Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,7 @@
|
|
| 1 |
# app.py
|
| 2 |
"""
|
| 3 |
Gemma3 (GGUF) - Gradio Space app (fallback-ready)
|
| 4 |
-
|
| 5 |
-
Behavior:
|
| 6 |
-
- If llama-cpp-python is available and a local .gguf model_path is provided, it will use local inference.
|
| 7 |
-
- Otherwise, it will fallback to Hugging Face Inference API (requires HUGGINGFACE_HUB_TOKEN for private models).
|
| 8 |
-
- Designed to run on Hugging Face Spaces (CPU) as a frontend-only if llama-cpp-python cannot be built.
|
| 9 |
-
|
| 10 |
-
Environment variables (optional):
|
| 11 |
-
- MODEL_REPO: HF repo id that contains the .gguf or hosted model (e.g. "your-user/gemma-3-4b-gguf")
|
| 12 |
-
- GGUF_PATH: local path to a .gguf file inside the Space (if you uploaded it)
|
| 13 |
-
- HUGGINGFACE_HUB_TOKEN: needed for private HF model access via InferenceClient
|
| 14 |
-
- HF_INFERENCE_MODEL: model id used by Inference API (if different from MODEL_REPO)
|
| 15 |
"""
|
| 16 |
|
| 17 |
import os
|
|
@@ -24,12 +14,11 @@ import gradio as gr
|
|
| 24 |
# Try to import llama-cpp-python (native) — may fail in Spaces build
|
| 25 |
# -------------------------------------------------------------------------
|
| 26 |
LLAMA_AVAILABLE = False
|
| 27 |
-
|
| 28 |
try:
|
| 29 |
from llama_cpp import Llama
|
| 30 |
LLAMA_AVAILABLE = True
|
| 31 |
except Exception as e:
|
| 32 |
-
# Import failed (likely build/compile issue). We'll fallback.
|
| 33 |
print("llama-cpp-python not available:", e)
|
| 34 |
LLAMA_AVAILABLE = False
|
| 35 |
|
|
@@ -40,7 +29,7 @@ HF_AVAILABLE = False
|
|
| 40 |
hf_client = None
|
| 41 |
try:
|
| 42 |
from huggingface_hub import InferenceClient
|
| 43 |
-
#
|
| 44 |
hf_client = InferenceClient()
|
| 45 |
HF_AVAILABLE = True
|
| 46 |
except Exception as e:
|
|
@@ -52,32 +41,24 @@ except Exception as e:
|
|
| 52 |
# -------------------------------------------------------------------------
|
| 53 |
MODEL_REPO = os.environ.get("MODEL_REPO", "google/gemma-3-4b-it-qat-q4_0-gguf")
|
| 54 |
GGUF_PATH = os.environ.get("GGUF_PATH", None) # if the gguf is uploaded to the Space
|
| 55 |
-
HF_INFERENCE_MODEL = os.environ.get("HF_INFERENCE_MODEL",
|
| 56 |
-
# Tune these defaults if needed
|
| 57 |
DEFAULT_MAX_TOKENS = int(os.environ.get("DEFAULT_MAX_TOKENS", 256))
|
| 58 |
DEFAULT_TEMPERATURE = float(os.environ.get("DEFAULT_TEMPERATURE", 0.8))
|
| 59 |
|
| 60 |
# -------------------------------------------------------------------------
|
| 61 |
# If llama-cpp available and a GGUF path is provided (or MODEL_REPO downloaded), load model
|
| 62 |
# -------------------------------------------------------------------------
|
| 63 |
-
llm = None
|
| 64 |
if LLAMA_AVAILABLE:
|
| 65 |
try:
|
| 66 |
-
|
| 67 |
-
model_path_to_try = GGUF_PATH or os.path.join("/workspace", "model.gguf") # common upload path in Spaces
|
| 68 |
-
# If GGUF_PATH not set and model repo id provided, snapshot_download could be used,
|
| 69 |
-
# but many Spaces avoid heavy downloads at runtime; keep simple for now.
|
| 70 |
if GGUF_PATH and os.path.exists(GGUF_PATH):
|
| 71 |
model_path_to_try = GGUF_PATH
|
| 72 |
elif os.path.exists(model_path_to_try):
|
| 73 |
-
# ok
|
| 74 |
pass
|
| 75 |
else:
|
| 76 |
-
# No local gguf found; do not attempt to load a non-existent file
|
| 77 |
raise FileNotFoundError(f"No local .gguf found at GGUF_PATH or default ({model_path_to_try}). Set GGUF_PATH or upload the .gguf file into the Space.")
|
| 78 |
|
| 79 |
print("Loading local model via llama-cpp-python from:", model_path_to_try)
|
| 80 |
-
# tune n_ctx and n_threads to Space limits (reduce if OOM)
|
| 81 |
llm = Llama(model_path=model_path_to_try, n_ctx=2048, n_threads=2)
|
| 82 |
print("Loaded local model successfully.")
|
| 83 |
except Exception as e:
|
|
@@ -90,49 +71,76 @@ if LLAMA_AVAILABLE:
|
|
| 90 |
# Helper functions for inference
|
| 91 |
# -------------------------------------------------------------------------
|
| 92 |
def local_generate(prompt: str, max_tokens: int = DEFAULT_MAX_TOKENS, temperature: float = DEFAULT_TEMPERATURE):
|
| 93 |
-
"""Generate text using llama-cpp-python Llama instance (local GGUF)."""
|
| 94 |
if not llm:
|
| 95 |
return "Local model not loaded."
|
| 96 |
try:
|
| 97 |
resp = llm.create_completion(prompt=prompt, max_tokens=max_tokens, temperature=temperature)
|
| 98 |
-
# llama-cpp-python returns a dict with choices list
|
| 99 |
return resp["choices"][0]["text"]
|
| 100 |
except Exception as e:
|
| 101 |
print("Error in local_generate:", e)
|
| 102 |
return f"Local generation error: {e}"
|
| 103 |
|
| 104 |
def hf_generate(prompt: str, max_tokens: int = DEFAULT_MAX_TOKENS, temperature: float = DEFAULT_TEMPERATURE):
|
| 105 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
if not HF_AVAILABLE or hf_client is None:
|
| 107 |
return "Hugging Face Inference client not available. Set HUGGINGFACE_HUB_TOKEN or enable HF SDK."
|
|
|
|
| 108 |
try:
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
if isinstance(raw, list) and len(raw) > 0:
|
| 120 |
-
# prefer "generated_text" key
|
| 121 |
first = raw[0]
|
| 122 |
if isinstance(first, dict):
|
| 123 |
-
|
|
|
|
| 124 |
return str(first)
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
except Exception as e:
|
| 130 |
print("HF generation error:", e)
|
| 131 |
print(traceback.format_exc())
|
| 132 |
return f"Hugging Face generation error: {e}"
|
| 133 |
|
| 134 |
def generate(prompt: str, max_tokens: int = DEFAULT_MAX_TOKENS, temperature: float = DEFAULT_TEMPERATURE):
|
| 135 |
-
"""Unified generate entry-point used by the UI."""
|
| 136 |
prompt = (prompt or "").strip()
|
| 137 |
if not prompt:
|
| 138 |
return "કૃપયા પ્રશ્ન લખો (Please provide a prompt)."
|
|
@@ -142,25 +150,19 @@ def generate(prompt: str, max_tokens: int = DEFAULT_MAX_TOKENS, temperature: flo
|
|
| 142 |
elif HF_AVAILABLE and hf_client:
|
| 143 |
return hf_generate(prompt, max_tokens=max_tokens, temperature=temperature)
|
| 144 |
else:
|
| 145 |
-
# Neither local nor HF available
|
| 146 |
return (
|
| 147 |
"No model runtime is available.\n\n"
|
| 148 |
"Options:\n"
|
| 149 |
"1) Upload a .gguf file into the Space and set GGUF_PATH environment variable to its path,\n"
|
| 150 |
-
" OR ensure a local gguf file exists at the default upload path.\n"
|
| 151 |
"2) Set HUGGINGFACE_HUB_TOKEN (secret) and HF_INFERENCE_MODEL to a hosted model id to use HF Inference API.\n"
|
| 152 |
-
"3) Remove llama-cpp-python from requirements if its build is failing and rely solely on HF Inference.\n\n"
|
| 153 |
-
"Check Space logs for more details."
|
| 154 |
)
|
| 155 |
|
| 156 |
# -------------------------------------------------------------------------
|
| 157 |
-
# Gradio UI
|
| 158 |
# -------------------------------------------------------------------------
|
| 159 |
title_text = "💎 Gemma3 — Desi Chatbot (GGUF / HF fallback)"
|
| 160 |
description_text = """
|
| 161 |
**Gemma3 (quantized GGUF)** — Local inference if available, otherwise fallback to Hugging Face Inference API.
|
| 162 |
-
- If you want purely local inference in the Space, upload the `.gguf` file and set `GGUF_PATH` to that path.
|
| 163 |
-
- If using HF Inference, set `HUGGINGFACE_HUB_TOKEN` (secret) and `HF_INFERENCE_MODEL` as needed.
|
| 164 |
"""
|
| 165 |
|
| 166 |
with gr.Blocks(title=title_text) as demo:
|
|
@@ -178,18 +180,14 @@ with gr.Blocks(title=title_text) as demo:
|
|
| 178 |
status_md = gr.Markdown(
|
| 179 |
f"**Runtime:** {'local llama-cpp' if (LLAMA_AVAILABLE and llm) else ('HuggingFace Inference' if HF_AVAILABLE else 'No runtime available')}\n\n"
|
| 180 |
f"- MODEL_REPO: `{MODEL_REPO}`\n"
|
| 181 |
-
f"- HF model (inference): `{HF_INFERENCE_MODEL}`\n"
|
| 182 |
)
|
| 183 |
tips = gr.Markdown("**Tips:** Reduce max tokens if you see OOM. Upload a smaller Q4 quantized GGUF for Spaces.")
|
| 184 |
|
| 185 |
output_box = gr.Textbox(lines=10, label="જવાબ (Response)")
|
| 186 |
-
|
| 187 |
-
# Hook up
|
| 188 |
submit_btn.click(fn=generate, inputs=[prompt_input, max_tokens, temperature], outputs=[output_box])
|
| 189 |
|
| 190 |
-
# If run as main (local dev)
|
| 191 |
if __name__ == "__main__":
|
| 192 |
-
# Useful debug info:
|
| 193 |
print("LLAMA_AVAILABLE:", LLAMA_AVAILABLE)
|
| 194 |
print("HF_AVAILABLE:", HF_AVAILABLE)
|
| 195 |
print("MODEL_REPO:", MODEL_REPO)
|
|
|
|
| 1 |
# app.py
|
| 2 |
"""
|
| 3 |
Gemma3 (GGUF) - Gradio Space app (fallback-ready)
|
| 4 |
+
Updated: fix for Hugging Face InferenceClient.text_generation() signature
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
import os
|
|
|
|
| 14 |
# Try to import llama-cpp-python (native) — may fail in Spaces build
|
| 15 |
# -------------------------------------------------------------------------
|
| 16 |
LLAMA_AVAILABLE = False
|
| 17 |
+
llm = None
|
| 18 |
try:
|
| 19 |
from llama_cpp import Llama
|
| 20 |
LLAMA_AVAILABLE = True
|
| 21 |
except Exception as e:
|
|
|
|
| 22 |
print("llama-cpp-python not available:", e)
|
| 23 |
LLAMA_AVAILABLE = False
|
| 24 |
|
|
|
|
| 29 |
hf_client = None
|
| 30 |
try:
|
| 31 |
from huggingface_hub import InferenceClient
|
| 32 |
+
# InferenceClient will pick HUGGINGFACE_HUB_TOKEN from env if set
|
| 33 |
hf_client = InferenceClient()
|
| 34 |
HF_AVAILABLE = True
|
| 35 |
except Exception as e:
|
|
|
|
| 41 |
# -------------------------------------------------------------------------
|
| 42 |
MODEL_REPO = os.environ.get("MODEL_REPO", "google/gemma-3-4b-it-qat-q4_0-gguf")
|
| 43 |
GGUF_PATH = os.environ.get("GGUF_PATH", None) # if the gguf is uploaded to the Space
|
| 44 |
+
HF_INFERENCE_MODEL = os.environ.get("HF_INFERENCE_MODEL", "") # optional override for HF inference model id
|
|
|
|
| 45 |
DEFAULT_MAX_TOKENS = int(os.environ.get("DEFAULT_MAX_TOKENS", 256))
|
| 46 |
DEFAULT_TEMPERATURE = float(os.environ.get("DEFAULT_TEMPERATURE", 0.8))
|
| 47 |
|
| 48 |
# -------------------------------------------------------------------------
|
| 49 |
# If llama-cpp available and a GGUF path is provided (or MODEL_REPO downloaded), load model
|
| 50 |
# -------------------------------------------------------------------------
|
|
|
|
| 51 |
if LLAMA_AVAILABLE:
|
| 52 |
try:
|
| 53 |
+
model_path_to_try = GGUF_PATH or os.path.join("/workspace", "model.gguf")
|
|
|
|
|
|
|
|
|
|
| 54 |
if GGUF_PATH and os.path.exists(GGUF_PATH):
|
| 55 |
model_path_to_try = GGUF_PATH
|
| 56 |
elif os.path.exists(model_path_to_try):
|
|
|
|
| 57 |
pass
|
| 58 |
else:
|
|
|
|
| 59 |
raise FileNotFoundError(f"No local .gguf found at GGUF_PATH or default ({model_path_to_try}). Set GGUF_PATH or upload the .gguf file into the Space.")
|
| 60 |
|
| 61 |
print("Loading local model via llama-cpp-python from:", model_path_to_try)
|
|
|
|
| 62 |
llm = Llama(model_path=model_path_to_try, n_ctx=2048, n_threads=2)
|
| 63 |
print("Loaded local model successfully.")
|
| 64 |
except Exception as e:
|
|
|
|
| 71 |
# Helper functions for inference
|
| 72 |
# -------------------------------------------------------------------------
|
| 73 |
def local_generate(prompt: str, max_tokens: int = DEFAULT_MAX_TOKENS, temperature: float = DEFAULT_TEMPERATURE):
|
|
|
|
| 74 |
if not llm:
|
| 75 |
return "Local model not loaded."
|
| 76 |
try:
|
| 77 |
resp = llm.create_completion(prompt=prompt, max_tokens=max_tokens, temperature=temperature)
|
|
|
|
| 78 |
return resp["choices"][0]["text"]
|
| 79 |
except Exception as e:
|
| 80 |
print("Error in local_generate:", e)
|
| 81 |
return f"Local generation error: {e}"
|
| 82 |
|
| 83 |
def hf_generate(prompt: str, max_tokens: int = DEFAULT_MAX_TOKENS, temperature: float = DEFAULT_TEMPERATURE):
|
| 84 |
+
"""
|
| 85 |
+
Corrected HF usage:
|
| 86 |
+
- Pass prompt as positional first arg to text_generation()
|
| 87 |
+
- Use max_new_tokens (not max_tokens)
|
| 88 |
+
- Optionally pass model=HF_INFERENCE_MODEL if set
|
| 89 |
+
"""
|
| 90 |
if not HF_AVAILABLE or hf_client is None:
|
| 91 |
return "Hugging Face Inference client not available. Set HUGGINGFACE_HUB_TOKEN or enable HF SDK."
|
| 92 |
+
|
| 93 |
try:
|
| 94 |
+
kwargs = {
|
| 95 |
+
"max_new_tokens": int(max_tokens),
|
| 96 |
+
"temperature": float(temperature),
|
| 97 |
+
# you can also set stream=True or details=True if desired
|
| 98 |
+
}
|
| 99 |
+
# include model override only if provided (avoid passing empty string)
|
| 100 |
+
if HF_INFERENCE_MODEL:
|
| 101 |
+
kwargs["model"] = HF_INFERENCE_MODEL
|
| 102 |
+
|
| 103 |
+
# NOTE: text_generation expects the prompt as first positional arg.
|
| 104 |
+
raw = hf_client.text_generation(prompt, **kwargs)
|
| 105 |
+
|
| 106 |
+
# raw may be:
|
| 107 |
+
# - a simple string with generated text,
|
| 108 |
+
# - a TextGenerationOutput object (dataclass-like) or dict,
|
| 109 |
+
# - a list containing dict(s) depending on version/backends
|
| 110 |
+
# Normalize to a string response:
|
| 111 |
+
# case: simple str
|
| 112 |
+
if isinstance(raw, str):
|
| 113 |
+
return raw
|
| 114 |
+
|
| 115 |
+
# case: list (e.g., [{"generated_text": "..."}])
|
| 116 |
if isinstance(raw, list) and len(raw) > 0:
|
|
|
|
| 117 |
first = raw[0]
|
| 118 |
if isinstance(first, dict):
|
| 119 |
+
# prefer keys commonly returned
|
| 120 |
+
return first.get("generated_text") or first.get("text") or str(first)
|
| 121 |
return str(first)
|
| 122 |
+
|
| 123 |
+
# case: object with attribute generated_text or dict-like
|
| 124 |
+
if hasattr(raw, "generated_text"):
|
| 125 |
+
return getattr(raw, "generated_text")
|
| 126 |
+
if isinstance(raw, dict):
|
| 127 |
+
# try common keys
|
| 128 |
+
return raw.get("generated_text") or raw.get("text") or str(raw)
|
| 129 |
+
|
| 130 |
+
# fallback to string conversion
|
| 131 |
+
return str(raw)
|
| 132 |
+
|
| 133 |
+
except TypeError as te:
|
| 134 |
+
# common mistake: wrong kw names (we tried to guard this), print helpful msg
|
| 135 |
+
print("TypeError from hf_client.text_generation:", te)
|
| 136 |
+
print(traceback.format_exc())
|
| 137 |
+
return f"Hugging Face generation TypeError: {te}. (Check huggingface_hub version & parameter names.)"
|
| 138 |
except Exception as e:
|
| 139 |
print("HF generation error:", e)
|
| 140 |
print(traceback.format_exc())
|
| 141 |
return f"Hugging Face generation error: {e}"
|
| 142 |
|
| 143 |
def generate(prompt: str, max_tokens: int = DEFAULT_MAX_TOKENS, temperature: float = DEFAULT_TEMPERATURE):
|
|
|
|
| 144 |
prompt = (prompt or "").strip()
|
| 145 |
if not prompt:
|
| 146 |
return "કૃપયા પ્રશ્ન લખો (Please provide a prompt)."
|
|
|
|
| 150 |
elif HF_AVAILABLE and hf_client:
|
| 151 |
return hf_generate(prompt, max_tokens=max_tokens, temperature=temperature)
|
| 152 |
else:
|
|
|
|
| 153 |
return (
|
| 154 |
"No model runtime is available.\n\n"
|
| 155 |
"Options:\n"
|
| 156 |
"1) Upload a .gguf file into the Space and set GGUF_PATH environment variable to its path,\n"
|
|
|
|
| 157 |
"2) Set HUGGINGFACE_HUB_TOKEN (secret) and HF_INFERENCE_MODEL to a hosted model id to use HF Inference API.\n"
|
|
|
|
|
|
|
| 158 |
)
|
| 159 |
|
| 160 |
# -------------------------------------------------------------------------
|
| 161 |
+
# Gradio UI
|
| 162 |
# -------------------------------------------------------------------------
|
| 163 |
title_text = "💎 Gemma3 — Desi Chatbot (GGUF / HF fallback)"
|
| 164 |
description_text = """
|
| 165 |
**Gemma3 (quantized GGUF)** — Local inference if available, otherwise fallback to Hugging Face Inference API.
|
|
|
|
|
|
|
| 166 |
"""
|
| 167 |
|
| 168 |
with gr.Blocks(title=title_text) as demo:
|
|
|
|
| 180 |
status_md = gr.Markdown(
|
| 181 |
f"**Runtime:** {'local llama-cpp' if (LLAMA_AVAILABLE and llm) else ('HuggingFace Inference' if HF_AVAILABLE else 'No runtime available')}\n\n"
|
| 182 |
f"- MODEL_REPO: `{MODEL_REPO}`\n"
|
| 183 |
+
f"- HF model (inference): `{HF_INFERENCE_MODEL or '<not set>'}`\n"
|
| 184 |
)
|
| 185 |
tips = gr.Markdown("**Tips:** Reduce max tokens if you see OOM. Upload a smaller Q4 quantized GGUF for Spaces.")
|
| 186 |
|
| 187 |
output_box = gr.Textbox(lines=10, label="જવાબ (Response)")
|
|
|
|
|
|
|
| 188 |
submit_btn.click(fn=generate, inputs=[prompt_input, max_tokens, temperature], outputs=[output_box])
|
| 189 |
|
|
|
|
| 190 |
if __name__ == "__main__":
|
|
|
|
| 191 |
print("LLAMA_AVAILABLE:", LLAMA_AVAILABLE)
|
| 192 |
print("HF_AVAILABLE:", HF_AVAILABLE)
|
| 193 |
print("MODEL_REPO:", MODEL_REPO)
|