File size: 1,993 Bytes
9c7cfa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
library_name: residuals
base_model: ibm-granite/granite-4.0-h-tiny-base
base_model_relation: adapter
instruct_model: ibm-granite/granite-4.0-h-tiny
pipeline_tag: text-generation
tags:
- residuals
- delta
- task-arithmetic
- finetune
---
# Instruction Residuals
This repository contains instruction residuals (delta weights) computed as the parameter-wise difference between `ibm-granite/granite-4.0-h-tiny` and `ibm-granite/granite-4.0-h-tiny-base`.
Apply these residuals to the base model to reconstruct the instruction-tuned weights without retraining.
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from residuals import Residuals
base = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-4.0-h-tiny-base")
tok = AutoTokenizer.from_pretrained("ibm-granite/granite-4.0-h-tiny-base")
res = Residuals.from_pretrained("residuals/granite-4.0-h-tiny")
res.apply(base, base_tokenizer=tok)
```
## Provenance
- **Created at**: 2025-10-25T17:44:55.705169+00:00
- **DType**: float32
- **Parameters**: 587
- **Shapes hash**: 6dc91196b3c1b84ed135c5dcd5152fd5f2dcf49c5865e1cd097b1c26693cab11
- **Names hash**: c8c3f98304c698c0e6fad6202d193586a30c58e61d250b2972183fa48fe29a9b
- **Base model**: `ibm-granite/granite-4.0-h-tiny-base`
- **Instruction model**: `ibm-granite/granite-4.0-h-tiny`
## Files
- **model.safetensors**: Serialized residual tensors (safetensors format).
- (optional) **model.safetensors.index.json** + shard files `model-00001-of-000N.safetensors`, ... for multi-part weights.
- **config.json**: Residuals metadata and provenance.
- **tokenizer files**: Saved tokenizer for compatibility.
## About this format
These are additive residuals (task vectors). Applying them to the base model's parameters reconstructs the instruction-tuned model.
## Tools
Generated with the `residuals` Python package. Install via: `pip install residuals`.
- PyPI: https://pypi.org/project/residuals/
- Source: https://github.com/omarish/residuals
|