Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,38 +1,33 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
-
import
|
| 4 |
-
from diffusers import
|
| 5 |
-
import torch
|
| 6 |
|
| 7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
| 12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 13 |
-
pipe = pipe.to(device)
|
| 14 |
-
else:
|
| 15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
| 16 |
-
pipe = pipe.to(device)
|
| 17 |
|
| 18 |
-
|
| 19 |
-
MAX_IMAGE_SIZE = 1024
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
prompt = prompt,
|
| 30 |
negative_prompt = negative_prompt,
|
| 31 |
-
guidance_scale = guidance_scale,
|
| 32 |
num_inference_steps = num_inference_steps,
|
| 33 |
-
width = width,
|
| 34 |
height = height,
|
| 35 |
-
|
| 36 |
).images[0]
|
| 37 |
|
| 38 |
return image
|
|
@@ -50,19 +45,14 @@ css="""
|
|
| 50 |
}
|
| 51 |
"""
|
| 52 |
|
| 53 |
-
if torch.cuda.is_available():
|
| 54 |
-
power_device = "GPU"
|
| 55 |
-
else:
|
| 56 |
-
power_device = "CPU"
|
| 57 |
|
| 58 |
with gr.Blocks(css=css) as demo:
|
| 59 |
|
| 60 |
with gr.Column(elem_id="col-container"):
|
| 61 |
gr.Markdown(f"""
|
| 62 |
-
#
|
| 63 |
-
Currently running on {power_device}.
|
| 64 |
""")
|
| 65 |
-
|
| 66 |
with gr.Row():
|
| 67 |
|
| 68 |
prompt = gr.Text(
|
|
@@ -79,57 +69,21 @@ with gr.Blocks(css=css) as demo:
|
|
| 79 |
|
| 80 |
with gr.Accordion("Advanced Settings", open=False):
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
seed = gr.Slider(
|
| 90 |
-
label="Seed",
|
| 91 |
-
minimum=0,
|
| 92 |
-
maximum=MAX_SEED,
|
| 93 |
-
step=1,
|
| 94 |
-
value=0,
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 98 |
-
|
| 99 |
-
with gr.Row():
|
| 100 |
-
|
| 101 |
-
width = gr.Slider(
|
| 102 |
-
label="Width",
|
| 103 |
-
minimum=256,
|
| 104 |
-
maximum=MAX_IMAGE_SIZE,
|
| 105 |
-
step=32,
|
| 106 |
-
value=512,
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
height = gr.Slider(
|
| 110 |
-
label="Height",
|
| 111 |
-
minimum=256,
|
| 112 |
-
maximum=MAX_IMAGE_SIZE,
|
| 113 |
-
step=32,
|
| 114 |
-
value=512,
|
| 115 |
-
)
|
| 116 |
|
| 117 |
with gr.Row():
|
| 118 |
|
| 119 |
-
guidance_scale = gr.Slider(
|
| 120 |
-
label="Guidance scale",
|
| 121 |
-
minimum=0.0,
|
| 122 |
-
maximum=10.0,
|
| 123 |
-
step=0.1,
|
| 124 |
-
value=0.0,
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
num_inference_steps = gr.Slider(
|
| 128 |
label="Number of inference steps",
|
| 129 |
minimum=1,
|
| 130 |
-
maximum=
|
| 131 |
step=1,
|
| 132 |
-
value=
|
| 133 |
)
|
| 134 |
|
| 135 |
gr.Examples(
|
|
@@ -139,7 +93,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 139 |
|
| 140 |
run_button.click(
|
| 141 |
fn = infer,
|
| 142 |
-
inputs = [prompt,
|
| 143 |
outputs = [result]
|
| 144 |
)
|
| 145 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
+
from optimum.intel import OVStableDiffusionPipeline, OVStableDiffusionXLPipeline, OVLatentConsistencyModelPipeline
|
| 4 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
|
|
|
| 5 |
|
|
|
|
| 6 |
|
| 7 |
+
# model_id = "echarlaix/sdxl-turbo-openvino-int8"
|
| 8 |
+
# model_id = "echarlaix/LCM_Dreamshaper_v7-openvino"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
#safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
|
|
|
| 11 |
|
| 12 |
+
model_id = "OpenVINO/LCM_Dreamshaper_v7-int8-ov"
|
| 13 |
+
#pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False, safety_checker=safety_checker)
|
| 14 |
+
pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False)
|
| 15 |
|
| 16 |
+
|
| 17 |
+
batch_size, num_images, height, width = 1, 1, 512, 512
|
| 18 |
+
pipeline.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images)
|
| 19 |
+
pipeline.compile()
|
| 20 |
+
|
| 21 |
+
def infer(prompt, num_inference_steps):
|
| 22 |
+
|
| 23 |
+
image = pipeline(
|
| 24 |
prompt = prompt,
|
| 25 |
negative_prompt = negative_prompt,
|
| 26 |
+
# guidance_scale = guidance_scale,
|
| 27 |
num_inference_steps = num_inference_steps,
|
| 28 |
+
width = width,
|
| 29 |
height = height,
|
| 30 |
+
num_images_per_prompt=num_images,
|
| 31 |
).images[0]
|
| 32 |
|
| 33 |
return image
|
|
|
|
| 45 |
}
|
| 46 |
"""
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
with gr.Blocks(css=css) as demo:
|
| 50 |
|
| 51 |
with gr.Column(elem_id="col-container"):
|
| 52 |
gr.Markdown(f"""
|
| 53 |
+
# Demo : [Fast LCM](https://huggingface.co/OpenVINO/LCM_Dreamshaper_v7-int8-ov) quantized with NNCF ⚡
|
|
|
|
| 54 |
""")
|
| 55 |
+
|
| 56 |
with gr.Row():
|
| 57 |
|
| 58 |
prompt = gr.Text(
|
|
|
|
| 69 |
|
| 70 |
with gr.Accordion("Advanced Settings", open=False):
|
| 71 |
|
| 72 |
+
negative_prompt = gr.Text(
|
| 73 |
+
label="Negative prompt",
|
| 74 |
+
max_lines=1,
|
| 75 |
+
placeholder="Enter a negative prompt",
|
| 76 |
+
visible=True,
|
| 77 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
with gr.Row():
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
num_inference_steps = gr.Slider(
|
| 82 |
label="Number of inference steps",
|
| 83 |
minimum=1,
|
| 84 |
+
maximum=10,
|
| 85 |
step=1,
|
| 86 |
+
value=5,
|
| 87 |
)
|
| 88 |
|
| 89 |
gr.Examples(
|
|
|
|
| 93 |
|
| 94 |
run_button.click(
|
| 95 |
fn = infer,
|
| 96 |
+
inputs = [prompt, num_inference_steps],
|
| 97 |
outputs = [result]
|
| 98 |
)
|
| 99 |
|