Cardiosense-AG commited on
Commit
738d6d3
·
verified ·
1 Parent(s): 96ccaa1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +133 -0
app.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import platform
3
+ from pathlib import Path
4
+ import time
5
+ import traceback
6
+
7
+ import streamlit as st
8
+ import pandas as pd
9
+
10
+ from src.paths import base_dir, guidelines_dir, faiss_index_dir, exports_dir
11
+
12
+ st.set_page_config(page_title="AI-Native E-Consult Prototype (V1)", page_icon="🩺", layout="wide")
13
+ st.title("AI‑Native E‑Consult Prototype (V1)")
14
+ st.caption("Step 0 — Environment Setup & Health Check")
15
+
16
+ # ---------- Helper ----------
17
+ def _try_import(modname: str):
18
+ try:
19
+ m = __import__(modname)
20
+ ver = getattr(m, "__version__", "n/a")
21
+ return True, ver, None
22
+ except Exception as e:
23
+ return False, None, str(e)
24
+
25
+ def _hf_whoami():
26
+ try:
27
+ from huggingface_hub import whoami
28
+ token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACEHUB_API_TOKEN")
29
+ if not token:
30
+ return False, None, "No HF token found. Add HF_TOKEN in Space Settings → Variables."
31
+ me = whoami(token=token)
32
+ return True, me, None
33
+ except Exception as e:
34
+ return False, None, str(e)
35
+
36
+ # ---------- Persistent dirs ----------
37
+ bdir = base_dir()
38
+ gdir = guidelines_dir()
39
+ idir = faiss_index_dir()
40
+ xdir = exports_dir()
41
+
42
+ with st.expander("📁 Storage locations (persistent)"):
43
+ st.write({
44
+ "base_dir": str(bdir),
45
+ "guidelines_dir": str(gdir),
46
+ "faiss_index_dir": str(idir),
47
+ "exports_dir": str(xdir),
48
+ })
49
+ st.caption("These live on the Space's persistent volume so your RAG index survives restarts.")
50
+
51
+ # ---------- Diagnostics ----------
52
+ colA, colB = st.columns(2)
53
+
54
+ with colA:
55
+ st.subheader("System")
56
+ st.write({
57
+ "python": platform.python_version(),
58
+ "platform": platform.platform(),
59
+ "cwd": str(Path.cwd()),
60
+ "time": time.strftime("%Y-%m-%d %H:%M:%S"),
61
+ })
62
+ ok_torch, torch_ver, torch_err = _try_import("torch")
63
+ if ok_torch:
64
+ import torch
65
+ cuda = torch.cuda.is_available()
66
+ device = torch.cuda.get_device_name(0) if cuda else "CPU"
67
+ st.success(f"torch {torch_ver} — CUDA: {'✅' if cuda else '❌'} — device: {device}")
68
+ else:
69
+ st.error(f"torch import failed: {torch_err}")
70
+
71
+ with colB:
72
+ st.subheader("Core libraries")
73
+ rows = []
74
+ for name in ["transformers", "accelerate", "bitsandbytes", "faiss", "pypdf", "pandas", "numpy", "huggingface_hub", "sentence_transformers"]:
75
+ ok, ver, err = _try_import(name)
76
+ rows.append({"library": name, "status": "ok" if ok else "error", "version_or_error": ver if ok else err})
77
+ st.dataframe(pd.DataFrame(rows), hide_index=True, use_container_width=True)
78
+
79
+ st.divider()
80
+ st.subheader("Hugging Face auth check (for later model pulls)")
81
+ if st.button("Check HF token"):
82
+ ok, me, err = _hf_whoami()
83
+ if ok:
84
+ who = me.get("name") or me.get("email") or me.get("username", "unknown")
85
+ st.success(f"HF token valid ✅ — signed in as: {who}")
86
+ else:
87
+ st.warning(f"HF token not verified: {err}")
88
+
89
+ st.subheader("Quick functionality tests")
90
+ if st.button("Run health checks"):
91
+ results = []
92
+
93
+ # 1) Write to persistent storage
94
+ try:
95
+ testfile = bdir / "healthcheck.txt"
96
+ testfile.write_text("ok\n")
97
+ results.append(("write_persistent", True, f"wrote {testfile}"))
98
+ except Exception as e:
99
+ results.append(("write_persistent", False, str(e)))
100
+
101
+ # 2) FAISS in-memory index sanity test
102
+ try:
103
+ import numpy as np, faiss
104
+ xb = np.random.random((50, 8)).astype("float32")
105
+ idx = faiss.IndexFlatL2(8)
106
+ idx.add(xb)
107
+ D, I = idx.search(xb[:1], 5)
108
+ results.append(("faiss_search", True, f"top5 ids: {I[0].tolist()}"))
109
+ except Exception as e:
110
+ results.append(("faiss_search", False, str(e)))
111
+
112
+ # 3) bitsandbytes soft check (import + CUDA capability if torch has it)
113
+ try:
114
+ import bitsandbytes as bnb # noqa
115
+ cuda_msg = ""
116
+ try:
117
+ import torch
118
+ if torch.cuda.is_available():
119
+ # light test: allocate a tiny 4-bit linear layer if available
120
+ from bitsandbytes.nn import Linear4bit
121
+ _ = Linear4bit(8, 8, bias=False)
122
+ cuda_msg = "CUDA-backed 4-bit layer constructed."
123
+ except Exception:
124
+ pass
125
+ results.append(("bitsandbytes", True, f"import ok. {cuda_msg}"))
126
+ except Exception as e:
127
+ results.append(("bitsandbytes", False, str(e)))
128
+
129
+ st.success("Health checks complete.")
130
+ st.dataframe(pd.DataFrame([{"check": k, "ok": ok, "detail": d} for (k, ok, d) in results]),
131
+ hide_index=True, use_container_width=True)
132
+
133
+ st.info("If the checks are green, the Space is ready for Step 1 (RAG Corpus Prep).")