152 |
+
fn=load_trends,
|
| 153 |
+
outputs=[trends_plot]
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
apply_filters_btn.click(
|
| 157 |
fn=apply_filters,
|
| 158 |
inputs=[model_filter, provider_filter, sort_by],
|
components/__init__.py
CHANGED
|
@@ -21,14 +21,16 @@ from .leaderboard_table import (
|
|
| 21 |
generate_filter_summary_html
|
| 22 |
)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Additional components (to be added)
|
| 25 |
# from .thought_graph import create_thought_graph
|
| 26 |
-
# from .analytics_charts import (
|
| 27 |
-
# create_performance_heatmap,
|
| 28 |
-
# create_speed_accuracy_scatter,
|
| 29 |
-
# create_cost_efficiency_scatter,
|
| 30 |
-
# create_comparison_radar
|
| 31 |
-
# )
|
| 32 |
# from .report_cards import (
|
| 33 |
# generate_leaderboard_summary_card,
|
| 34 |
# generate_run_report_card,
|
|
@@ -48,4 +50,9 @@ __all__ = [
|
|
| 48 |
'generate_leaderboard_html',
|
| 49 |
'generate_empty_state_html',
|
| 50 |
'generate_filter_summary_html',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
]
|
|
|
|
| 21 |
generate_filter_summary_html
|
| 22 |
)
|
| 23 |
|
| 24 |
+
from .analytics_charts import (
|
| 25 |
+
create_trends_plot,
|
| 26 |
+
create_performance_heatmap,
|
| 27 |
+
create_speed_accuracy_scatter,
|
| 28 |
+
create_cost_efficiency_scatter,
|
| 29 |
+
create_comparison_radar
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
# Additional components (to be added)
|
| 33 |
# from .thought_graph import create_thought_graph
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# from .report_cards import (
|
| 35 |
# generate_leaderboard_summary_card,
|
| 36 |
# generate_run_report_card,
|
|
|
|
| 50 |
'generate_leaderboard_html',
|
| 51 |
'generate_empty_state_html',
|
| 52 |
'generate_filter_summary_html',
|
| 53 |
+
'create_trends_plot',
|
| 54 |
+
'create_performance_heatmap',
|
| 55 |
+
'create_speed_accuracy_scatter',
|
| 56 |
+
'create_cost_efficiency_scatter',
|
| 57 |
+
'create_comparison_radar',
|
| 58 |
]
|
components/analytics_charts.py
ADDED
|
@@ -0,0 +1,745 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Analytics Charts Component
|
| 3 |
+
Interactive visualizations for leaderboard analytics
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
from typing import List, Dict, Any, Optional
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def create_performance_heatmap(df: pd.DataFrame) -> go.Figure:
|
| 13 |
+
"""
|
| 14 |
+
Create an interactive heatmap of models × metrics
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
df: Leaderboard DataFrame with metrics
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
Plotly figure with heatmap visualization
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
if df.empty:
|
| 24 |
+
return _create_empty_figure("No data available for heatmap")
|
| 25 |
+
|
| 26 |
+
# Select metrics to display
|
| 27 |
+
metrics = [
|
| 28 |
+
'success_rate',
|
| 29 |
+
'avg_duration_ms',
|
| 30 |
+
'total_cost_usd',
|
| 31 |
+
'co2_emissions_g',
|
| 32 |
+
'gpu_utilization_avg',
|
| 33 |
+
'total_tokens'
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
# Filter to only available metrics
|
| 37 |
+
available_metrics = [m for m in metrics if m in df.columns]
|
| 38 |
+
|
| 39 |
+
if not available_metrics:
|
| 40 |
+
return _create_empty_figure("No metrics available for analysis")
|
| 41 |
+
|
| 42 |
+
# Aggregate by model (in case of multiple runs)
|
| 43 |
+
model_stats = df.groupby('model')[available_metrics].mean()
|
| 44 |
+
|
| 45 |
+
# Prepare data matrix (rows=metrics, columns=models)
|
| 46 |
+
heatmap_data = []
|
| 47 |
+
heatmap_text = []
|
| 48 |
+
metric_labels = []
|
| 49 |
+
|
| 50 |
+
for metric in available_metrics:
|
| 51 |
+
values = model_stats[metric].values
|
| 52 |
+
|
| 53 |
+
# Normalize to 0-1 scale
|
| 54 |
+
# For metrics where lower is better (duration, cost, co2), invert the scale
|
| 55 |
+
if metric in ['avg_duration_ms', 'total_cost_usd', 'co2_emissions_g']:
|
| 56 |
+
# Invert: lower is better (green)
|
| 57 |
+
max_val = values.max()
|
| 58 |
+
if max_val > 0:
|
| 59 |
+
normalized = 1 - (values / max_val)
|
| 60 |
+
else:
|
| 61 |
+
normalized = np.zeros_like(values)
|
| 62 |
+
else:
|
| 63 |
+
# Higher is better (green)
|
| 64 |
+
max_val = values.max()
|
| 65 |
+
if max_val > 0:
|
| 66 |
+
normalized = values / max_val
|
| 67 |
+
else:
|
| 68 |
+
normalized = np.zeros_like(values)
|
| 69 |
+
|
| 70 |
+
heatmap_data.append(normalized)
|
| 71 |
+
|
| 72 |
+
# Create hover text with actual values
|
| 73 |
+
if metric == 'success_rate':
|
| 74 |
+
text_row = [f"{v:.1f}%" for v in values]
|
| 75 |
+
elif metric == 'avg_duration_ms':
|
| 76 |
+
text_row = [f"{v:.0f}ms" for v in values]
|
| 77 |
+
elif metric in ['total_cost_usd']:
|
| 78 |
+
text_row = [f"${v:.4f}" for v in values]
|
| 79 |
+
elif metric == 'co2_emissions_g':
|
| 80 |
+
text_row = [f"{v:.2f}g" for v in values]
|
| 81 |
+
elif metric == 'gpu_utilization_avg':
|
| 82 |
+
text_row = [f"{v:.1f}%" if pd.notna(v) else "N/A" for v in values]
|
| 83 |
+
else:
|
| 84 |
+
text_row = [f"{v:.0f}" for v in values]
|
| 85 |
+
|
| 86 |
+
heatmap_text.append(text_row)
|
| 87 |
+
|
| 88 |
+
# Create readable metric labels
|
| 89 |
+
label = metric.replace('_', ' ').replace('avg', 'Avg').replace('usd', 'USD').title()
|
| 90 |
+
metric_labels.append(label)
|
| 91 |
+
|
| 92 |
+
# Get model names
|
| 93 |
+
models = model_stats.index.tolist()
|
| 94 |
+
|
| 95 |
+
# Shorten model names if too long
|
| 96 |
+
model_labels = [m.split('/')[-1] if '/' in m else m for m in models]
|
| 97 |
+
model_labels = [m[:20] + '...' if len(m) > 20 else m for m in model_labels]
|
| 98 |
+
|
| 99 |
+
# Create heatmap
|
| 100 |
+
fig = go.Figure(data=go.Heatmap(
|
| 101 |
+
z=heatmap_data,
|
| 102 |
+
x=model_labels,
|
| 103 |
+
y=metric_labels,
|
| 104 |
+
text=heatmap_text,
|
| 105 |
+
texttemplate='%{text}',
|
| 106 |
+
textfont={"size": 10},
|
| 107 |
+
colorscale='RdYlGn', # Red (bad) → Yellow → Green (good)
|
| 108 |
+
hoverongaps=False,
|
| 109 |
+
hovertemplate='<b>%{y}</b><br>Model: %{x}<br>Value: %{text}<br>Score: %{z:.2f}<extra></extra>',
|
| 110 |
+
colorbar=dict(
|
| 111 |
+
title=dict(
|
| 112 |
+
text="Performance<br>Score",
|
| 113 |
+
side="right"
|
| 114 |
+
),
|
| 115 |
+
tickmode="linear",
|
| 116 |
+
tick0=0,
|
| 117 |
+
dtick=0.25
|
| 118 |
+
)
|
| 119 |
+
))
|
| 120 |
+
|
| 121 |
+
fig.update_layout(
|
| 122 |
+
title={
|
| 123 |
+
'text': '🔥 Model Performance Heatmap',
|
| 124 |
+
'x': 0.5,
|
| 125 |
+
'xanchor': 'center',
|
| 126 |
+
'font': {'size': 20}
|
| 127 |
+
},
|
| 128 |
+
xaxis_title='Model',
|
| 129 |
+
yaxis_title='Metric',
|
| 130 |
+
height=500,
|
| 131 |
+
plot_bgcolor='#f8f9fa',
|
| 132 |
+
paper_bgcolor='white',
|
| 133 |
+
xaxis=dict(tickangle=-45),
|
| 134 |
+
margin=dict(l=150, r=100, t=100, b=150),
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
return fig
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def create_speed_accuracy_scatter(df: pd.DataFrame) -> go.Figure:
|
| 141 |
+
"""
|
| 142 |
+
Speed vs Accuracy trade-off scatter plot
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
df: Leaderboard DataFrame
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
Plotly figure with scatter plot
|
| 149 |
+
"""
|
| 150 |
+
|
| 151 |
+
if df.empty:
|
| 152 |
+
return _create_empty_figure("No data available for scatter plot")
|
| 153 |
+
|
| 154 |
+
# Check required columns
|
| 155 |
+
required_cols = ['model', 'success_rate', 'avg_duration_ms']
|
| 156 |
+
if not all(col in df.columns for col in required_cols):
|
| 157 |
+
return _create_empty_figure(f"Missing required columns: {required_cols}")
|
| 158 |
+
|
| 159 |
+
# Aggregate by model
|
| 160 |
+
model_stats = df.groupby('model').agg({
|
| 161 |
+
'success_rate': 'mean',
|
| 162 |
+
'avg_duration_ms': 'mean',
|
| 163 |
+
'total_cost_usd': 'mean' if 'total_cost_usd' in df.columns else 'size',
|
| 164 |
+
'agent_type': 'first' if 'agent_type' in df.columns else 'size'
|
| 165 |
+
}).reset_index()
|
| 166 |
+
|
| 167 |
+
# Create figure
|
| 168 |
+
fig = go.Figure()
|
| 169 |
+
|
| 170 |
+
# Get unique agent types
|
| 171 |
+
agent_types = model_stats['agent_type'].unique() if 'agent_type' in model_stats.columns else ['all']
|
| 172 |
+
|
| 173 |
+
# Color scheme
|
| 174 |
+
colors = {
|
| 175 |
+
'tool': '#E67E22', # Orange
|
| 176 |
+
'code': '#3498DB', # Blue
|
| 177 |
+
'both': '#9B59B6', # Purple
|
| 178 |
+
'all': '#1ABC9C', # Teal
|
| 179 |
+
'unknown': '#95A5A6' # Gray
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
for agent_type in agent_types:
|
| 183 |
+
if agent_type == 'all':
|
| 184 |
+
subset = model_stats
|
| 185 |
+
else:
|
| 186 |
+
subset = model_stats[model_stats['agent_type'] == agent_type]
|
| 187 |
+
|
| 188 |
+
# Prepare hover text
|
| 189 |
+
hover_texts = []
|
| 190 |
+
for _, row in subset.iterrows():
|
| 191 |
+
model_name = row['model'].split('/')[-1] if '/' in row['model'] else row['model']
|
| 192 |
+
hover = f"<b>{model_name}</b><br>"
|
| 193 |
+
hover += f"Success Rate: {row['success_rate']:.1f}%<br>"
|
| 194 |
+
hover += f"Avg Duration: {row['avg_duration_ms']:.0f}ms<br>"
|
| 195 |
+
if 'total_cost_usd' in row and pd.notna(row['total_cost_usd']):
|
| 196 |
+
hover += f"Cost: ${row['total_cost_usd']:.4f}"
|
| 197 |
+
hover_texts.append(hover)
|
| 198 |
+
|
| 199 |
+
# Bubble size based on cost (if available)
|
| 200 |
+
if 'total_cost_usd' in subset.columns:
|
| 201 |
+
sizes = subset['total_cost_usd'] * 5000 # Scale up for visibility
|
| 202 |
+
sizes = sizes.clip(lower=10, upper=100) # Reasonable range
|
| 203 |
+
else:
|
| 204 |
+
sizes = 30 # Default size
|
| 205 |
+
|
| 206 |
+
fig.add_trace(go.Scatter(
|
| 207 |
+
x=subset['avg_duration_ms'],
|
| 208 |
+
y=subset['success_rate'],
|
| 209 |
+
mode='markers+text',
|
| 210 |
+
name=str(agent_type).title(),
|
| 211 |
+
marker=dict(
|
| 212 |
+
size=sizes,
|
| 213 |
+
color=colors.get(str(agent_type).lower(), colors['unknown']),
|
| 214 |
+
opacity=0.7,
|
| 215 |
+
line=dict(width=2, color='white')
|
| 216 |
+
),
|
| 217 |
+
text=[m.split('/')[-1][:15] for m in subset['model']],
|
| 218 |
+
textposition='top center',
|
| 219 |
+
textfont=dict(size=9),
|
| 220 |
+
hovertext=hover_texts,
|
| 221 |
+
hoverinfo='text'
|
| 222 |
+
))
|
| 223 |
+
|
| 224 |
+
# Add quadrant lines (median split)
|
| 225 |
+
if len(model_stats) > 1:
|
| 226 |
+
median_speed = model_stats['avg_duration_ms'].median()
|
| 227 |
+
median_accuracy = model_stats['success_rate'].median()
|
| 228 |
+
|
| 229 |
+
fig.add_hline(
|
| 230 |
+
y=median_accuracy,
|
| 231 |
+
line_dash="dash",
|
| 232 |
+
line_color="gray",
|
| 233 |
+
opacity=0.4,
|
| 234 |
+
annotation_text=f"Median Accuracy: {median_accuracy:.1f}%",
|
| 235 |
+
annotation_position="right"
|
| 236 |
+
)
|
| 237 |
+
fig.add_vline(
|
| 238 |
+
x=median_speed,
|
| 239 |
+
line_dash="dash",
|
| 240 |
+
line_color="gray",
|
| 241 |
+
opacity=0.4,
|
| 242 |
+
annotation_text=f"Median Speed: {median_speed:.0f}ms",
|
| 243 |
+
annotation_position="top"
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# Add zone annotations
|
| 247 |
+
max_accuracy = model_stats['success_rate'].max()
|
| 248 |
+
min_speed = model_stats['avg_duration_ms'].min()
|
| 249 |
+
|
| 250 |
+
fig.add_annotation(
|
| 251 |
+
x=min_speed + (median_speed - min_speed) * 0.5,
|
| 252 |
+
y=max_accuracy * 0.98,
|
| 253 |
+
text="⭐ Fast & Accurate",
|
| 254 |
+
showarrow=False,
|
| 255 |
+
font=dict(size=14, color='green', family='Arial Black'),
|
| 256 |
+
bgcolor='rgba(144, 238, 144, 0.2)',
|
| 257 |
+
borderpad=5
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
fig.update_layout(
|
| 261 |
+
title={
|
| 262 |
+
'text': '⚡ Speed vs Accuracy Trade-off',
|
| 263 |
+
'x': 0.5,
|
| 264 |
+
'xanchor': 'center',
|
| 265 |
+
'font': {'size': 20}
|
| 266 |
+
},
|
| 267 |
+
xaxis_title='Average Duration (ms)',
|
| 268 |
+
yaxis_title='Success Rate (%)',
|
| 269 |
+
xaxis_type='log', # Log scale for duration
|
| 270 |
+
height=600,
|
| 271 |
+
plot_bgcolor='white',
|
| 272 |
+
paper_bgcolor='#f8f9fa',
|
| 273 |
+
showlegend=True,
|
| 274 |
+
legend=dict(
|
| 275 |
+
title=dict(text='Agent Type'),
|
| 276 |
+
orientation="v",
|
| 277 |
+
yanchor="top",
|
| 278 |
+
y=0.99,
|
| 279 |
+
xanchor="right",
|
| 280 |
+
x=0.99
|
| 281 |
+
),
|
| 282 |
+
hovermode='closest'
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# Add grid for better readability
|
| 286 |
+
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
|
| 287 |
+
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
|
| 288 |
+
|
| 289 |
+
return fig
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def create_cost_efficiency_scatter(df: pd.DataFrame) -> go.Figure:
|
| 293 |
+
"""
|
| 294 |
+
Cost-Performance Efficiency scatter plot
|
| 295 |
+
|
| 296 |
+
Args:
|
| 297 |
+
df: Leaderboard DataFrame
|
| 298 |
+
|
| 299 |
+
Returns:
|
| 300 |
+
Plotly figure with cost efficiency scatter
|
| 301 |
+
"""
|
| 302 |
+
|
| 303 |
+
if df.empty:
|
| 304 |
+
return _create_empty_figure("No data available for cost analysis")
|
| 305 |
+
|
| 306 |
+
# Check required columns
|
| 307 |
+
if 'success_rate' not in df.columns or 'total_cost_usd' not in df.columns:
|
| 308 |
+
return _create_empty_figure("Missing required columns: success_rate, total_cost_usd")
|
| 309 |
+
|
| 310 |
+
# Aggregate by model
|
| 311 |
+
agg_dict = {
|
| 312 |
+
'success_rate': 'mean',
|
| 313 |
+
'total_cost_usd': 'mean',
|
| 314 |
+
'avg_duration_ms': 'mean' if 'avg_duration_ms' in df.columns else 'size',
|
| 315 |
+
'provider': 'first' if 'provider' in df.columns else 'size'
|
| 316 |
+
}
|
| 317 |
+
|
| 318 |
+
model_stats = df.groupby('model').agg(agg_dict).reset_index()
|
| 319 |
+
|
| 320 |
+
# Calculate efficiency metric: success_rate / cost
|
| 321 |
+
model_stats['efficiency'] = model_stats['success_rate'] / (model_stats['total_cost_usd'] + 0.0001) # Avoid division by zero
|
| 322 |
+
|
| 323 |
+
# Create figure
|
| 324 |
+
fig = go.Figure()
|
| 325 |
+
|
| 326 |
+
# Get unique providers
|
| 327 |
+
providers = model_stats['provider'].unique() if 'provider' in model_stats.columns else ['all']
|
| 328 |
+
|
| 329 |
+
# Color scheme
|
| 330 |
+
provider_colors = {
|
| 331 |
+
'litellm': '#3498DB', # Blue (API)
|
| 332 |
+
'transformers': '#2ECC71', # Green (GPU/local)
|
| 333 |
+
'all': '#9B59B6', # Purple
|
| 334 |
+
'unknown': '#95A5A6' # Gray
|
| 335 |
+
}
|
| 336 |
+
|
| 337 |
+
for provider in providers:
|
| 338 |
+
if provider == 'all':
|
| 339 |
+
subset = model_stats
|
| 340 |
+
else:
|
| 341 |
+
subset = model_stats[model_stats['provider'] == provider]
|
| 342 |
+
|
| 343 |
+
# Prepare hover text
|
| 344 |
+
hover_texts = []
|
| 345 |
+
for _, row in subset.iterrows():
|
| 346 |
+
model_name = row['model'].split('/')[-1] if '/' in row['model'] else row['model']
|
| 347 |
+
hover = f"<b>{model_name}</b><br>"
|
| 348 |
+
hover += f"Success Rate: {row['success_rate']:.1f}%<br>"
|
| 349 |
+
hover += f"Total Cost: ${row['total_cost_usd']:.4f}<br>"
|
| 350 |
+
hover += f"Efficiency: {row['efficiency']:.0f} (points/$)<br>"
|
| 351 |
+
if 'avg_duration_ms' in row and pd.notna(row['avg_duration_ms']):
|
| 352 |
+
hover += f"Duration: {row['avg_duration_ms']:.0f}ms"
|
| 353 |
+
hover_texts.append(hover)
|
| 354 |
+
|
| 355 |
+
# Bubble size based on duration (if available)
|
| 356 |
+
if 'avg_duration_ms' in subset.columns:
|
| 357 |
+
# Invert: smaller duration = smaller bubble
|
| 358 |
+
sizes = subset['avg_duration_ms'] / 100 # Scale down
|
| 359 |
+
sizes = sizes.clip(lower=10, upper=80) # Reasonable range
|
| 360 |
+
else:
|
| 361 |
+
sizes = 30 # Default size
|
| 362 |
+
|
| 363 |
+
fig.add_trace(go.Scatter(
|
| 364 |
+
x=subset['total_cost_usd'],
|
| 365 |
+
y=subset['success_rate'],
|
| 366 |
+
mode='markers+text',
|
| 367 |
+
name=str(provider).title(),
|
| 368 |
+
marker=dict(
|
| 369 |
+
size=sizes,
|
| 370 |
+
color=provider_colors.get(str(provider).lower(), provider_colors['unknown']),
|
| 371 |
+
opacity=0.7,
|
| 372 |
+
line=dict(width=2, color='white')
|
| 373 |
+
),
|
| 374 |
+
text=[m.split('/')[-1][:15] for m in subset['model']],
|
| 375 |
+
textposition='top center',
|
| 376 |
+
textfont=dict(size=9),
|
| 377 |
+
hovertext=hover_texts,
|
| 378 |
+
hoverinfo='text'
|
| 379 |
+
))
|
| 380 |
+
|
| 381 |
+
# Add cost bands
|
| 382 |
+
if len(model_stats) > 0:
|
| 383 |
+
max_cost = model_stats['total_cost_usd'].max()
|
| 384 |
+
|
| 385 |
+
# Budget band: < $0.01
|
| 386 |
+
if max_cost > 0.01:
|
| 387 |
+
fig.add_vrect(
|
| 388 |
+
x0=0, x1=0.01,
|
| 389 |
+
fillcolor="lightgreen", opacity=0.1,
|
| 390 |
+
layer="below", line_width=0,
|
| 391 |
+
annotation_text="Budget", annotation_position="top left"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
# Mid band: $0.01-$0.10
|
| 395 |
+
if max_cost > 0.10:
|
| 396 |
+
fig.add_vrect(
|
| 397 |
+
x0=0.01, x1=0.10,
|
| 398 |
+
fillcolor="yellow", opacity=0.1,
|
| 399 |
+
layer="below", line_width=0,
|
| 400 |
+
annotation_text="Mid-Range", annotation_position="top left"
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
# Premium band: > $0.10
|
| 404 |
+
if max_cost > 0.10:
|
| 405 |
+
fig.add_vrect(
|
| 406 |
+
x0=0.10, x1=max_cost * 1.1,
|
| 407 |
+
fillcolor="orange", opacity=0.1,
|
| 408 |
+
layer="below", line_width=0,
|
| 409 |
+
annotation_text="Premium", annotation_position="top left"
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
# Highlight top 3 most efficient models
|
| 413 |
+
top_efficient = model_stats.nlargest(3, 'efficiency')
|
| 414 |
+
for _, row in top_efficient.iterrows():
|
| 415 |
+
fig.add_annotation(
|
| 416 |
+
x=row['total_cost_usd'],
|
| 417 |
+
y=row['success_rate'],
|
| 418 |
+
text="⭐",
|
| 419 |
+
showarrow=False,
|
| 420 |
+
font=dict(size=20)
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
fig.update_layout(
|
| 424 |
+
title={
|
| 425 |
+
'text': '💰 Cost-Performance Efficiency',
|
| 426 |
+
'x': 0.5,
|
| 427 |
+
'xanchor': 'center',
|
| 428 |
+
'font': {'size': 20}
|
| 429 |
+
},
|
| 430 |
+
xaxis_title='Total Cost (USD)',
|
| 431 |
+
yaxis_title='Success Rate (%)',
|
| 432 |
+
xaxis_type='log', # Log scale for cost
|
| 433 |
+
height=600,
|
| 434 |
+
plot_bgcolor='white',
|
| 435 |
+
paper_bgcolor='#f8f9fa',
|
| 436 |
+
showlegend=True,
|
| 437 |
+
legend=dict(
|
| 438 |
+
title=dict(text='Provider'),
|
| 439 |
+
orientation="v",
|
| 440 |
+
yanchor="top",
|
| 441 |
+
y=0.99,
|
| 442 |
+
xanchor="right",
|
| 443 |
+
x=0.99
|
| 444 |
+
),
|
| 445 |
+
hovermode='closest'
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
# Add grid for better readability
|
| 449 |
+
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
|
| 450 |
+
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
|
| 451 |
+
|
| 452 |
+
return fig
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
def _create_empty_figure(message: str) -> go.Figure:
|
| 456 |
+
"""
|
| 457 |
+
Create an empty figure with a message
|
| 458 |
+
|
| 459 |
+
Args:
|
| 460 |
+
message: Message to display
|
| 461 |
+
|
| 462 |
+
Returns:
|
| 463 |
+
Plotly figure with annotation
|
| 464 |
+
"""
|
| 465 |
+
fig = go.Figure()
|
| 466 |
+
|
| 467 |
+
fig.add_annotation(
|
| 468 |
+
text=message,
|
| 469 |
+
xref="paper", yref="paper",
|
| 470 |
+
x=0.5, y=0.5,
|
| 471 |
+
xanchor='center', yanchor='middle',
|
| 472 |
+
showarrow=False,
|
| 473 |
+
font=dict(size=16, color='gray')
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
fig.update_layout(
|
| 477 |
+
height=500,
|
| 478 |
+
plot_bgcolor='white',
|
| 479 |
+
paper_bgcolor='#f8f9fa',
|
| 480 |
+
xaxis=dict(showgrid=False, showticklabels=False, zeroline=False),
|
| 481 |
+
yaxis=dict(showgrid=False, showticklabels=False, zeroline=False)
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
return fig
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
def create_comparison_radar(runs: List[Dict[str, Any]]) -> go.Figure:
|
| 488 |
+
"""
|
| 489 |
+
Create a multi-dimensional radar chart comparing 2-3 runs
|
| 490 |
+
|
| 491 |
+
Args:
|
| 492 |
+
runs: List of run data dictionaries (2-3 models)
|
| 493 |
+
|
| 494 |
+
Returns:
|
| 495 |
+
Plotly figure with radar chart comparison
|
| 496 |
+
"""
|
| 497 |
+
|
| 498 |
+
if not runs or len(runs) < 2:
|
| 499 |
+
return _create_empty_figure("Please select at least 2 runs to compare")
|
| 500 |
+
|
| 501 |
+
if len(runs) > 3:
|
| 502 |
+
runs = runs[:3] # Limit to 3 runs for readability
|
| 503 |
+
|
| 504 |
+
# Define dimensions for radar chart
|
| 505 |
+
dimensions = []
|
| 506 |
+
dimension_names = []
|
| 507 |
+
|
| 508 |
+
# Helper function to normalize values (0-1 scale)
|
| 509 |
+
def normalize(values, invert=False):
|
| 510 |
+
"""Normalize values to 0-1, optionally inverting (lower is better)"""
|
| 511 |
+
values = np.array(values, dtype=float)
|
| 512 |
+
min_val, max_val = np.nanmin(values), np.nanmax(values)
|
| 513 |
+
if max_val == min_val:
|
| 514 |
+
return [0.5] * len(values)
|
| 515 |
+
normalized = (values - min_val) / (max_val - min_val)
|
| 516 |
+
if invert:
|
| 517 |
+
normalized = 1 - normalized
|
| 518 |
+
return normalized.tolist()
|
| 519 |
+
|
| 520 |
+
# Extract metrics from all runs
|
| 521 |
+
success_rates = [run.get('success_rate', 0) / 100 for run in runs] # Already 0-1
|
| 522 |
+
durations = [run.get('avg_duration_ms', 0) for run in runs]
|
| 523 |
+
costs = [run.get('total_cost_usd', 0) for run in runs]
|
| 524 |
+
tokens = [run.get('total_tokens', 0) for run in runs]
|
| 525 |
+
co2 = [run.get('co2_emissions_g', 0) for run in runs]
|
| 526 |
+
gpu_util = [run.get('gpu_utilization_avg', None) for run in runs]
|
| 527 |
+
|
| 528 |
+
# Calculate Token Efficiency (success per 1000 tokens)
|
| 529 |
+
# Use max() to avoid division by zero
|
| 530 |
+
token_efficiency = [
|
| 531 |
+
(run.get('success_rate', 0) / 100) / max((run.get('total_tokens', 0) / 1000), 0.001)
|
| 532 |
+
for run in runs
|
| 533 |
+
]
|
| 534 |
+
|
| 535 |
+
# Build dimensions (normalized 0-1)
|
| 536 |
+
dimensions.append(success_rates) # Already 0-1
|
| 537 |
+
dimension_names.append('Success Rate')
|
| 538 |
+
|
| 539 |
+
dimensions.append(normalize(durations, invert=True)) # Faster is better
|
| 540 |
+
dimension_names.append('Speed')
|
| 541 |
+
|
| 542 |
+
dimensions.append(normalize(costs, invert=True)) # Cheaper is better
|
| 543 |
+
dimension_names.append('Cost Efficiency')
|
| 544 |
+
|
| 545 |
+
dimensions.append(normalize(token_efficiency)) # Higher is better
|
| 546 |
+
dimension_names.append('Token Efficiency')
|
| 547 |
+
|
| 548 |
+
dimensions.append(normalize(co2, invert=True)) # Lower CO2 is better
|
| 549 |
+
dimension_names.append('CO2 Efficiency')
|
| 550 |
+
|
| 551 |
+
# Add GPU Utilization if available
|
| 552 |
+
if any(g is not None for g in gpu_util):
|
| 553 |
+
gpu_values = [g / 100 if g is not None else 0 for g in gpu_util] # Normalize to 0-1
|
| 554 |
+
dimensions.append(gpu_values)
|
| 555 |
+
dimension_names.append('GPU Utilization')
|
| 556 |
+
|
| 557 |
+
# Create radar chart
|
| 558 |
+
fig = go.Figure()
|
| 559 |
+
|
| 560 |
+
colors = ['#667eea', '#f093fb', '#43e97b'] # Purple, Pink, Green
|
| 561 |
+
|
| 562 |
+
for idx, run in enumerate(runs):
|
| 563 |
+
model_name = run.get('model', f'Run {idx+1}')
|
| 564 |
+
if '/' in model_name:
|
| 565 |
+
model_name = model_name.split('/')[-1] # Show only model name, not provider
|
| 566 |
+
|
| 567 |
+
# Extract values for this run across all dimensions
|
| 568 |
+
values = [dim[idx] for dim in dimensions]
|
| 569 |
+
|
| 570 |
+
# Close the radar chart by repeating first value
|
| 571 |
+
values_closed = values + [values[0]]
|
| 572 |
+
theta_closed = dimension_names + [dimension_names[0]]
|
| 573 |
+
|
| 574 |
+
fig.add_trace(go.Scatterpolar(
|
| 575 |
+
r=values_closed,
|
| 576 |
+
theta=theta_closed,
|
| 577 |
+
name=model_name,
|
| 578 |
+
fill='toself',
|
| 579 |
+
fillcolor=colors[idx],
|
| 580 |
+
opacity=0.3,
|
| 581 |
+
line=dict(color=colors[idx], width=2),
|
| 582 |
+
marker=dict(size=8, color=colors[idx]),
|
| 583 |
+
hovertemplate='<b>%{theta}</b><br>' +
|
| 584 |
+
'Score: %{r:.2f}<br>' +
|
| 585 |
+
f'<b>{model_name}</b>' +
|
| 586 |
+
'<extra></extra>'
|
| 587 |
+
))
|
| 588 |
+
|
| 589 |
+
fig.update_layout(
|
| 590 |
+
polar=dict(
|
| 591 |
+
bgcolor='#f8f9fa',
|
| 592 |
+
radialaxis=dict(
|
| 593 |
+
visible=True,
|
| 594 |
+
range=[0, 1],
|
| 595 |
+
showticklabels=True,
|
| 596 |
+
ticks='',
|
| 597 |
+
gridcolor='rgba(100, 100, 100, 0.2)',
|
| 598 |
+
tickfont=dict(size=10)
|
| 599 |
+
),
|
| 600 |
+
angularaxis=dict(
|
| 601 |
+
gridcolor='rgba(100, 100, 100, 0.2)',
|
| 602 |
+
linecolor='rgba(100, 100, 100, 0.4)',
|
| 603 |
+
tickfont=dict(size=12, color='#0f172a')
|
| 604 |
+
)
|
| 605 |
+
),
|
| 606 |
+
showlegend=True,
|
| 607 |
+
legend=dict(
|
| 608 |
+
orientation="h",
|
| 609 |
+
yanchor="bottom",
|
| 610 |
+
y=-0.2,
|
| 611 |
+
xanchor="center",
|
| 612 |
+
x=0.5,
|
| 613 |
+
bgcolor='rgba(255, 255, 255, 0.8)',
|
| 614 |
+
bordercolor='#ccc',
|
| 615 |
+
borderwidth=1
|
| 616 |
+
),
|
| 617 |
+
title=dict(
|
| 618 |
+
text='Multi-Dimensional Model Comparison',
|
| 619 |
+
x=0.5,
|
| 620 |
+
xanchor='center',
|
| 621 |
+
font=dict(size=18, color='#0f172a', family='Inter, sans-serif')
|
| 622 |
+
),
|
| 623 |
+
height=600,
|
| 624 |
+
paper_bgcolor='white',
|
| 625 |
+
font=dict(family='Inter, sans-serif')
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
return fig
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
def create_trends_plot(df: pd.DataFrame) -> go.Figure:
|
| 632 |
+
"""
|
| 633 |
+
Create time series visualization of evaluation metrics over time
|
| 634 |
+
|
| 635 |
+
Args:
|
| 636 |
+
df: Leaderboard DataFrame with timestamp column
|
| 637 |
+
|
| 638 |
+
Returns:
|
| 639 |
+
Plotly figure with time series chart
|
| 640 |
+
"""
|
| 641 |
+
|
| 642 |
+
if df.empty:
|
| 643 |
+
return _create_empty_figure("No data available for trends")
|
| 644 |
+
|
| 645 |
+
# Check if timestamp column exists
|
| 646 |
+
if 'timestamp' not in df.columns:
|
| 647 |
+
return _create_empty_figure("Missing timestamp column for trends analysis")
|
| 648 |
+
|
| 649 |
+
# Convert timestamp to datetime
|
| 650 |
+
df = df.copy()
|
| 651 |
+
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
| 652 |
+
|
| 653 |
+
# Sort by timestamp
|
| 654 |
+
df = df.sort_values('timestamp')
|
| 655 |
+
|
| 656 |
+
# Aggregate by date (in case multiple runs per day)
|
| 657 |
+
df['date'] = df['timestamp'].dt.date
|
| 658 |
+
|
| 659 |
+
daily_stats = df.groupby('date').agg({
|
| 660 |
+
'success_rate': 'mean',
|
| 661 |
+
'avg_duration_ms': 'mean',
|
| 662 |
+
'total_cost_usd': 'mean',
|
| 663 |
+
'total_tokens': 'mean'
|
| 664 |
+
}).reset_index()
|
| 665 |
+
|
| 666 |
+
# Create figure with secondary y-axis
|
| 667 |
+
fig = go.Figure()
|
| 668 |
+
|
| 669 |
+
# Success Rate
|
| 670 |
+
fig.add_trace(go.Scatter(
|
| 671 |
+
x=daily_stats['date'],
|
| 672 |
+
y=daily_stats['success_rate'],
|
| 673 |
+
name='Success Rate (%)',
|
| 674 |
+
mode='lines+markers',
|
| 675 |
+
line=dict(color='#2ECC71', width=3),
|
| 676 |
+
marker=dict(size=8),
|
| 677 |
+
yaxis='y1',
|
| 678 |
+
hovertemplate='<b>Success Rate</b><br>Date: %{x}<br>Rate: %{y:.1f}%<extra></extra>'
|
| 679 |
+
))
|
| 680 |
+
|
| 681 |
+
# Duration
|
| 682 |
+
fig.add_trace(go.Scatter(
|
| 683 |
+
x=daily_stats['date'],
|
| 684 |
+
y=daily_stats['avg_duration_ms'],
|
| 685 |
+
name='Avg Duration (ms)',
|
| 686 |
+
mode='lines+markers',
|
| 687 |
+
line=dict(color='#3498DB', width=3),
|
| 688 |
+
marker=dict(size=8),
|
| 689 |
+
yaxis='y2',
|
| 690 |
+
hovertemplate='<b>Duration</b><br>Date: %{x}<br>Time: %{y:.0f}ms<extra></extra>'
|
| 691 |
+
))
|
| 692 |
+
|
| 693 |
+
# Cost
|
| 694 |
+
fig.add_trace(go.Scatter(
|
| 695 |
+
x=daily_stats['date'],
|
| 696 |
+
y=daily_stats['total_cost_usd'],
|
| 697 |
+
name='Avg Cost (USD)',
|
| 698 |
+
mode='lines+markers',
|
| 699 |
+
line=dict(color='#E67E22', width=3),
|
| 700 |
+
marker=dict(size=8),
|
| 701 |
+
yaxis='y2',
|
| 702 |
+
hovertemplate='<b>Cost</b><br>Date: %{x}<br>Cost: $%{y:.4f}<extra></extra>'
|
| 703 |
+
))
|
| 704 |
+
|
| 705 |
+
fig.update_layout(
|
| 706 |
+
title={
|
| 707 |
+
'text': '📈 Evaluation Metrics Trends Over Time',
|
| 708 |
+
'x': 0.5,
|
| 709 |
+
'xanchor': 'center',
|
| 710 |
+
'font': {'size': 20}
|
| 711 |
+
},
|
| 712 |
+
xaxis=dict(
|
| 713 |
+
title='Date',
|
| 714 |
+
showgrid=True,
|
| 715 |
+
gridcolor='lightgray'
|
| 716 |
+
),
|
| 717 |
+
yaxis=dict(
|
| 718 |
+
title='Success Rate (%)',
|
| 719 |
+
titlefont=dict(color='#2ECC71'),
|
| 720 |
+
tickfont=dict(color='#2ECC71'),
|
| 721 |
+
showgrid=True,
|
| 722 |
+
gridcolor='lightgray'
|
| 723 |
+
),
|
| 724 |
+
yaxis2=dict(
|
| 725 |
+
title='Duration (ms) / Cost (USD)',
|
| 726 |
+
titlefont=dict(color='#3498DB'),
|
| 727 |
+
tickfont=dict(color='#3498DB'),
|
| 728 |
+
overlaying='y',
|
| 729 |
+
side='right'
|
| 730 |
+
),
|
| 731 |
+
hovermode='x unified',
|
| 732 |
+
height=500,
|
| 733 |
+
plot_bgcolor='white',
|
| 734 |
+
paper_bgcolor='#f8f9fa',
|
| 735 |
+
showlegend=True,
|
| 736 |
+
legend=dict(
|
| 737 |
+
orientation="h",
|
| 738 |
+
yanchor="bottom",
|
| 739 |
+
y=1.02,
|
| 740 |
+
xanchor="right",
|
| 741 |
+
x=1
|
| 742 |
+
)
|
| 743 |
+
)
|
| 744 |
+
|
| 745 |
+
return fig
|