Create tests/test_hybrid_mapping.py
Browse files- tests/test_hybrid_mapping.py +101 -0
tests/test_hybrid_mapping.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# tests/test_hybrid_mapping.py
|
| 2 |
+
from __future__ import annotations
|
| 3 |
+
import os, json, time, csv
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Dict, List
|
| 6 |
+
|
| 7 |
+
from src.ai_core import generate_soap_draft
|
| 8 |
+
|
| 9 |
+
# writable folder (created automatically if missing)
|
| 10 |
+
BASE_DIR = Path("/data/econsult/tests")
|
| 11 |
+
BASE_DIR.mkdir(parents=True, exist_ok=True)
|
| 12 |
+
CSV_PATH = BASE_DIR / "results.csv"
|
| 13 |
+
|
| 14 |
+
# ---------------------------------------------------------------------
|
| 15 |
+
# Example intake cases for validation
|
| 16 |
+
# ---------------------------------------------------------------------
|
| 17 |
+
CASES: List[Dict[str, str]] = [
|
| 18 |
+
{
|
| 19 |
+
"id": "lipids",
|
| 20 |
+
"age": "58",
|
| 21 |
+
"sex": "Male",
|
| 22 |
+
"specialist": "Cardiology",
|
| 23 |
+
"chief_complaint": "Exertional chest tightness for ~2 months",
|
| 24 |
+
"history": "Type 2 diabetes, hyperlipidemia, no rest pain, no syncope.",
|
| 25 |
+
"medications": "Atorvastatin 20 mg nightly; Metformin 1000 mg BID.",
|
| 26 |
+
"vitals": "BP 132/78, HR 72, BMI 29",
|
| 27 |
+
"labs": "LDL 155 mg/dL, A1C 7.8%, eGFR 52",
|
| 28 |
+
"comorbidities": "DM2, CKD3a, hyperlipidemia",
|
| 29 |
+
"question": "Should we escalate to high-intensity statin and start low-dose aspirin?",
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"id": "ckd_dose",
|
| 33 |
+
"age": "63",
|
| 34 |
+
"sex": "Male",
|
| 35 |
+
"specialist": "Cardiology",
|
| 36 |
+
"chief_complaint": "Medication dosing in CKD3a",
|
| 37 |
+
"history": "63 y/o M with DM2, CKD3a, HTN; needs metformin and statin dosing guidance.",
|
| 38 |
+
"medications": "Atorvastatin 20 mg nightly; Metformin 1000 mg BID.",
|
| 39 |
+
"vitals": "BP 128/80 mmHg, HR 70 bpm",
|
| 40 |
+
"labs": "A1C 7.5%, eGFR 50 mL/min/1.73 m2",
|
| 41 |
+
"comorbidities": "DM2, CKD3a, HTN",
|
| 42 |
+
"question": "What are recommended statin intensity and metformin dosing for eGFR ≈ 50?",
|
| 43 |
+
},
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
# ---------------------------------------------------------------------
|
| 47 |
+
# Helpers
|
| 48 |
+
# ---------------------------------------------------------------------
|
| 49 |
+
def count_annotated(meta: Dict[str, object]) -> int:
|
| 50 |
+
"""Count total annotated bullets (assessment+plan)"""
|
| 51 |
+
ann = meta.get("annotated", {}) or {}
|
| 52 |
+
return len(ann.get("assessment_html", [])) + len(ann.get("plan_html", []))
|
| 53 |
+
|
| 54 |
+
def run_case(intake: Dict[str, str]) -> Dict[str, object]:
|
| 55 |
+
"""Generate SOAP + mapping metrics for one case"""
|
| 56 |
+
t0 = time.perf_counter()
|
| 57 |
+
result = generate_soap_draft(intake, mode="mapping", rag_top_k=5, max_new_tokens=700)
|
| 58 |
+
t1 = time.perf_counter()
|
| 59 |
+
|
| 60 |
+
meta = result.meta
|
| 61 |
+
timings = meta.get("timings", {})
|
| 62 |
+
rec = {
|
| 63 |
+
"case_id": intake["id"],
|
| 64 |
+
"generate_secs": timings.get("generate_secs", 0),
|
| 65 |
+
"map_secs": timings.get("map_secs", 0),
|
| 66 |
+
"total_runtime": round(t1 - t0, 2),
|
| 67 |
+
"assessment_items": len(result.soap.get("assessment", [])),
|
| 68 |
+
"plan_items": len(result.soap.get("plan", [])),
|
| 69 |
+
"annotated_items": count_annotated(meta),
|
| 70 |
+
"unique_evidence": len(result.citations),
|
| 71 |
+
"cache_stub": meta.get("stub", ""),
|
| 72 |
+
}
|
| 73 |
+
# save raw JSON too
|
| 74 |
+
(BASE_DIR / f"{intake['id']}_result.json").write_text(
|
| 75 |
+
json.dumps(result.soap, ensure_ascii=False, indent=2)
|
| 76 |
+
)
|
| 77 |
+
return rec
|
| 78 |
+
|
| 79 |
+
def write_csv(rows: List[Dict[str, object]]) -> None:
|
| 80 |
+
keys = list(rows[0].keys())
|
| 81 |
+
with CSV_PATH.open("w", newline="", encoding="utf-8") as f:
|
| 82 |
+
w = csv.DictWriter(f, fieldnames=keys)
|
| 83 |
+
w.writeheader()
|
| 84 |
+
w.writerows(rows)
|
| 85 |
+
|
| 86 |
+
# ---------------------------------------------------------------------
|
| 87 |
+
# Entry point
|
| 88 |
+
# ---------------------------------------------------------------------
|
| 89 |
+
def run_all() -> str:
|
| 90 |
+
rows: List[Dict[str, object]] = []
|
| 91 |
+
for case in CASES:
|
| 92 |
+
print(f"Running case: {case['id']} ...")
|
| 93 |
+
rec = run_case(case)
|
| 94 |
+
rows.append(rec)
|
| 95 |
+
print(rec)
|
| 96 |
+
write_csv(rows)
|
| 97 |
+
print(f"\nResults saved to: {CSV_PATH}")
|
| 98 |
+
return str(CSV_PATH)
|
| 99 |
+
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
run_all()
|