Spaces:
Running
Running
File size: 17,992 Bytes
ff5767d 373ff24 ff5767d 373ff24 ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d af2657b ff5767d 373ff24 af2657b 373ff24 af2657b 373ff24 ff5767d 373ff24 ff5767d 373ff24 ff5767d 373ff24 ff5767d af2657b ff5767d af2657b ff5767d af2657b 373ff24 ff5767d 373ff24 ff5767d 373ff24 ff5767d 373ff24 ff5767d 373ff24 ff5767d 373ff24 ff5767d 373ff24 ff5767d e1fc11d 373ff24 e1fc11d 373ff24 e1fc11d 373ff24 e1fc11d 373ff24 e1fc11d 373ff24 e1fc11d 373ff24 e1fc11d 373ff24 e1fc11d 373ff24 e1fc11d ff5767d af2657b ff5767d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
"""Orchestrator for 12 Angry Agents deliberation.
Handles turn management, speaker selection, and deliberation flow.
"""
import random
from dataclasses import dataclass, field
from typing import TYPE_CHECKING
from core.game_state import GameState, DeliberationTurn, GamePhase, ArgumentDirection
from core.models import JurorConfig, JurorMemory
from core.conviction import calculate_conviction_change, apply_conviction_update
if TYPE_CHECKING:
from agents.smolagent_juror import SmolagentJuror
from case_db.models import CriminalCase
@dataclass
class SpeakerWeight:
"""Weight information for speaker selection."""
juror_id: str
weight: float
reason: str
@dataclass
class TurnResult:
"""Result of a single turn in deliberation."""
turn: DeliberationTurn
conviction_changes: dict[str, float]
vote_changes: list[tuple[str, str, str]]
reasoning_steps: list[str] = field(default_factory=list)
tool_calls: list[str] = field(default_factory=list)
class TurnManager:
"""Manages fair speaker selection with weighted queue.
Selection priorities:
1. Jurors "on the fence" (conviction 0.35-0.65) - most interesting
2. Jurors who haven't spoken recently - fairness
3. Jurors with high influence - they drive conversation
4. Some randomness to keep things unpredictable
"""
ON_FENCE_BONUS = 2.0
RECENCY_PENALTY = 0.3
INFLUENCE_WEIGHT = 1.5
RANDOM_FACTOR = 0.3
RECENCY_WINDOW = 2
def __init__(self):
self.speaker_history: list[list[str]] = []
def select_speakers(
self,
game_state: GameState,
juror_configs: list[JurorConfig],
juror_memories: dict[str, JurorMemory],
num_speakers: int = None,
exclude_player: bool = True
) -> list[str]:
"""Select speakers for the next round using weighted selection."""
if num_speakers is None:
num_speakers = random.randint(1, 3)
eligible = [
c for c in juror_configs
if not (exclude_player and c.is_player())
]
if not eligible:
return []
weights = self._calculate_weights(
eligible,
juror_memories,
game_state.round_number
)
selected = self._weighted_select(weights, min(num_speakers, len(eligible)))
self.speaker_history.append(selected)
game_state.speaking_queue = selected
return selected
def _calculate_weights(
self,
configs: list[JurorConfig],
memories: dict[str, JurorMemory],
current_round: int
) -> list[SpeakerWeight]:
"""Calculate selection weight for each juror."""
weights = []
for config in configs:
jid = config.juror_id
memory = memories.get(jid)
base_weight = 0.5 + (config.influence * self.INFLUENCE_WEIGHT)
if memory:
conviction = memory.current_conviction
fence_distance = abs(conviction - 0.5)
if fence_distance < 0.15:
fence_bonus = self.ON_FENCE_BONUS * (1 - fence_distance / 0.15)
else:
fence_bonus = 0.0
else:
fence_bonus = 0.0
recency_multiplier = 1.0
reason_parts = []
for rounds_ago, speakers in enumerate(reversed(self.speaker_history[-self.RECENCY_WINDOW:])):
if jid in speakers:
penalty = self.RECENCY_PENALTY ** (rounds_ago + 1)
recency_multiplier *= penalty
reason_parts.append(f"spoke {rounds_ago + 1} rounds ago")
break
volatility_bonus = config.volatility * 0.5
weight = (base_weight + fence_bonus + volatility_bonus) * recency_multiplier
weight += random.uniform(0, self.RANDOM_FACTOR)
reasons = []
if fence_bonus > 0:
reasons.append(f"on fence (+{fence_bonus:.2f})")
if recency_multiplier < 1.0:
reasons.append(f"recent speaker (x{recency_multiplier:.2f})")
if config.influence > 0.6:
reasons.append("high influence")
if config.volatility > 0.6:
reasons.append("volatile")
weights.append(SpeakerWeight(
juror_id=jid,
weight=max(0.1, weight),
reason=", ".join(reasons) if reasons else "baseline"
))
return weights
def _weighted_select(
self,
weights: list[SpeakerWeight],
count: int
) -> list[str]:
"""Select jurors using weighted random selection without replacement."""
selected = []
remaining = list(weights)
for _ in range(count):
if not remaining:
break
total = sum(w.weight for w in remaining)
if total <= 0:
break
r = random.uniform(0, total)
cumulative = 0
for i, w in enumerate(remaining):
cumulative += w.weight
if r <= cumulative:
selected.append(w.juror_id)
remaining.pop(i)
break
return selected
def reset(self):
"""Reset speaker history for new game."""
self.speaker_history = []
class OrchestratorAgent:
"""Master agent that coordinates the deliberation.
Handles:
- Game phase transitions
- Turn management and speaker selection
- Processing arguments and reactions
- Vote tracking and stability detection
"""
def __init__(
self,
juror_configs: list[JurorConfig],
juror_agents: dict[str, "SmolagentJuror"],
case: "CriminalCase"
):
self.juror_configs = juror_configs
self.juror_agents = juror_agents
self.case = case
self.turn_manager = TurnManager()
self.state = GameState(case_id=case.case_id)
for jid, agent in juror_agents.items():
self.state.votes[jid] = agent.get_vote()
self.state.conviction_scores[jid] = agent.memory.current_conviction
@property
def game_state(self) -> GameState:
"""Get current game state."""
return self.state
def get_juror_memories(self) -> dict[str, JurorMemory]:
"""Get memory state for all jurors."""
return {jid: agent.memory for jid, agent in self.juror_agents.items()}
async def run_deliberation_round(
self,
num_speakers: int = None
) -> list[TurnResult]:
"""Run a single round of deliberation."""
self.state.round_number += 1
results = []
votes_at_start = dict(self.state.votes)
speakers = self.turn_manager.select_speakers(
self.state,
self.juror_configs,
self.get_juror_memories(),
num_speakers=num_speakers,
exclude_player=True
)
for speaker_id in speakers:
result = await self._process_speaker_turn(speaker_id)
if result:
results.append(result)
if self.state.votes == votes_at_start:
self.state.rounds_without_change += 1
else:
self.state.rounds_without_change = 0
return results
async def _process_speaker_turn(self, speaker_id: str) -> TurnResult | None:
"""Process a single speaker's turn."""
agent = self.juror_agents.get(speaker_id)
if not agent:
return None
try:
# Generate argument - SmolagentJuror always returns (turn, reasoning_steps)
turn, reasoning_data = await agent.generate_argument(self.case, self.state)
# Extract reasoning steps for UI
reasoning_steps = []
if reasoning_data:
reasoning_steps = [
f"Step {s.step_number}: {s.action} - {s.content[:100]}"
if hasattr(s, 'step_number') else str(s)
for s in reasoning_data
]
# Extract tool calls
tool_calls = agent.last_tool_calls if hasattr(agent, 'last_tool_calls') else []
# Select active listeners for full processing
active_listeners = self._select_active_listeners(turn)
# Process reactions from other jurors
conviction_changes = {}
vote_changes = []
for other_id, other_agent in self.juror_agents.items():
if other_id == speaker_id:
continue
old_vote = self.state.votes.get(other_id)
# Calculate base strength based on speaker influence
base_strength = 0.08 + (agent.config.influence * 0.07)
if other_id in active_listeners:
base_strength *= 1.2
# Use direction-aware conviction calculation
delta = calculate_conviction_change(
other_agent.config,
other_agent.memory,
turn, # turn now includes direction
base_strength=base_strength
)
# Store argument in memory (don't apply delta here - do it via apply_conviction_update)
other_agent.receive_argument(turn, 0.0)
conviction_changes[other_id] = delta
turn.impact[other_id] = delta
# Apply conviction update with hysteresis
vote_flipped, new_vote = apply_conviction_update(other_agent.memory, delta)
if vote_flipped and new_vote:
self.state.votes[other_id] = new_vote
vote_changes.append((other_id, old_vote, new_vote))
self.state.conviction_scores[other_id] = other_agent.memory.current_conviction
self.state.deliberation_log.append(turn)
return TurnResult(
turn=turn,
conviction_changes=conviction_changes,
vote_changes=vote_changes,
reasoning_steps=reasoning_steps,
tool_calls=tool_calls,
)
except Exception as e:
print(f"Error processing turn for {speaker_id}: {e}")
return None
def _select_active_listeners(
self,
turn: DeliberationTurn,
max_active: int = 3
) -> list[str]:
"""Select jurors for full agent processing (active listeners)."""
active = []
for jid, agent in self.juror_agents.items():
if jid == turn.speaker_id:
continue
if 0.35 < agent.memory.current_conviction < 0.65:
active.append((jid, 3))
elif agent.config.influence > 0.7:
active.append((jid, 2))
elif turn.target_id == jid:
active.append((jid, 3))
elif len(agent.memory.conviction_history) > 1:
recent_change = abs(
agent.memory.conviction_history[-1] -
agent.memory.conviction_history[-2]
) if len(agent.memory.conviction_history) >= 2 else 0
if recent_change > 0.1:
active.append((jid, 2))
else:
active.append((jid, 1))
active.sort(key=lambda x: x[1], reverse=True)
return [jid for jid, _ in active[:max_active]]
def process_player_argument(
self,
content: str,
argument_type: str,
target_id: str | None = None
) -> TurnResult:
"""Process an argument from the human player."""
# Determine direction from player's chosen side
direction = (
ArgumentDirection.PROSECUTION
if self.state.player_side == "prosecute"
else ArgumentDirection.DEFENSE
)
turn = DeliberationTurn(
round_number=self.state.round_number,
speaker_id="juror_7",
speaker_name="You",
argument_type=argument_type,
direction=direction,
content=content,
target_id=target_id
)
conviction_changes = {}
vote_changes = []
for juror_id, agent in self.juror_agents.items():
old_vote = self.state.votes.get(juror_id)
# Calculate base strength (player has moderate influence)
base_strength = 0.10
if target_id == juror_id:
base_strength *= 1.5
delta = calculate_conviction_change(
agent.config,
agent.memory,
turn,
base_strength=base_strength
)
# Store argument in memory (don't apply delta here)
agent.receive_argument(turn, 0.0)
conviction_changes[juror_id] = delta
turn.impact[juror_id] = delta
# Apply conviction update with hysteresis
vote_flipped, new_vote = apply_conviction_update(agent.memory, delta)
if vote_flipped and new_vote:
self.state.votes[juror_id] = new_vote
vote_changes.append((juror_id, old_vote, new_vote))
self.state.conviction_scores[juror_id] = agent.memory.current_conviction
self.state.deliberation_log.append(turn)
return TurnResult(
turn=turn,
conviction_changes=conviction_changes,
vote_changes=vote_changes
)
def process_external_argument(
self,
speaker_id: str,
speaker_name: str,
content: str,
direction: ArgumentDirection, # REQUIRED - no fallback
argument_type: str = "logical",
target_id: str | None = None
) -> TurnResult:
"""Process an argument from an external MCP agent.
Similar to process_player_argument but with configurable speaker identity.
Used when external AI agents participate via MCP.
Args:
speaker_id: Juror seat ID (e.g., "juror_3")
speaker_name: Display name for the speaker
content: Argument text
direction: REQUIRED - "prosecution", "defense", or "neutral"
argument_type: Type of argument (default: "logical")
target_id: Optional juror_id to address directly
Returns:
TurnResult with conviction changes and vote changes
"""
turn = DeliberationTurn(
round_number=self.state.round_number,
speaker_id=speaker_id,
speaker_name=speaker_name,
argument_type=argument_type,
direction=direction,
content=content,
target_id=target_id
)
conviction_changes = {}
vote_changes = []
for juror_id, agent in self.juror_agents.items():
if juror_id == speaker_id:
continue
old_vote = self.state.votes.get(juror_id)
# Calculate base strength (external agents have moderate influence)
base_strength = 0.10
if target_id == juror_id:
base_strength *= 1.5
delta = calculate_conviction_change(
agent.config,
agent.memory,
turn,
base_strength=base_strength
)
# Store argument in memory (don't apply delta here)
agent.receive_argument(turn, 0.0)
conviction_changes[juror_id] = delta
turn.impact[juror_id] = delta
# Apply conviction update with hysteresis
vote_flipped, new_vote = apply_conviction_update(agent.memory, delta)
if vote_flipped and new_vote:
self.state.votes[juror_id] = new_vote
vote_changes.append((juror_id, old_vote, new_vote))
self.state.conviction_scores[juror_id] = agent.memory.current_conviction
self.state.deliberation_log.append(turn)
return TurnResult(
turn=turn,
conviction_changes=conviction_changes,
vote_changes=vote_changes
)
def set_player_side(self, side: str) -> None:
"""Set the player's chosen side."""
self.state.player_side = side
self.state.phase = GamePhase.DELIBERATION
player_vote = "guilty" if side == "prosecute" else "not_guilty"
self.state.votes["juror_7"] = player_vote
self.state.conviction_scores["juror_7"] = 0.8 if side == "prosecute" else 0.2
def check_should_end(self) -> bool:
"""Check if deliberation should end."""
return self.state.should_end_deliberation()
def get_verdict(self) -> dict:
"""Get the final verdict information."""
guilty, not_guilty = self.state.get_vote_tally()
if self.state.is_unanimous():
verdict = "GUILTY" if guilty == 12 else "NOT GUILTY"
unanimous = True
else:
verdict = "HUNG JURY"
unanimous = False
return {
"verdict": verdict,
"unanimous": unanimous,
"guilty_count": guilty,
"not_guilty_count": not_guilty,
"rounds": self.state.round_number,
"ended_by": self._get_end_reason()
}
def _get_end_reason(self) -> str:
"""Get the reason deliberation ended."""
if self.state.is_unanimous():
return "unanimous_verdict"
elif self.state.rounds_without_change >= self.state.stability_threshold:
return "votes_stabilized"
elif self.state.round_number >= self.state.max_rounds:
return "max_rounds_reached"
return "unknown"
def reset(self) -> None:
"""Reset for a new game."""
self.turn_manager.reset()
self.state = GameState(case_id=self.case.case_id if self.case else "")
|