Joar Paganus
commited on
Commit
·
80c0059
1
Parent(s):
60e4df4
add agent and dummy tools
Browse files
agent.py
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import inspect
|
| 3 |
+
import re
|
| 4 |
+
|
| 5 |
+
from llama_cpp import Llama
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# ------------- TOOLS / FUNCTIONS --------------
|
| 9 |
+
# Some of the structure of the agent have been inspired by:
|
| 10 |
+
# https://github.com/Pirner/zettelkasten/blob/main/main_notes/1_0_tool_calling_with_llama.py?source=post_page-----23e3d783a6d8---------------------------------------
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_weather(location: str) -> str:
|
| 14 |
+
"""This tool returns the current weather situation.
|
| 15 |
+
Args:
|
| 16 |
+
location: The city or place to check
|
| 17 |
+
Returns:
|
| 18 |
+
str: Weather situation (e.g. cloudy, rainy, sunny)
|
| 19 |
+
"""
|
| 20 |
+
weather_situations = ["cloudy", "rainy", "sunny", "foobar"]
|
| 21 |
+
return random.choice(weather_situations)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_temperature(location: str) -> str:
|
| 25 |
+
"""This tool returns the current temperature.
|
| 26 |
+
Args:
|
| 27 |
+
location: The city or place to check
|
| 28 |
+
Returns:
|
| 29 |
+
str: Temperature
|
| 30 |
+
"""
|
| 31 |
+
temperature = ["-10", "0", "20", "30"]
|
| 32 |
+
return random.choice(temperature)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
TOOLS = [get_weather, get_temperature]
|
| 36 |
+
TOOL_REGISTRY = {f.__name__: f for f in TOOLS}
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def function_to_json(func) -> dict:
|
| 40 |
+
"""
|
| 41 |
+
Converts a Python function into a JSON-serializable dictionary
|
| 42 |
+
that describes the function's signature, including its name,
|
| 43 |
+
description, and parameters.
|
| 44 |
+
"""
|
| 45 |
+
type_map = {
|
| 46 |
+
str: "string",
|
| 47 |
+
int: "integer",
|
| 48 |
+
float: "number",
|
| 49 |
+
bool: "boolean",
|
| 50 |
+
list: "array",
|
| 51 |
+
dict: "object",
|
| 52 |
+
type(None): "null",
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
signature = inspect.signature(func)
|
| 57 |
+
except ValueError as e:
|
| 58 |
+
raise ValueError(
|
| 59 |
+
f"Failed to get signature for function {func.__name__}: {str(e)}"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
parameters = {}
|
| 63 |
+
for param in signature.parameters.values():
|
| 64 |
+
param_type = type_map.get(param.annotation, "string")
|
| 65 |
+
parameters[param.name] = {"type": param_type}
|
| 66 |
+
|
| 67 |
+
required = [
|
| 68 |
+
param.name
|
| 69 |
+
for param in signature.parameters.values()
|
| 70 |
+
if param.default == inspect._empty
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
return {
|
| 74 |
+
"type": "function",
|
| 75 |
+
"function": {
|
| 76 |
+
"name": func.__name__,
|
| 77 |
+
"description": func.__doc__ or "",
|
| 78 |
+
"parameters": {
|
| 79 |
+
"type": "object",
|
| 80 |
+
"properties": parameters,
|
| 81 |
+
"required": required,
|
| 82 |
+
},
|
| 83 |
+
},
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
TOOLS_SCHEMA = [function_to_json(f) for f in TOOLS]
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def parse_tool_calls(tool_output: str):
|
| 91 |
+
"""
|
| 92 |
+
Very simple parser for outputs like:
|
| 93 |
+
[get_weather(location="Berlin")]
|
| 94 |
+
Returns a list of (func_name, kwargs) tuples.
|
| 95 |
+
"""
|
| 96 |
+
calls = []
|
| 97 |
+
# Find patterns like func_name(...)
|
| 98 |
+
for match in re.finditer(r"(\w+)\((.*?)\)", tool_output, re.DOTALL):
|
| 99 |
+
func_name, arg_str = match.groups()
|
| 100 |
+
func_name = func_name.strip()
|
| 101 |
+
kwargs = {}
|
| 102 |
+
|
| 103 |
+
arg_str = arg_str.strip()
|
| 104 |
+
if arg_str:
|
| 105 |
+
parts = re.split(r",\s*", arg_str)
|
| 106 |
+
for part in parts:
|
| 107 |
+
if "=" not in part:
|
| 108 |
+
continue
|
| 109 |
+
key, val = part.split("=", 1)
|
| 110 |
+
key = key.strip()
|
| 111 |
+
val = val.strip().strip('"').strip("'")
|
| 112 |
+
|
| 113 |
+
# Try to cast numbers, else keep as string
|
| 114 |
+
try:
|
| 115 |
+
if "." in val:
|
| 116 |
+
parsed_val = float(val)
|
| 117 |
+
else:
|
| 118 |
+
parsed_val = int(val)
|
| 119 |
+
except ValueError:
|
| 120 |
+
parsed_val = val
|
| 121 |
+
kwargs[key] = parsed_val
|
| 122 |
+
|
| 123 |
+
calls.append((func_name, kwargs))
|
| 124 |
+
|
| 125 |
+
return calls
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# ------------- HELPER: GENERATION -------------
|
| 129 |
+
|
| 130 |
+
def generate_non_stream(llm, prompt, max_tokens=256, temperature=0.2, top_p=0.95):
|
| 131 |
+
"""One-shot generation for internal agent/tool prompts."""
|
| 132 |
+
out = llm(
|
| 133 |
+
prompt,
|
| 134 |
+
max_tokens=max_tokens,
|
| 135 |
+
temperature=temperature,
|
| 136 |
+
top_p=top_p,
|
| 137 |
+
stop=["User:", "System:"],
|
| 138 |
+
stream=False,
|
| 139 |
+
)
|
| 140 |
+
return out["choices"][0]["text"]
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def build_prompt(system_message, history, user_message):
|
| 144 |
+
prompt = f"System: {system_message}\n"
|
| 145 |
+
for turn in history:
|
| 146 |
+
role = turn["role"]
|
| 147 |
+
content = turn["content"]
|
| 148 |
+
prompt += f"{role.capitalize()}: {content}\n"
|
| 149 |
+
prompt += f"User: {user_message}\nAssistant:"
|
| 150 |
+
return prompt
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def select_tools_with_llm(llm, user_message: str) -> list:
|
| 154 |
+
"""
|
| 155 |
+
Ask the model which tools to call.
|
| 156 |
+
Returns a list of (func_name, kwargs) from parse_tool_calls.
|
| 157 |
+
"""
|
| 158 |
+
tool_selection_system = f"""
|
| 159 |
+
You are an expert in composing functions.
|
| 160 |
+
You are given a user question and a set of possible functions (tools).
|
| 161 |
+
|
| 162 |
+
Your job is to decide which tools to call and with what arguments.
|
| 163 |
+
|
| 164 |
+
Rules:
|
| 165 |
+
- If you decide to invoke any function(s), you MUST put them in the format:
|
| 166 |
+
[func_name1(param1=value1, param2=value2), func_name2(param1=value1)]
|
| 167 |
+
- If none of the functions are suitable, respond with: []
|
| 168 |
+
- Do NOT include any explanation or extra text, only the list.
|
| 169 |
+
- If the question lacks required parameters, respond with [].
|
| 170 |
+
|
| 171 |
+
Here is a list of functions in JSON format that you can invoke:
|
| 172 |
+
{TOOLS_SCHEMA}
|
| 173 |
+
"""
|
| 174 |
+
|
| 175 |
+
prompt = (
|
| 176 |
+
f"System: {tool_selection_system}\n"
|
| 177 |
+
f"User: {user_message}\n"
|
| 178 |
+
f"Assistant:"
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
raw = generate_non_stream(
|
| 182 |
+
llm,
|
| 183 |
+
prompt,
|
| 184 |
+
max_tokens=256,
|
| 185 |
+
temperature=0.2,
|
| 186 |
+
top_p=0.95,
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
return parse_tool_calls(raw)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def call_tools(tool_calls):
|
| 193 |
+
"""
|
| 194 |
+
Execute the tools chosen by the model.
|
| 195 |
+
Returns a list of dicts: {name, args, result}.
|
| 196 |
+
"""
|
| 197 |
+
results = []
|
| 198 |
+
for func_name, kwargs in tool_calls:
|
| 199 |
+
func = TOOL_REGISTRY.get(func_name)
|
| 200 |
+
if func is None:
|
| 201 |
+
results.append(
|
| 202 |
+
{
|
| 203 |
+
"name": func_name,
|
| 204 |
+
"args": kwargs,
|
| 205 |
+
"result": f"Unknown tool '{func_name}'.",
|
| 206 |
+
}
|
| 207 |
+
)
|
| 208 |
+
continue
|
| 209 |
+
|
| 210 |
+
try:
|
| 211 |
+
res = func(**kwargs)
|
| 212 |
+
except Exception as e:
|
| 213 |
+
res = f"Error while calling {func_name}: {e}"
|
| 214 |
+
|
| 215 |
+
results.append({"name": func_name, "args": kwargs, "result": res})
|
| 216 |
+
return results
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
# ------------- CHAT + AGENT LOGIC -------------
|
| 220 |
+
|
| 221 |
+
def respond(message, history, system_message, llm):
|
| 222 |
+
# ---- 1) Let the model decide if any tools should be used ----
|
| 223 |
+
tool_calls = select_tools_with_llm(llm, message)
|
| 224 |
+
tool_results = call_tools(tool_calls) if tool_calls else []
|
| 225 |
+
|
| 226 |
+
# ---- 2) Build final system message including tool results ----
|
| 227 |
+
if tool_results:
|
| 228 |
+
tool_info_str = "\nYou have executed the following tools (name, args, result):\n"
|
| 229 |
+
for tr in tool_results:
|
| 230 |
+
tool_info_str += f"- {tr['name']}({tr['args']}) -> {tr['result']}\n"
|
| 231 |
+
final_system_message = system_message + tool_info_str
|
| 232 |
+
else:
|
| 233 |
+
final_system_message = system_message
|
| 234 |
+
|
| 235 |
+
# ---- 3) Use normal chat-style prompt to answer the user ----
|
| 236 |
+
prompt = build_prompt(final_system_message, history, message)
|
| 237 |
+
|
| 238 |
+
stream = llm(
|
| 239 |
+
prompt,
|
| 240 |
+
max_tokens=256,
|
| 241 |
+
temperature=0.7,
|
| 242 |
+
top_p=0.9,
|
| 243 |
+
stop=["User:", "System:"],
|
| 244 |
+
stream=True,
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
partial = ""
|
| 248 |
+
for out in stream:
|
| 249 |
+
token = out["choices"][0]["text"]
|
| 250 |
+
partial += token
|
| 251 |
+
yield partial
|
app.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import subprocess
|
| 2 |
import sys
|
| 3 |
|
|
@@ -7,20 +9,6 @@ subprocess.run(
|
|
| 7 |
check=True,
|
| 8 |
)
|
| 9 |
|
| 10 |
-
import gradio as gr
|
| 11 |
-
import llama_cpp
|
| 12 |
-
from llama_cpp import Llama
|
| 13 |
-
|
| 14 |
-
# --- Workaround for llama-cpp-python shutdown bug on HF Spaces ---
|
| 15 |
-
# Avoid calling C-level free_model after the module is partially torn down.
|
| 16 |
-
def _llama_noop_del(self):
|
| 17 |
-
# Intentionally do nothing on interpreter shutdown to avoid:
|
| 18 |
-
# TypeError: 'NoneType' object is not callable in free_model
|
| 19 |
-
pass
|
| 20 |
-
|
| 21 |
-
Llama.__del__ = _llama_noop_del
|
| 22 |
-
# -----------------------------------------------------------------
|
| 23 |
-
|
| 24 |
# ---------------- CONFIG ----------------
|
| 25 |
|
| 26 |
BASE_REPO_ID = "unsloth/Llama-3.2-3B-Instruct-GGUF"
|
|
@@ -32,103 +20,98 @@ FT_FILENAME = "v1"
|
|
| 32 |
N_CTX = 2048
|
| 33 |
N_THREADS = None
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
You are a helpful, knowledgeable assistant fine-tuned on the FineTome dataset.
|
| 39 |
-
|
| 40 |
-
When answering:
|
| 41 |
-
- Use the user's selected latitude and longitude to provide location-aware insights.
|
| 42 |
-
- Be concise, factual, and structured.
|
| 43 |
-
- If the user asks a geography-, travel-, or environment-related question, incorporate the location.
|
| 44 |
-
- If the location is missing, answer normally.
|
| 45 |
-
|
| 46 |
-
### Example interaction:
|
| 47 |
-
User selected location: latitude 46.02000, longitude 7.74900
|
| 48 |
-
User: "What can I do here?"
|
| 49 |
-
Assistant: "This location is in the Alps near Zermatt, Switzerland. Popular activities include skiing, mountaineering, and high-alpine hiking."
|
| 50 |
-
|
| 51 |
-
### Example interaction:
|
| 52 |
-
User selected location: latitude 59.32930, longitude 18.06860
|
| 53 |
-
User: "Tell me something about this place."
|
| 54 |
-
Assistant: "This point is in central Stockholm, Sweden. Attractions include Gamla Stan, the Royal Palace, and the surrounding archipelago."
|
| 55 |
-
""".strip()
|
| 56 |
-
|
| 57 |
|
| 58 |
# ------------- LOAD MODELS ON CPU --------------
|
| 59 |
|
| 60 |
-
print("Loading
|
| 61 |
-
|
| 62 |
-
repo_id=BASE_REPO_ID,
|
| 63 |
-
filename=BASE_FILENAME,
|
| 64 |
-
n_ctx=N_CTX,
|
| 65 |
-
n_threads=N_THREADS,
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
AVAILABLE_MODELS = {
|
| 69 |
-
"Base: Llama 3.2 3B Instruct (q4_k_m)": llm_base,
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
try:
|
| 73 |
-
print("Attempting to load fine-tuned model...")
|
| 74 |
-
llm_ft = Llama.from_pretrained(
|
| 75 |
repo_id=FT_REPO_ID,
|
| 76 |
filename=FT_FILENAME,
|
| 77 |
n_ctx=N_CTX,
|
| 78 |
n_threads=N_THREADS,
|
| 79 |
)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
llm_ft = None
|
| 84 |
-
FT_LOAD_ERROR = str(e)
|
| 85 |
-
print(f"Could not load fine-tuned model yet: {e}")
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
# ------------- PROMPT + CHAT LOGIC -------------
|
| 89 |
-
|
| 90 |
-
def build_prompt(system_message, history, user_message):
|
| 91 |
-
prompt = f"System: {system_message}\n"
|
| 92 |
-
for turn in history:
|
| 93 |
-
role = turn["role"]
|
| 94 |
-
content = turn["content"]
|
| 95 |
-
prompt += f"{role.capitalize()}: {content}\n"
|
| 96 |
-
prompt += f"User: {user_message}\nAssistant:"
|
| 97 |
-
return prompt
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
def respond(message, history, model_choice, coords):
|
| 101 |
-
# Start with the fixed system message
|
| 102 |
-
system_message = SYSTEM_MESSAGE
|
| 103 |
-
|
| 104 |
-
# Inject coordinates if user clicked on the map
|
| 105 |
-
if coords is not None and len(coords) == 2:
|
| 106 |
-
lat, lon = coords
|
| 107 |
-
system_message += (
|
| 108 |
-
f"\n\nUser selected the location with latitude {lat:.5f} "
|
| 109 |
-
f"and longitude {lon:.5f}."
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
# Pick the model
|
| 113 |
-
llm = AVAILABLE_MODELS.get(model_choice, llm_base)
|
| 114 |
-
|
| 115 |
-
prompt = build_prompt(system_message, history, message)
|
| 116 |
-
|
| 117 |
-
stream = llm(
|
| 118 |
-
prompt,
|
| 119 |
-
max_tokens=256,
|
| 120 |
-
temperature=0.7,
|
| 121 |
-
top_p=0.9,
|
| 122 |
-
stop=["User:", "System:"],
|
| 123 |
-
stream=True,
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
partial = ""
|
| 127 |
-
for out in stream:
|
| 128 |
-
token = out["choices"][0]["text"]
|
| 129 |
-
partial += token
|
| 130 |
-
yield partial
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
# ------------- GRADIO UI ----------------
|
| 134 |
|
|
@@ -139,36 +122,30 @@ model_dropdown = gr.Dropdown(
|
|
| 139 |
interactive=True,
|
| 140 |
)
|
| 141 |
|
| 142 |
-
location_map = gr.Map(
|
| 143 |
-
label="Click on the map to choose a location",
|
| 144 |
-
interactive=True,
|
| 145 |
-
)
|
| 146 |
-
|
| 147 |
chatbot = gr.ChatInterface(
|
| 148 |
-
fn=
|
| 149 |
type="messages",
|
| 150 |
additional_inputs=[
|
|
|
|
| 151 |
model_dropdown,
|
| 152 |
-
location_map,
|
| 153 |
],
|
| 154 |
)
|
| 155 |
|
| 156 |
with gr.Blocks() as demo:
|
| 157 |
-
gr.Markdown("# Llama 3.2 3B (CPU, GGUF)
|
| 158 |
intro_text = (
|
| 159 |
-
"This Space runs GGUF-quantized Llama 3.2 3B models **on CPU** using `llama-cpp-python
|
|
|
|
| 160 |
"- **Base model**: Unsloth Llama-3.2-3B-Instruct (q4_k_m GGUF)\n"
|
| 161 |
-
"- **Fine-tuned model**: Llama-3.2-3B-Instruct fine tuned on FineTome (q4_k_m GGUF)
|
| 162 |
-
"
|
|
|
|
|
|
|
| 163 |
)
|
| 164 |
-
|
| 165 |
-
intro_text += (
|
| 166 |
-
f"\n\n⚠️ Fine-tuned model is not loaded:\n`{FT_LOAD_ERROR}`\n"
|
| 167 |
-
"Only the base model is available."
|
| 168 |
-
)
|
| 169 |
gr.Markdown(intro_text)
|
| 170 |
chatbot.render()
|
| 171 |
|
| 172 |
|
| 173 |
if __name__ == "__main__":
|
| 174 |
-
demo.launch()
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
|
| 3 |
import subprocess
|
| 4 |
import sys
|
| 5 |
|
|
|
|
| 9 |
check=True,
|
| 10 |
)
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# ---------------- CONFIG ----------------
|
| 13 |
|
| 14 |
BASE_REPO_ID = "unsloth/Llama-3.2-3B-Instruct-GGUF"
|
|
|
|
| 20 |
N_CTX = 2048
|
| 21 |
N_THREADS = None
|
| 22 |
|
| 23 |
+
import gradio as gr
|
| 24 |
+
from agent import respond
|
| 25 |
+
from llama_cpp import Llama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# ------------- LOAD MODELS ON CPU --------------
|
| 28 |
|
| 29 |
+
print("Loading finetuned model")
|
| 30 |
+
llm_ft = Llama.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
repo_id=FT_REPO_ID,
|
| 32 |
filename=FT_FILENAME,
|
| 33 |
n_ctx=N_CTX,
|
| 34 |
n_threads=N_THREADS,
|
| 35 |
)
|
| 36 |
+
AVAILABLE_MODELS = {
|
| 37 |
+
"Fine-tuned: Llama 3.2 3B FineTome (q4_k_m)": llm_ft,
|
| 38 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# print("Loading base model...")
|
| 41 |
+
# llm_base = Llama.from_pretrained(
|
| 42 |
+
# repo_id=BASE_REPO_ID,
|
| 43 |
+
# filename=BASE_FILENAME,
|
| 44 |
+
# n_ctx=N_CTX,
|
| 45 |
+
# n_threads=N_THREADS,
|
| 46 |
+
# )
|
| 47 |
+
|
| 48 |
+
# AVAILABLE_MODELS = {
|
| 49 |
+
# "Base: Llama 3.2 3B Instruct (q4_k_m)": llm_base,
|
| 50 |
+
# }
|
| 51 |
+
|
| 52 |
+
# try:
|
| 53 |
+
# print("Attempting to load fine-tuned model...")
|
| 54 |
+
# llm_ft = Llama.from_pretrained(
|
| 55 |
+
# repo_id=FT_REPO_ID,
|
| 56 |
+
# filename=FT_FILENAME,
|
| 57 |
+
# n_ctx=N_CTX,
|
| 58 |
+
# n_threads=N_THREADS,
|
| 59 |
+
# )
|
| 60 |
+
# AVAILABLE_MODELS["Fine-tuned: Llama 3.2 3B FineTome (q4_k_m)"] = llm_ft
|
| 61 |
+
# FT_LOAD_ERROR = None
|
| 62 |
+
# except Exception as e:
|
| 63 |
+
# llm_ft = None
|
| 64 |
+
# FT_LOAD_ERROR = str(e)
|
| 65 |
+
# print(f"Could not load fine-tuned model yet: {e}")
|
| 66 |
+
|
| 67 |
+
# System message:
|
| 68 |
+
SYSTEM_MESSAGE = """
|
| 69 |
+
You are a helpful assistant that answers user questions using any external information provided in the system message.
|
| 70 |
+
|
| 71 |
+
The system message may include a section like:
|
| 72 |
+
"You have executed the following tools (name, args, result):"
|
| 73 |
+
followed by one or more lines of the form:
|
| 74 |
+
- tool_name(args_dict) -> result_value
|
| 75 |
+
|
| 76 |
+
Instructions:
|
| 77 |
+
- Treat these tool results as ground truth for the current reply.
|
| 78 |
+
- Use them to give a clear, concise, and friendly answer to the user’s latest question.
|
| 79 |
+
- Do not repeat the raw tool logs verbatim unless it is natural to do so.
|
| 80 |
+
- You may summarize or rephrase the results in natural language.
|
| 81 |
+
- If multiple results are present, combine them into a single coherent answer.
|
| 82 |
+
- If no tool results are present, answer the question based on your own knowledge and the conversation history.
|
| 83 |
+
- Do not mention that you are using “tools” or “tool calls”; just speak as a normal assistant.
|
| 84 |
+
|
| 85 |
+
=== EXAMPLE ===
|
| 86 |
+
|
| 87 |
+
System (excerpt):
|
| 88 |
+
You have executed the following tools (name, args, result):
|
| 89 |
+
- get_temperature({'location': 'Berlin'}) -> 20
|
| 90 |
+
- get_weather({'location': 'Berlin'}) -> sunny
|
| 91 |
+
|
| 92 |
+
User:
|
| 93 |
+
What is it like in Berlin right now?
|
| 94 |
+
|
| 95 |
+
Assistant:
|
| 96 |
+
It's sunny in Berlin right now, with a temperature of about 20 degrees.
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
# ------------- WRAPPER FUNCTION ----------------
|
| 100 |
+
# Needed to be able to pass the llm to respond() inside agent.py
|
| 101 |
+
|
| 102 |
+
def app_respond(message, history, system_message, model_choice):
|
| 103 |
+
"""
|
| 104 |
+
Wrapper used by Gradio.
|
| 105 |
+
- model_choice: string from the dropdown (key in AVAILABLE_MODELS)
|
| 106 |
+
"""
|
| 107 |
+
llm = AVAILABLE_MODELS.get(model_choice)
|
| 108 |
+
if llm is None:
|
| 109 |
+
# Fallback: first model in dict
|
| 110 |
+
llm = next(iter(AVAILABLE_MODELS.values()))
|
| 111 |
+
|
| 112 |
+
# Delegate to the core agent logic (which expects an llm object)
|
| 113 |
+
for chunk in respond(message, history, system_message, llm):
|
| 114 |
+
yield chunk
|
| 115 |
|
| 116 |
# ------------- GRADIO UI ----------------
|
| 117 |
|
|
|
|
| 122 |
interactive=True,
|
| 123 |
)
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
chatbot = gr.ChatInterface(
|
| 126 |
+
fn=app_respond,
|
| 127 |
type="messages",
|
| 128 |
additional_inputs=[
|
| 129 |
+
gr.State(SYSTEM_MESSAGE),
|
| 130 |
model_dropdown,
|
|
|
|
| 131 |
],
|
| 132 |
)
|
| 133 |
|
| 134 |
with gr.Blocks() as demo:
|
| 135 |
+
gr.Markdown("# Llama 3.2 3B (CPU, GGUF) Base vs FineTome — Tool-Using Agent")
|
| 136 |
intro_text = (
|
| 137 |
+
"This Space runs GGUF-quantized Llama 3.2 3B models **on CPU** using `llama-cpp-python`,\n"
|
| 138 |
+
"and demonstrates a simple agent that can call Python tools like `get_weather` and `get_temperature`.\n\n"
|
| 139 |
"- **Base model**: Unsloth Llama-3.2-3B-Instruct (q4_k_m GGUF)\n"
|
| 140 |
+
"- **Fine-tuned model**: Llama-3.2-3B-Instruct fine tuned on FineTome (q4_k_m GGUF).\n\n"
|
| 141 |
+
"Ask things like:\n"
|
| 142 |
+
"- `What is the weather like in Berlin?`\n"
|
| 143 |
+
"- `What's the temperature in Stockholm?`\n"
|
| 144 |
)
|
| 145 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
gr.Markdown(intro_text)
|
| 147 |
chatbot.render()
|
| 148 |
|
| 149 |
|
| 150 |
if __name__ == "__main__":
|
| 151 |
+
demo.launch()
|