- Mocap Everyone Everywhere: Lightweight Motion Capture With Smartwatches and a Head-Mounted Camera We present a lightweight and affordable motion capture method based on two smartwatches and a head-mounted camera. In contrast to the existing approaches that use six or more expert-level IMU devices, our approach is much more cost-effective and convenient. Our method can make wearable motion capture accessible to everyone everywhere, enabling 3D full-body motion capture in diverse environments. As a key idea to overcome the extreme sparsity and ambiguities of sensor inputs, we integrate 6D head poses obtained from the head-mounted cameras for motion estimation. To enable capture in expansive indoor and outdoor scenes, we propose an algorithm to track and update floor level changes to define head poses, coupled with a multi-stage Transformer-based regression module. We also introduce novel strategies leveraging visual cues of egocentric images to further enhance the motion capture quality while reducing ambiguities. We demonstrate the performance of our method on various challenging scenarios, including complex outdoor environments and everyday motions including object interactions and social interactions among multiple individuals. 2 authors · Jan 1, 2024
- Forensic Activity Classification Using Digital Traces from iPhones: A Machine Learning-based Approach Smartphones and smartwatches are ever-present in daily life, and provide a rich source of information on their users' behaviour. In particular, digital traces derived from the phone's embedded movement sensors present an opportunity for a forensic investigator to gain insight into a person's physical activities. In this work, we present a machine learning-based approach to translate digital traces into likelihood ratios (LRs) for different types of physical activities. Evaluating on a new dataset, NFI\_FARED, which contains digital traces from four different types of iPhones labelled with 19 activities, it was found that our approach could produce useful LR systems to distinguish 167 out of a possible 171 activity pairings. The same approach was extended to analyse likelihoods for multiple activities (or groups of activities) simultaneously and create activity timelines to aid in both the early and latter stages of forensic investigations. The dataset and all code required to replicate the results have also been made public to encourage further research on this topic. 4 authors · Dec 3, 2025
- UniMTS: Unified Pre-training for Motion Time Series Motion time series collected from mobile and wearable devices such as smartphones and smartwatches offer significant insights into human behavioral patterns, with wide applications in healthcare, automation, IoT, and AR/XR due to their low-power, always-on nature. However, given security and privacy concerns, building large-scale motion time series datasets remains difficult, preventing the development of pre-trained models for human activity analysis. Typically, existing models are trained and tested on the same dataset, leading to poor generalizability across variations in device location, device mounting orientation and human activity type. In this paper, we introduce UniMTS, the first unified pre-training procedure for motion time series that generalizes across diverse device latent factors and activities. Specifically, we employ a contrastive learning framework that aligns motion time series with text descriptions enriched by large language models. This helps the model learn the semantics of time series to generalize across activities. Given the absence of large-scale motion time series data, we derive and synthesize time series from existing motion skeleton data with all-joint coverage. Spatio-temporal graph networks are utilized to capture the relationships across joints for generalization across different device locations. We further design rotation-invariant augmentation to make the model agnostic to changes in device mounting orientations. Our model shows exceptional generalizability across 18 motion time series classification benchmark datasets, outperforming the best baselines by 340% in the zero-shot setting, 16.3% in the few-shot setting, and 9.2% in the full-shot setting. 7 authors · Oct 18, 2024
1 RLtools: A Fast, Portable Deep Reinforcement Learning Library for Continuous Control Deep Reinforcement Learning (RL) can yield capable agents and control policies in several domains but is commonly plagued by prohibitively long training times. Additionally, in the case of continuous control problems, the applicability of learned policies on real-world embedded devices is limited due to the lack of real-time guarantees and portability of existing libraries. To address these challenges, we present RLtools, a dependency-free, header-only, pure C++ library for deep supervised and reinforcement learning. Its novel architecture allows RLtools to be used on a wide variety of platforms, from HPC clusters over workstations and laptops to smartphones, smartwatches, and microcontrollers. Specifically, due to the tight integration of the RL algorithms with simulation environments, RLtools can solve popular RL problems up to 76 times faster than other popular RL frameworks. We also benchmark the inference on a diverse set of microcontrollers and show that in most cases our optimized implementation is by far the fastest. Finally, RLtools enables the first-ever demonstration of training a deep RL algorithm directly on a microcontroller, giving rise to the field of Tiny Reinforcement Learning (TinyRL). The source code as well as documentation and live demos are available through our project page at https://rl.tools. 3 authors · Jun 6, 2023
- DailyLLM: Context-Aware Activity Log Generation Using Multi-Modal Sensors and LLMs Rich and context-aware activity logs facilitate user behavior analysis and health monitoring, making them a key research focus in ubiquitous computing. The remarkable semantic understanding and generation capabilities of Large Language Models (LLMs) have recently created new opportunities for activity log generation. However, existing methods continue to exhibit notable limitations in terms of accuracy, efficiency, and semantic richness. To address these challenges, we propose DailyLLM. To the best of our knowledge, this is the first log generation and summarization system that comprehensively integrates contextual activity information across four dimensions: location, motion, environment, and physiology, using only sensors commonly available on smartphones and smartwatches. To achieve this, DailyLLM introduces a lightweight LLM-based framework that integrates structured prompting with efficient feature extraction to enable high-level activity understanding. Extensive experiments demonstrate that DailyLLM outperforms state-of-the-art (SOTA) log generation methods and can be efficiently deployed on personal computers and Raspberry Pi. Utilizing only a 1.5B-parameter LLM model, DailyLLM achieves a 17% improvement in log generation BERTScore precision compared to the 70B-parameter SOTA baseline, while delivering nearly 10x faster inference speed. 6 authors · Jul 18, 2025
- TPRF: A Transformer-based Pseudo-Relevance Feedback Model for Efficient and Effective Retrieval This paper considers Pseudo-Relevance Feedback (PRF) methods for dense retrievers in a resource constrained environment such as that of cheap cloud instances or embedded systems (e.g., smartphones and smartwatches), where memory and CPU are limited and GPUs are not present. For this, we propose a transformer-based PRF method (TPRF), which has a much smaller memory footprint and faster inference time compared to other deep language models that employ PRF mechanisms, with a marginal effectiveness loss. TPRF learns how to effectively combine the relevance feedback signals from dense passage representations. Specifically, TPRF provides a mechanism for modelling relationships and weights between the query and the relevance feedback signals. The method is agnostic to the specific dense representation used and thus can be generally applied to any dense retriever. 5 authors · Jan 24, 2024