Spaces:
Running
Running
Mandark-droid
commited on
Commit
Β·
184f198
1
Parent(s):
f65e58b
Add comprehensive error handling to all load functions
Browse files
app.py
CHANGED
|
@@ -65,29 +65,38 @@ def apply_filters(model, provider, sort_by_col):
|
|
| 65 |
|
| 66 |
def load_drilldown(agent_type, provider):
|
| 67 |
"""Load drilldown data with filters"""
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
if provider != "All" and 'provider' in df.columns:
|
| 73 |
-
df = df[df['provider'] == provider]
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
]
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
def load_trends():
|
|
@@ -118,13 +127,17 @@ def generate_card(top_n):
|
|
| 118 |
|
| 119 |
def generate_insights():
|
| 120 |
"""Generate AI insights summary"""
|
| 121 |
-
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
fastest = df.loc[df['avg_duration_ms'].idxmin()]
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
## π Leaderboard Summary
|
| 129 |
|
| 130 |
**Total Runs:** {len(df)}
|
|
@@ -142,9 +155,14 @@ def generate_insights():
|
|
| 142 |
---
|
| 143 |
|
| 144 |
*Note: AI-powered insights will be available via MCP integration in the full version.*
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
|
| 150 |
# Build Gradio app
|
|
|
|
| 65 |
|
| 66 |
def load_drilldown(agent_type, provider):
|
| 67 |
"""Load drilldown data with filters"""
|
| 68 |
+
try:
|
| 69 |
+
df = data_loader.load_leaderboard()
|
| 70 |
|
| 71 |
+
if df.empty:
|
| 72 |
+
return pd.DataFrame()
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
if agent_type != "All" and 'agent_type' in df.columns:
|
| 75 |
+
df = df[df['agent_type'] == agent_type]
|
| 76 |
+
if provider != "All" and 'provider' in df.columns:
|
| 77 |
+
df = df[df['provider'] == provider]
|
|
|
|
| 78 |
|
| 79 |
+
# Select only columns that exist
|
| 80 |
+
desired_columns = [
|
| 81 |
+
'run_id', 'model', 'agent_type', 'provider',
|
| 82 |
+
'success_rate', 'total_tests', 'avg_duration_ms', 'total_cost_usd'
|
| 83 |
+
]
|
| 84 |
|
| 85 |
+
# Filter to only existing columns
|
| 86 |
+
available_columns = [col for col in desired_columns if col in df.columns]
|
| 87 |
+
|
| 88 |
+
if not available_columns:
|
| 89 |
+
# If no desired columns exist, return empty dataframe
|
| 90 |
+
return pd.DataFrame()
|
| 91 |
|
| 92 |
+
display_df = df[available_columns].copy()
|
| 93 |
|
| 94 |
+
return display_df
|
| 95 |
+
except Exception as e:
|
| 96 |
+
print(f"[ERROR] load_drilldown: {e}")
|
| 97 |
+
import traceback
|
| 98 |
+
traceback.print_exc()
|
| 99 |
+
return pd.DataFrame()
|
| 100 |
|
| 101 |
|
| 102 |
def load_trends():
|
|
|
|
| 127 |
|
| 128 |
def generate_insights():
|
| 129 |
"""Generate AI insights summary"""
|
| 130 |
+
try:
|
| 131 |
+
df = data_loader.load_leaderboard()
|
| 132 |
|
| 133 |
+
if df.empty or 'success_rate' not in df.columns:
|
| 134 |
+
return "## π Leaderboard Summary\n\nNo data available for insights."
|
|
|
|
| 135 |
|
| 136 |
+
top_model = df.loc[df['success_rate'].idxmax()]
|
| 137 |
+
most_cost_effective = df.loc[(df['success_rate'] / (df['total_cost_usd'] + 0.0001)).idxmax()]
|
| 138 |
+
fastest = df.loc[df['avg_duration_ms'].idxmin()]
|
| 139 |
+
|
| 140 |
+
insights = f"""
|
| 141 |
## π Leaderboard Summary
|
| 142 |
|
| 143 |
**Total Runs:** {len(df)}
|
|
|
|
| 155 |
---
|
| 156 |
|
| 157 |
*Note: AI-powered insights will be available via MCP integration in the full version.*
|
| 158 |
+
"""
|
| 159 |
+
|
| 160 |
+
return insights
|
| 161 |
+
except Exception as e:
|
| 162 |
+
print(f"[ERROR] generate_insights: {e}")
|
| 163 |
+
import traceback
|
| 164 |
+
traceback.print_exc()
|
| 165 |
+
return f"## π Leaderboard Summary\n\nError generating insights: {str(e)}"
|
| 166 |
|
| 167 |
|
| 168 |
# Build Gradio app
|