from LLM.llm_models import context_compression_model from .get_context_compression_prompt import get_context_compression_prompt from smolagents import PlanningStep from typing import List client = context_compression_model def compress_context(context: List[PlanningStep]): completion = client.generate( messages=[ { "role": "system", "content": get_context_compression_prompt() }, { "role": "user", "content": "\n".join([str(step) for step in context]) } ], ) return completion.content