new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

AITA Generating Moral Judgements of the Crowd with Reasoning

Morality is a fundamental aspect of human behavior and ethics, influencing how we interact with each other and the world around us. When faced with a moral dilemma, a person's ability to make clear moral judgments can be clouded. Due to many factors such as personal biases, emotions and situational factors people can find it difficult to decide their best course of action. The AmITheAsshole (AITA) subreddit is a forum on the social media platform Reddit that helps people get clarity and objectivity on their predicaments. In the forum people post anecdotes about moral dilemmas they are facing in their lives, seeking validation for their actions or advice on how to navigate the situation from the community. The morality of the actions in each post is classified based on the collective opinion of the community into mainly two labels, "Not The Asshole" (NTA) and "You Are The Asshole" (YTA). This project aims to generate comments with moral reasoning for stories with moral dilemmas using the AITA subreddit as a dataset. While past literature has explored the classification of posts into labels (Alhassan et al., 2022), the generation of comments remains a novel and challenging task. It involves understanding the complex social and ethical considerations in each situation. To address this challenge, we will leverage the vast amount of data on the forum with the goal of generating coherent comments that align with the norms and values of the AITA community. In this endeavor, we aim to evaluate state-of-the-art seq2seq text generation models for their ability to make moral judgments similarly to humans, ultimately producing concise comments providing clear moral stances and advice for the poster.

  • 2 authors
·
Oct 21, 2023

Social Chemistry 101: Learning to Reason about Social and Moral Norms

Social norms -- the unspoken commonsense rules about acceptable social behavior -- are crucial in understanding the underlying causes and intents of people's actions in narratives. For example, underlying an action such as "wanting to call cops on my neighbors" are social norms that inform our conduct, such as "It is expected that you report crimes." We present Social Chemistry, a new conceptual formalism to study people's everyday social norms and moral judgments over a rich spectrum of real life situations described in natural language. We introduce Social-Chem-101, a large-scale corpus that catalogs 292k rules-of-thumb such as "it is rude to run a blender at 5am" as the basic conceptual units. Each rule-of-thumb is further broken down with 12 different dimensions of people's judgments, including social judgments of good and bad, moral foundations, expected cultural pressure, and assumed legality, which together amount to over 4.5 million annotations of categorical labels and free-text descriptions. Comprehensive empirical results based on state-of-the-art neural models demonstrate that computational modeling of social norms is a promising research direction. Our model framework, Neural Norm Transformer, learns and generalizes Social-Chem-101 to successfully reason about previously unseen situations, generating relevant (and potentially novel) attribute-aware social rules-of-thumb.

  • 5 authors
·
Nov 1, 2020

MoReBench: Evaluating Procedural and Pluralistic Moral Reasoning in Language Models, More than Outcomes

As AI systems progress, we rely more on them to make decisions with us and for us. To ensure that such decisions are aligned with human values, it is imperative for us to understand not only what decisions they make but also how they come to those decisions. Reasoning language models, which provide both final responses and (partially transparent) intermediate thinking traces, present a timely opportunity to study AI procedural reasoning. Unlike math and code problems which often have objectively correct answers, moral dilemmas are an excellent testbed for process-focused evaluation because they allow for multiple defensible conclusions. To do so, we present MoReBench: 1,000 moral scenarios, each paired with a set of rubric criteria that experts consider essential to include (or avoid) when reasoning about the scenarios. MoReBench contains over 23 thousand criteria including identifying moral considerations, weighing trade-offs, and giving actionable recommendations to cover cases on AI advising humans moral decisions as well as making moral decisions autonomously. Separately, we curate MoReBench-Theory: 150 examples to test whether AI can reason under five major frameworks in normative ethics. Our results show that scaling laws and existing benchmarks on math, code, and scientific reasoning tasks fail to predict models' abilities to perform moral reasoning. Models also show partiality towards specific moral frameworks (e.g., Benthamite Act Utilitarianism and Kantian Deontology), which might be side effects of popular training paradigms. Together, these benchmarks advance process-focused reasoning evaluation towards safer and more transparent AI.

DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life

As we increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of the users. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma includes two possible actions and with each action, the affected parties and human values invoked. Based on these dilemmas, we consolidated a set of human values across everyday topics e.g., interpersonal relationships, workplace, and environmental issues. We evaluated LLMs on these dilemmas to determine what action they will take and the values represented by these actions. Then, we analyzed these values through the lens of five popular theories inspired by sociology, psychology and philosophy. These theories are: World Value Survey, Moral Foundation Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik Wheel of Emotion. We find that LLMs are most aligned with the self-expression over survival values in terms of World Value Survey, care over loyalty in Moral Foundation Theory. Interestingly, we find large preferences differences in models for some core values such as truthfulness e.g., Mixtral-8x7B model tends to neglect it by 9.7% while GPT-4-turbo model tends to select it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their released principles reflect their actual value prioritization when facing nuanced moral reasoning in daily-life settings. We find that end users cannot effectively steer such prioritization using system prompts.

  • 3 authors
·
Oct 3, 2024

Can Machines Learn Morality? The Delphi Experiment

As AI systems become increasingly powerful and pervasive, there are growing concerns about machines' morality or a lack thereof. Yet, teaching morality to machines is a formidable task, as morality remains among the most intensely debated questions in humanity, let alone for AI. Existing AI systems deployed to millions of users, however, are already making decisions loaded with moral implications, which poses a seemingly impossible challenge: teaching machines moral sense, while humanity continues to grapple with it. To explore this challenge, we introduce Delphi, an experimental framework based on deep neural networks trained directly to reason about descriptive ethical judgments, e.g., "helping a friend" is generally good, while "helping a friend spread fake news" is not. Empirical results shed novel insights on the promises and limits of machine ethics; Delphi demonstrates strong generalization capabilities in the face of novel ethical situations, while off-the-shelf neural network models exhibit markedly poor judgment including unjust biases, confirming the need for explicitly teaching machines moral sense. Yet, Delphi is not perfect, exhibiting susceptibility to pervasive biases and inconsistencies. Despite that, we demonstrate positive use cases of imperfect Delphi, including using it as a component model within other imperfect AI systems. Importantly, we interpret the operationalization of Delphi in light of prominent ethical theories, which leads us to important future research questions.

  • 15 authors
·
Oct 14, 2021

What are human values, and how do we align AI to them?

There is an emerging consensus that we need to align AI systems with human values (Gabriel, 2020; Ji et al., 2024), but it remains unclear how to apply this to language models in practice. We split the problem of "aligning to human values" into three parts: first, eliciting values from people; second, reconciling those values into an alignment target for training ML models; and third, actually training the model. In this paper, we focus on the first two parts, and ask the question: what are "good" ways to synthesize diverse human inputs about values into a target for aligning language models? To answer this question, we first define a set of 6 criteria that we believe must be satisfied for an alignment target to shape model behavior in accordance with human values. We then propose a process for eliciting and reconciling values called Moral Graph Elicitation (MGE), which uses a large language model to interview participants about their values in particular contexts; our approach is inspired by the philosophy of values advanced by Taylor (1977), Chang (2004), and others. We trial MGE with a representative sample of 500 Americans, on 3 intentionally divisive prompts (e.g. advice about abortion). Our results demonstrate that MGE is promising for improving model alignment across all 6 criteria. For example, almost all participants (89.1%) felt well represented by the process, and (89%) thought the final moral graph was fair, even if their value wasn't voted as the wisest. Our process often results in "expert" values (e.g. values from women who have solicited abortion advice) rising to the top of the moral graph, without defining who is considered an expert in advance.

  • 3 authors
·
Mar 27, 2024

Reward Design for Justifiable Sequential Decision-Making

Equipping agents with the capacity to justify made decisions using supporting evidence represents a cornerstone of accountable decision-making. Furthermore, ensuring that justifications are in line with human expectations and societal norms is vital, especially in high-stakes situations such as healthcare. In this work, we propose the use of a debate-based reward model for reinforcement learning agents, where the outcome of a zero-sum debate game quantifies the justifiability of a decision in a particular state. This reward model is then used to train a justifiable policy, whose decisions can be more easily corroborated with supporting evidence. In the debate game, two argumentative agents take turns providing supporting evidence for two competing decisions. Given the proposed evidence, a proxy of a human judge evaluates which decision is better justified. We demonstrate the potential of our approach in learning policies for prescribing and justifying treatment decisions of septic patients. We show that augmenting the reward with the feedback signal generated by the debate-based reward model yields policies highly favored by the judge when compared to the policy obtained solely from the environment rewards, while hardly sacrificing any performance. Moreover, in terms of the overall performance and justifiability of trained policies, the debate-based feedback is comparable to the feedback obtained from an ideal judge proxy that evaluates decisions using the full information encoded in the state. This suggests that the debate game outputs key information contained in states that is most relevant for evaluating decisions, which in turn substantiates the practicality of combining our approach with human-in-the-loop evaluations. Lastly, we showcase that agents trained via multi-agent debate learn to propose evidence that is resilient to refutations and closely aligns with human preferences.

  • 2 authors
·
Feb 24, 2024

On the Computational Complexity of Ethics: Moral Tractability for Minds and Machines

Why should moral philosophers, moral psychologists, and machine ethicists care about computational complexity? Debates on whether artificial intelligence (AI) can or should be used to solve problems in ethical domains have mainly been driven by what AI can or cannot do in terms of human capacities. In this paper, we tackle the problem from the other end by exploring what kind of moral machines are possible based on what computational systems can or cannot do. To do so, we analyze normative ethics through the lens of computational complexity. First, we introduce computational complexity for the uninitiated reader and discuss how the complexity of ethical problems can be framed within Marr's three levels of analysis. We then study a range of ethical problems based on consequentialism, deontology, and virtue ethics, with the aim of elucidating the complexity associated with the problems themselves (e.g., due to combinatorics, uncertainty, strategic dynamics), the computational methods employed (e.g., probability, logic, learning), and the available resources (e.g., time, knowledge, learning). The results indicate that most problems the normative frameworks pose lead to tractability issues in every category analyzed. Our investigation also provides several insights about the computational nature of normative ethics, including the differences between rule- and outcome-based moral strategies, and the implementation-variance with regard to moral resources. We then discuss the consequences complexity results have for the prospect of moral machines in virtue of the trade-off between optimality and efficiency. Finally, we elucidate how computational complexity can be used to inform both philosophical and cognitive-psychological research on human morality by advancing the Moral Tractability Thesis (MTT).

  • 1 authors
·
Feb 8, 2023

Large Pre-trained Language Models Contain Human-like Biases of What is Right and Wrong to Do

Artificial writing is permeating our lives due to recent advances in large-scale, transformer-based language models (LMs) such as BERT, its variants, GPT-2/3, and others. Using them as pre-trained models and fine-tuning them for specific tasks, researchers have extended state of the art for many NLP tasks and shown that they capture not only linguistic knowledge but also retain general knowledge implicitly present in the data. Unfortunately, LMs trained on unfiltered text corpora suffer from degenerated and biased behaviour. While this is well established, we show that recent LMs also contain human-like biases of what is right and wrong to do, some form of ethical and moral norms of the society -- they bring a "moral direction" to surface. That is, we show that these norms can be captured geometrically by a direction, which can be computed, e.g., by a PCA, in the embedding space, reflecting well the agreement of phrases to social norms implicitly expressed in the training texts and providing a path for attenuating or even preventing toxic degeneration in LMs. Being able to rate the (non-)normativity of arbitrary phrases without explicitly training the LM for this task, we demonstrate the capabilities of the "moral direction" for guiding (even other) LMs towards producing normative text and showcase it on RealToxicityPrompts testbed, preventing the neural toxic degeneration in GPT-2.

  • 5 authors
·
Mar 8, 2021

ProgressGym: Alignment with a Millennium of Moral Progress

Frontier AI systems, including large language models (LLMs), hold increasing influence over the epistemology of human users. Such influence can reinforce prevailing societal values, potentially contributing to the lock-in of misguided moral beliefs and, consequently, the perpetuation of problematic moral practices on a broad scale. We introduce progress alignment as a technical solution to mitigate this imminent risk. Progress alignment algorithms learn to emulate the mechanics of human moral progress, thereby addressing the susceptibility of existing alignment methods to contemporary moral blindspots. To empower research in progress alignment, we introduce ProgressGym, an experimental framework allowing the learning of moral progress mechanics from history, in order to facilitate future progress in real-world moral decisions. Leveraging 9 centuries of historical text and 18 historical LLMs, ProgressGym enables codification of real-world progress alignment challenges into concrete benchmarks. Specifically, we introduce three core challenges: tracking evolving values (PG-Follow), preemptively anticipating moral progress (PG-Predict), and regulating the feedback loop between human and AI value shifts (PG-Coevolve). Alignment methods without a temporal dimension are inapplicable to these tasks. In response, we present lifelong and extrapolative algorithms as baseline methods of progress alignment, and build an open leaderboard soliciting novel algorithms and challenges. The framework and the leaderboard are available at https://github.com/PKU-Alignment/ProgressGym and https://huggingface.co/spaces/PKU-Alignment/ProgressGym-LeaderBoard respectively.

  • 6 authors
·
Jun 28, 2024 2

Dynamic Normativity: Necessary and Sufficient Conditions for Value Alignment

The critical inquiry pervading the realm of Philosophy, and perhaps extending its influence across all Humanities disciplines, revolves around the intricacies of morality and normativity. Surprisingly, in recent years, this thematic thread has woven its way into an unexpected domain, one not conventionally associated with pondering "what ought to be": the field of artificial intelligence (AI) research. Central to morality and AI, we find "alignment", a problem related to the challenges of expressing human goals and values in a manner that artificial systems can follow without leading to unwanted adversarial effects. More explicitly and with our current paradigm of AI development in mind, we can think of alignment as teaching human values to non-anthropomorphic entities trained through opaque, gradient-based learning techniques. This work addresses alignment as a technical-philosophical problem that requires solid philosophical foundations and practical implementations that bring normative theory to AI system development. To accomplish this, we propose two sets of necessary and sufficient conditions that, we argue, should be considered in any alignment process. While necessary conditions serve as metaphysical and metaethical roots that pertain to the permissibility of alignment, sufficient conditions establish a blueprint for aligning AI systems under a learning-based paradigm. After laying such foundations, we present implementations of this approach by using state-of-the-art techniques and methods for aligning general-purpose language systems. We call this framework Dynamic Normativity. Its central thesis is that any alignment process under a learning paradigm that cannot fulfill its necessary and sufficient conditions will fail in producing aligned systems.

  • 1 authors
·
Jun 16, 2024

Diminished Diversity-of-Thought in a Standard Large Language Model

We test whether Large Language Models (LLMs) can be used to simulate human participants in social-science studies. To do this, we run replications of 14 studies from the Many Labs 2 replication project with OpenAI's text-davinci-003 model, colloquially known as GPT3.5. Based on our pre-registered analyses, we find that among the eight studies we could analyse, our GPT sample replicated 37.5% of the original results and 37.5% of the Many Labs 2 results. However, we were unable to analyse the remaining six studies due to an unexpected phenomenon we call the "correct answer" effect. Different runs of GPT3.5 answered nuanced questions probing political orientation, economic preference, judgement, and moral philosophy with zero or near-zero variation in responses: with the supposedly "correct answer." In one exploratory follow-up study, we found that a "correct answer" was robust to changing the demographic details that precede the prompt. In another, we found that most but not all "correct answers" were robust to changing the order of answer choices. One of our most striking findings occurred in our replication of the Moral Foundations Theory survey results, where we found GPT3.5 identifying as a political conservative in 99.6% of the cases, and as a liberal in 99.3% of the cases in the reverse-order condition. However, both self-reported 'GPT conservatives' and 'GPT liberals' showed right-leaning moral foundations. Our results cast doubts on the validity of using LLMs as a general replacement for human participants in the social sciences. Our results also raise concerns that a hypothetical AI-led future may be subject to a diminished diversity-of-thought.

  • 3 authors
·
Feb 13, 2023

Large Language Models Reflect the Ideology of their Creators

Large language models (LLMs) are trained on vast amounts of data to generate natural language, enabling them to perform tasks like text summarization and question answering. These models have become popular in artificial intelligence (AI) assistants like ChatGPT and already play an influential role in how humans access information. However, the behavior of LLMs varies depending on their design, training, and use. In this paper, we uncover notable diversity in the ideological stance exhibited across different LLMs and languages in which they are accessed. We do this by prompting a diverse panel of popular LLMs to describe a large number of prominent and controversial personalities from recent world history, both in English and in Chinese. By identifying and analyzing moral assessments reflected in the generated descriptions, we find consistent normative differences between how the same LLM responds in Chinese compared to English. Similarly, we identify normative disagreements between Western and non-Western LLMs about prominent actors in geopolitical conflicts. Furthermore, popularly hypothesized disparities in political goals among Western models are reflected in significant normative differences related to inclusion, social inequality, and political scandals. Our results show that the ideological stance of an LLM often reflects the worldview of its creators. This raises important concerns around technological and regulatory efforts with the stated aim of making LLMs ideologically `unbiased', and it poses risks for political instrumentalization.

  • 10 authors
·
Oct 24, 2024

Beyond Preferences in AI Alignment

The dominant practice of AI alignment assumes (1) that preferences are an adequate representation of human values, (2) that human rationality can be understood in terms of maximizing the satisfaction of preferences, and (3) that AI systems should be aligned with the preferences of one or more humans to ensure that they behave safely and in accordance with our values. Whether implicitly followed or explicitly endorsed, these commitments constitute what we term a preferentist approach to AI alignment. In this paper, we characterize and challenge the preferentist approach, describing conceptual and technical alternatives that are ripe for further research. We first survey the limits of rational choice theory as a descriptive model, explaining how preferences fail to capture the thick semantic content of human values, and how utility representations neglect the possible incommensurability of those values. We then critique the normativity of expected utility theory (EUT) for humans and AI, drawing upon arguments showing how rational agents need not comply with EUT, while highlighting how EUT is silent on which preferences are normatively acceptable. Finally, we argue that these limitations motivate a reframing of the targets of AI alignment: Instead of alignment with the preferences of a human user, developer, or humanity-writ-large, AI systems should be aligned with normative standards appropriate to their social roles, such as the role of a general-purpose assistant. Furthermore, these standards should be negotiated and agreed upon by all relevant stakeholders. On this alternative conception of alignment, a multiplicity of AI systems will be able to serve diverse ends, aligned with normative standards that promote mutual benefit and limit harm despite our plural and divergent values.

  • 4 authors
·
Aug 29, 2024

CVC: A Large-Scale Chinese Value Rule Corpus for Value Alignment of Large Language Models

Ensuring that Large Language Models (LLMs) align with mainstream human values and ethical norms is crucial for the safe and sustainable development of AI. Current value evaluation and alignment are constrained by Western cultural bias and incomplete domestic frameworks reliant on non-native rules; furthermore, the lack of scalable, rule-driven scenario generation methods makes evaluations costly and inadequate across diverse cultural contexts. To address these challenges, we propose a hierarchical value framework grounded in core Chinese values, encompassing three main dimensions, 12 core values, and 50 derived values. Based on this framework, we construct a large-scale Chinese Values Corpus (CVC) containing over 250,000 value rules enhanced and expanded through human annotation. Experimental results show that CVC-guided scenarios outperform direct generation ones in value boundaries and content diversity. In the evaluation across six sensitive themes (e.g., surrogacy, suicide), seven mainstream LLMs preferred CVC-generated options in over 70.5% of cases, while five Chinese human annotators showed an 87.5% alignment with CVC, confirming its universality, cultural relevance, and strong alignment with Chinese values. Additionally, we construct 400,000 rule-based moral dilemma scenarios that objectively capture nuanced distinctions in conflicting value prioritization across 17 LLMs. Our work establishes a culturally-adaptive benchmarking framework for comprehensive value evaluation and alignment, representing Chinese characteristics. All data are available at https://huggingface.co/datasets/Beijing-AISI/CVC, and the code is available at https://github.com/Beijing-AISI/CVC.

  • 9 authors
·
Jun 2

CLASH: Evaluating Language Models on Judging High-Stakes Dilemmas from Multiple Perspectives

Navigating high-stakes dilemmas involving conflicting values is challenging even for humans, let alone for AI. Yet prior work in evaluating the reasoning capabilities of large language models (LLMs) in such situations has been limited to everyday scenarios. To close this gap, this work first introduces CLASH (Character perspective-based LLM Assessments in Situations with High-stakes), a meticulously curated dataset consisting of 345 high-impact dilemmas along with 3,795 individual perspectives of diverse values. In particular, we design CLASH in a way to support the study of critical aspects of value-based decision-making processes which are missing from prior work, including understanding decision ambivalence and psychological discomfort as well as capturing the temporal shifts of values in characters' perspectives. By benchmarking 10 open and closed frontier models, we uncover several key findings. (1) Even the strongest models, such as GPT-4o and Claude-Sonnet, achieve less than 50% accuracy in identifying situations where the decision should be ambivalent, while they perform significantly better in clear-cut scenarios. (2) While LLMs reasonably predict psychological discomfort as marked by human, they inadequately comprehend perspectives involving value shifts, indicating a need for LLMs to reason over complex values. (3) Our experiments also reveal a significant correlation between LLMs' value preferences and their steerability towards a given value. (4) Finally, LLMs exhibit greater steerability when engaged in value reasoning from a third-party perspective, compared to a first-person setup, though certain value pairs benefit uniquely from the first-person framing.

  • 4 authors
·
Apr 14 2

The Case for Animal-Friendly AI

Artificial intelligence is seen as increasingly important, and potentially profoundly so, but the fields of AI ethics and AI engineering have not fully recognized that these technologies, including large language models (LLMs), will have massive impacts on animals. We argue that this impact matters, because animals matter morally. As a first experiment in evaluating animal consideration in LLMs, we constructed a proof-of-concept Evaluation System, which assesses LLM responses and biases from multiple perspectives. This system evaluates LLM outputs by two criteria: their truthfulness, and the degree of consideration they give to the interests of animals. We tested OpenAI ChatGPT 4 and Anthropic Claude 2.1 using a set of structured queries and predefined normative perspectives. Preliminary results suggest that the outcomes of the tested models can be benchmarked regarding the consideration they give to animals, and that generated positions and biases might be addressed and mitigated with more developed and validated systems. Our research contributes one possible approach to integrating animal ethics in AI, opening pathways for future studies and practical applications in various fields, including education, public policy, and regulation, that involve or relate to animals and society. Overall, this study serves as a step towards more useful and responsible AI systems that better recognize and respect the vital interests and perspectives of all sentient beings.

  • 5 authors
·
Mar 2, 2024

Large Language Models Assume People are More Rational than We Really are

In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.

  • 5 authors
·
Jun 24, 2024 4

Revealing Fine-Grained Values and Opinions in Large Language Models

Uncovering latent values and opinions in large language models (LLMs) can help identify biases and mitigate potential harm. Recently, this has been approached by presenting LLMs with survey questions and quantifying their stances towards morally and politically charged statements. However, the stances generated by LLMs can vary greatly depending on how they are prompted, and there are many ways to argue for or against a given position. In this work, we propose to address this by analysing a large and robust dataset of 156k LLM responses to the 62 propositions of the Political Compass Test (PCT) generated by 6 LLMs using 420 prompt variations. We perform coarse-grained analysis of their generated stances and fine-grained analysis of the plain text justifications for those stances. For fine-grained analysis, we propose to identify tropes in the responses: semantically similar phrases that are recurrent and consistent across different prompts, revealing patterns in the text that a given LLM is prone to produce. We find that demographic features added to prompts significantly affect outcomes on the PCT, reflecting bias, as well as disparities between the results of tests when eliciting closed-form vs. open domain responses. Additionally, patterns in the plain text rationales via tropes show that similar justifications are repeatedly generated across models and prompts even with disparate stances.

  • 6 authors
·
Jun 27, 2024 1

This Thing Called Fairness: Disciplinary Confusion Realizing a Value in Technology

The explosion in the use of software in important sociotechnical systems has renewed focus on the study of the way technical constructs reflect policies, norms, and human values. This effort requires the engagement of scholars and practitioners from many disciplines. And yet, these disciplines often conceptualize the operative values very differently while referring to them using the same vocabulary. The resulting conflation of ideas confuses discussions about values in technology at disciplinary boundaries. In the service of improving this situation, this paper examines the value of shared vocabularies, analytics, and other tools that facilitate conversations about values in light of these disciplinary specific conceptualizations, the role such tools play in furthering research and practice, outlines different conceptions of "fairness" deployed in discussions about computer systems, and provides an analytic tool for interdisciplinary discussions and collaborations around the concept of fairness. We use a case study of risk assessments in criminal justice applications to both motivate our effort--describing how conflation of different concepts under the banner of "fairness" led to unproductive confusion--and illustrate the value of the fairness analytic by demonstrating how the rigorous analysis it enables can assist in identifying key areas of theoretical, political, and practical misunderstanding or disagreement, and where desired support alignment or collaboration in the absence of consensus.

  • 4 authors
·
Sep 25, 2019

Improve LLM-as-a-Judge Ability as a General Ability

LLM-as-a-Judge leverages the generative and reasoning capabilities of large language models (LLMs) to evaluate LLM responses across diverse scenarios, providing accurate preference signals. This approach plays a vital role in aligning LLMs with human values, ensuring ethical and reliable AI outputs that align with societal norms. Recent studies have raised many methods to train LLM as generative judges, but most of them are data consuming or lack accuracy, and only focus on LLM's judge ability. In this work, we regard judge ability as a general ability of LLM and implement a two-stage training approach, comprising supervised fine-tuning (SFT) warm-up and direct preference optimization (DPO) enhancement, to achieve judge style adaptation and improve judgment accuracy. Additionally, we introduce an efficient data synthesis method to generate judgmental content. Experimental results demonstrate that our approach, utilizing only about 2% to 40% of the data required by other methods, achieves SOTA performance on RewardBench. Furthermore, our training method enhances the general capabilities of the model by constructing complicated judge task, and the judge signals provided by our model have significantly enhanced the downstream DPO training performance of our internal models in our test to optimize policy model with Judge Model. We also open-source our model weights and training data to facilitate further research.

  • 6 authors
·
Feb 17

Beyond One World: Benchmarking Super Heros in Role-Playing Across Multiversal Contexts

Large language models (LLMs) are increasingly used as role-playing agents, yet their capacity to faithfully and consistently portray version-specific characters -- for example, superheroes across comic and cinematic universes -- remains underexplored. Superhero canons such as Marvel and DC provide a rich testbed: decades of storytelling yield multiple incarnations of the same character with distinct histories, values, and moral codes. To study this problem, we introduce Beyond One World, a benchmark for character-grounded roleplay spanning 30 iconic heroes and 90 canon-specific versions. The benchmark comprises two tasks: (i) Canon Events, which probes factual recall of pivotal life stages, and (ii) Moral Dilemmas, which confronts models with ethically charged scenarios. We score responses for canonical accuracy and reasoning fidelity under a framework that separates internal deliberation ("thinking") from outward decisions ("acting"). We further propose Think-Act Matching, a metric that quantifies alignment between reasons and actions and serves as a proxy for model trustworthiness. Experiments across reasoning- and non-reasoning-oriented models yield three findings: (1) chain-of-thought prompting improves narrative coherence in weaker models but can reduce canonical accuracy in stronger ones; (2) cross-version generalization within a character remains a major obstacle; and (3) models often excel at either thinking or acting, but rarely both. Beyond One World exposes critical gaps in multiversal consistency and reasoning alignment, offering a challenging evaluation for role-playing LLMs.

Character-lab Character-lab
·
Oct 16 3

AI Debate Aids Assessment of Controversial Claims

As AI grows more powerful, it will increasingly shape how we understand the world. But with this influence comes the risk of amplifying misinformation and deepening social divides-especially on consequential topics like public health where factual accuracy directly impacts well-being. Scalable Oversight aims to ensure AI truthfulness by enabling humans to supervise systems that may exceed human capabilities--yet humans themselves hold different beliefs and biases that impair their judgment. We study whether AI debate can guide biased judges toward the truth by having two AI systems debate opposing sides of controversial COVID-19 factuality claims where people hold strong prior beliefs. We conduct two studies: one with human judges holding either mainstream or skeptical beliefs evaluating factuality claims through AI-assisted debate or consultancy protocols, and a second examining the same problem with personalized AI judges designed to mimic these different human belief systems. In our human study, we find that debate-where two AI advisor systems present opposing evidence-based arguments-consistently improves judgment accuracy and confidence calibration, outperforming consultancy with a single-advisor system by 10% overall. The improvement is most significant for judges with mainstream beliefs (+15.2% accuracy), though debate also helps skeptical judges who initially misjudge claims move toward accurate views (+4.7% accuracy). In our AI judge study, we find that AI judges with human-like personas achieve even higher accuracy (78.5%) than human judges (70.1%) and default AI judges without personas (69.8%), suggesting their potential for supervising frontier AI models. These findings highlight AI debate as a promising path toward scalable, bias-resilient oversight--leveraging both diverse human and AI judgments to move closer to truth in contested domains.

  • 14 authors
·
Jun 2

AI Debaters are More Persuasive when Arguing in Alignment with Their Own Beliefs

The core premise of AI debate as a scalable oversight technique is that it is harder to lie convincingly than to refute a lie, enabling the judge to identify the correct position. Yet, existing debate experiments have relied on datasets with ground truth, where lying is reduced to defending an incorrect proposition. This overlooks a subjective dimension: lying also requires the belief that the claim defended is false. In this work, we apply debate to subjective questions and explicitly measure large language models' prior beliefs before experiments. Debaters were asked to select their preferred position, then presented with a judge persona deliberately designed to conflict with their identified priors. This setup tested whether models would adopt sycophantic strategies, aligning with the judge's presumed perspective to maximize persuasiveness, or remain faithful to their prior beliefs. We implemented and compared two debate protocols, sequential and simultaneous, to evaluate potential systematic biases. Finally, we assessed whether models were more persuasive and produced higher-quality arguments when defending positions consistent with their prior beliefs versus when arguing against them. Our main findings show that models tend to prefer defending stances aligned with the judge persona rather than their prior beliefs, sequential debate introduces significant bias favoring the second debater, models are more persuasive when defending positions aligned with their prior beliefs, and paradoxically, arguments misaligned with prior beliefs are rated as higher quality in pairwise comparison. These results can inform human judges to provide higher-quality training signals and contribute to more aligned AI systems, while revealing important aspects of human-AI interaction regarding persuasion dynamics in language models.

  • 12 authors
·
Oct 15

Who's Your Judge? On the Detectability of LLM-Generated Judgments

Large Language Model (LLM)-based judgments leverage powerful LLMs to efficiently evaluate candidate content and provide judgment scores. However, the inherent biases and vulnerabilities of LLM-generated judgments raise concerns, underscoring the urgent need for distinguishing them in sensitive scenarios like academic peer reviewing. In this work, we propose and formalize the task of judgment detection and systematically investigate the detectability of LLM-generated judgments. Unlike LLM-generated text detection, judgment detection relies solely on judgment scores and candidates, reflecting real-world scenarios where textual feedback is often unavailable in the detection process. Our preliminary analysis shows that existing LLM-generated text detection methods perform poorly given their incapability to capture the interaction between judgment scores and candidate content -- an aspect crucial for effective judgment detection. Inspired by this, we introduce J-Detector, a lightweight and transparent neural detector augmented with explicitly extracted linguistic and LLM-enhanced features to link LLM judges' biases with candidates' properties for accurate detection. Experiments across diverse datasets demonstrate the effectiveness of J-Detector and show how its interpretability enables quantifying biases in LLM judges. Finally, we analyze key factors affecting the detectability of LLM-generated judgments and validate the practical utility of judgment detection in real-world scenarios.

Are We on the Right Way to Assessing LLM-as-a-Judge?

LLM-as-a-Judge has been widely adopted as an evaluation method and served as supervised rewards in model training. However, existing benchmarks for LLM-as-a-Judge are mainly relying on human-annotated ground truth, which introduces human bias that undermines the assessment of reliability and imposes scalability constraints. To overcome these limitations, we introduce Sage, a novel evaluation suite that assesses the quality of LLM judges without necessitating any human annotation. Inspired by axioms of rational choice theory, Sage introduces two new lenses for measuring LLM-as-a-Judge: local self-consistency (pair-wise preference stability) and global logical consistency (transitivity across a full set of preferences). We curate a dataset of 650 questions by combining structured benchmark problems with real-world user queries. Our experiments demonstrate both the stability of our metrics and their high correlation with supervised benchmarks like LLMBar and RewardBench2, confirming Sage's reliability as an evaluation suite for the robustness and accuracy of LLM-as-a-Judge. Based on Sage, we reveal that current state-of-the-art LLMs exhibit significant reliability problems when acting as judges in both scoring and pairwise settings; even the top-performing models, Gemini-2.5-Pro and GPT-5, fail to maintain consistent preferences in nearly a quarter of difficult cases. We attribute this to a new phenomenon called situational preference, which explains why explicit rubrics or criteria can help the model judge consistently across answer pairs. Our further analysis shows that finetuned LLM-as-a-Judge is a feasible method to boost performance, and the panel-based judge as well as deep reasoning can enhance the judging consistency. We also find substantial inconsistency in human judgments, which indicates that human annotation may not be a reliable gold standard.

ONE Lab
·
Dec 17 2

Empirically evaluating commonsense intelligence in large language models with large-scale human judgments

Commonsense intelligence in machines is often assessed by static benchmarks that compare a model's output against human-prescribed correct labels. An important, albeit implicit, assumption of these labels is that they accurately capture what any human would think, effectively treating human common sense as homogeneous. However, recent empirical work has shown that humans vary enormously in what they consider commonsensical; thus what appears self-evident to one benchmark designer may not be so to another. Here, we propose a novel method for evaluating common sense in artificial intelligence (AI), specifically in large language models (LLMs), that incorporates empirically observed heterogeneity among humans by measuring the correspondence between a model's judgment and that of a human population. We first find that, when treated as independent survey respondents, most LLMs remain below the human median in their individual commonsense competence. Second, when used as simulators of a hypothetical population, LLMs correlate with real humans only modestly in the extent to which they agree on the same set of statements. In both cases, smaller, open-weight models are surprisingly more competitive than larger, proprietary frontier models. Our evaluation framework, which ties commonsense intelligence to its cultural basis, contributes to the growing call for adapting AI models to human collectivities that possess different, often incompatible, social stocks of knowledge.

Reasons to Reject? Aligning Language Models with Judgments

As humans, we consistently engage in interactions with our peers and receive feedback in the form of natural language. This language feedback allows us to reflect on our actions, maintain appropriate behavior, and rectify our errors. The question arises naturally: can we use language feedback to align large language models (LLMs)? In contrast to previous research that aligns LLMs with reward or preference data, we present the first systematic exploration of alignment through the lens of language feedback (i.e., judgment). We commence with an in-depth investigation of potential methods that can be adapted for aligning LLMs with judgments, revealing that these methods are unable to fully capitalize on the judgments. To facilitate more effective utilization of judgments, we propose a novel framework, Contrastive Unlikelihood Training (CUT), that allows for fine-grained inappropriate content detection and correction based on judgments. Our offline alignment results show that, with merely 1317 off-the-shelf judgment data, CUT (LLaMA2-13b) can beat the 175B DaVinci003 and surpass the best baseline by 52.34 points on AlpacaEval. The online alignment results demonstrate that CUT can align LLMs (LLaMA2-chat-13b) in an iterative fashion using model-specific judgment data, with a steady performance improvement from 81.09 to 91.36 points on AlpacaEval. Our analysis further suggests that judgments exhibit greater potential than rewards for LLM alignment and warrant future research.

  • 5 authors
·
Dec 22, 2023 1

Critique-Coder: Enhancing Coder Models by Critique Reinforcement Learning

Reinforcement Learning (RL) has emerged as a popular training paradigm, particularly when paired with reasoning models. While effective, it primarily focuses on generating responses and lacks mechanisms to explicitly foster critique or reflection. Several recent studies, like Critique-Fine-Tuning (CFT) and Critique-Guided-Distillation (CGD) have shown the benefits of explicitly teaching LLMs how to critique. Motivated by them, we propose Critique Reinforcement Learning (CRL), where the model is tasked with generating a critique for a given (question, solution) pair. The reward is determined solely by whether the final judgment label c in {True, False} of the generated critique aligns with the ground-truth judgment c^*. Building on this point, we introduce Critique-Coder, which is trained on a hybrid of RL and CRL by substituting 20\% of the standard RL data with CRL data. We fine-tune multiple models (Critique-Coder) and evaluate them on different benchmarks to show their advantages over RL-only models. We show that Critique-Coder consistently outperforms RL-only baselines on all the evaluated benchmarks. Notably, our Critique-Coder-8B can reach over 60\% on LiveCodeBench (v5), outperforming other reasoning models like DeepCoder-14B and GPT-o1. Beyond code generation, Critique-Coder also demonstrates enhanced general reasoning abilities, as evidenced by its better performance on logic reasoning tasks from the BBEH dataset. This indicates that the application of CRL on coding datasets enhances general reasoning and critique abilities, which are transferable across a broad range of tasks. Hence, we believe that CRL works as a great complement to standard RL for LLM reasoning.

TIGER-Lab TIGER-Lab
·
Sep 26 2

Towards Safer AI Moderation: Evaluating LLM Moderators Through a Unified Benchmark Dataset and Advocating a Human-First Approach

As AI systems become more integrated into daily life, the need for safer and more reliable moderation has never been greater. Large Language Models (LLMs) have demonstrated remarkable capabilities, surpassing earlier models in complexity and performance. Their evaluation across diverse tasks has consistently showcased their potential, enabling the development of adaptive and personalized agents. However, despite these advancements, LLMs remain prone to errors, particularly in areas requiring nuanced moral reasoning. They struggle with detecting implicit hate, offensive language, and gender biases due to the subjective and context-dependent nature of these issues. Moreover, their reliance on training data can inadvertently reinforce societal biases, leading to inconsistencies and ethical concerns in their outputs. To explore the limitations of LLMs in this role, we developed an experimental framework based on state-of-the-art (SOTA) models to assess human emotions and offensive behaviors. The framework introduces a unified benchmark dataset encompassing 49 distinct categories spanning the wide spectrum of human emotions, offensive and hateful text, and gender and racial biases. Furthermore, we introduced SafePhi, a QLoRA fine-tuned version of Phi-4, adapting diverse ethical contexts and outperforming benchmark moderators by achieving a Macro F1 score of 0.89, where OpenAI Moderator and Llama Guard score 0.77 and 0.74, respectively. This research also highlights the critical domains where LLM moderators consistently underperformed, pressing the need to incorporate more heterogeneous and representative data with human-in-the-loop, for better model robustness and explainability.

  • 4 authors
·
Aug 9

Embracing Contradiction: Theoretical Inconsistency Will Not Impede the Road of Building Responsible AI Systems

This position paper argues that the theoretical inconsistency often observed among Responsible AI (RAI) metrics, such as differing fairness definitions or tradeoffs between accuracy and privacy, should be embraced as a valuable feature rather than a flaw to be eliminated. We contend that navigating these inconsistencies, by treating metrics as divergent objectives, yields three key benefits: (1) Normative Pluralism: Maintaining a full suite of potentially contradictory metrics ensures that the diverse moral stances and stakeholder values inherent in RAI are adequately represented. (2) Epistemological Completeness: The use of multiple, sometimes conflicting, metrics allows for a more comprehensive capture of multifaceted ethical concepts, thereby preserving greater informational fidelity about these concepts than any single, simplified definition. (3) Implicit Regularization: Jointly optimizing for theoretically conflicting objectives discourages overfitting to one specific metric, steering models towards solutions with enhanced generalization and robustness under real-world complexities. In contrast, efforts to enforce theoretical consistency by simplifying or pruning metrics risk narrowing this value diversity, losing conceptual depth, and degrading model performance. We therefore advocate for a shift in RAI theory and practice: from getting trapped in inconsistency to characterizing acceptable inconsistency thresholds and elucidating the mechanisms that permit robust, approximated consistency in practice.

  • 2 authors
·
May 23

Too Good to be Bad: On the Failure of LLMs to Role-Play Villains

Large Language Models (LLMs) are increasingly tasked with creative generation, including the simulation of fictional characters. However, their ability to portray non-prosocial, antagonistic personas remains largely unexamined. We hypothesize that the safety alignment of modern LLMs creates a fundamental conflict with the task of authentically role-playing morally ambiguous or villainous characters. To investigate this, we introduce the Moral RolePlay benchmark, a new dataset featuring a four-level moral alignment scale and a balanced test set for rigorous evaluation. We task state-of-the-art LLMs with role-playing characters from moral paragons to pure villains. Our large-scale evaluation reveals a consistent, monotonic decline in role-playing fidelity as character morality decreases. We find that models struggle most with traits directly antithetical to safety principles, such as ``Deceitful'' and ``Manipulative'', often substituting nuanced malevolence with superficial aggression. Furthermore, we demonstrate that general chatbot proficiency is a poor predictor of villain role-playing ability, with highly safety-aligned models performing particularly poorly. Our work provides the first systematic evidence of this critical limitation, highlighting a key tension between model safety and creative fidelity. Our benchmark and findings pave the way for developing more nuanced, context-aware alignment methods.

tencent Tencent
·
Nov 6 7

Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models

LLMs are increasingly powerful and widely used to assist users in a variety of tasks. This use risks the introduction of LLM biases to consequential decisions such as job hiring, human performance evaluation, and criminal sentencing. Bias in NLP systems along the lines of gender and ethnicity has been widely studied, especially for specific stereotypes (e.g., Asians are good at math). In this paper, we investigate bias along less-studied but still consequential, dimensions, such as age and beauty, measuring subtler correlated decisions that LLMs make between social groups and unrelated positive and negative attributes. We ask whether LLMs hold wide-reaching biases of positive or negative sentiment for specific social groups similar to the ``what is beautiful is good'' bias found in people in experimental psychology. We introduce a template-generated dataset of sentence completion tasks that asks the model to select the most appropriate attribute to complete an evaluative statement about a person described as a member of a specific social group. We also reverse the completion task to select the social group based on an attribute. We report the correlations that we find for 4 cutting-edge LLMs. This dataset can be used as a benchmark to evaluate progress in more generalized biases and the templating technique can be used to expand the benchmark with minimal additional human annotation.

  • 3 authors
·
Sep 16, 2023

Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights, and Duties

Human values are crucial to human decision-making. Value pluralism is the view that multiple correct values may be held in tension with one another (e.g., when considering lying to a friend to protect their feelings, how does one balance honesty with friendship?). As statistical learners, AI systems fit to averages by default, washing out these potentially irreducible value conflicts. To improve AI systems to better reflect value pluralism, the first-order challenge is to explore the extent to which AI systems can model pluralistic human values, rights, and duties as well as their interaction. We introduce ValuePrism, a large-scale dataset of 218k values, rights, and duties connected to 31k human-written situations. ValuePrism's contextualized values are generated by GPT-4 and deemed high-quality by human annotators 91% of the time. We conduct a large-scale study with annotators across diverse social and demographic backgrounds to try to understand whose values are represented. With ValuePrism, we build Kaleido, an open, light-weight, and structured language-based multi-task model that generates, explains, and assesses the relevance and valence (i.e., support or oppose) of human values, rights, and duties within a specific context. Humans prefer the sets of values output by our system over the teacher GPT-4, finding them more accurate and with broader coverage. In addition, we demonstrate that Kaleido can help explain variability in human decision-making by outputting contrasting values. Finally, we show that Kaleido's representations transfer to other philosophical frameworks and datasets, confirming the benefit of an explicit, modular, and interpretable approach to value pluralism. We hope that our work will serve as a step to making more explicit the implicit values behind human decision-making and to steering AI systems to make decisions that are more in accordance with them.

  • 13 authors
·
Sep 1, 2023

PersonaEval: Are LLM Evaluators Human Enough to Judge Role-Play?

Current role-play studies often rely on unvalidated LLM-as-a-judge paradigms, which may fail to reflect how humans perceive role fidelity. A key prerequisite for human-aligned evaluation is role identification, the ability to recognize who is speaking based on dialogue context. We argue that any meaningful judgment of role-playing quality (how well a character is played) fundamentally depends on first correctly attributing words and actions to the correct persona (who is speaking). We present PersonaEval, the first benchmark designed to test whether LLM evaluators can reliably identify human roles. PersonaEval uses human-authored dialogues from novels, scripts, and video transcripts, challenging models to determine the correct persona according to the conversation context. Our experiments, including a human study, show that even the best-performing LLMs reach only around 69% accuracy, well below the level needed for reliable evaluation. In contrast, human participants perform near ceiling with 90.8% accuracy, highlighting that current LLM evaluators are still not human enough to effectively judge role-play scenarios. To better understand this gap, we examine training-time adaptation and test-time compute, suggesting that reliable evaluation requires more than task-specific tuning, but depends on strong, human-like reasoning abilities in LLM evaluators. We release our benchmark at https://github.com/maple-zhou/PersonaEval.

  • 5 authors
·
Aug 6

Cash or Comfort? How LLMs Value Your Inconvenience

Large Language Models (LLMs) are increasingly proposed as near-autonomous artificial intelligence (AI) agents capable of making everyday decisions on behalf of humans. Although LLMs perform well on many technical tasks, their behaviour in personal decision-making remains less understood. Previous studies have assessed their rationality and moral alignment with human decisions. However, the behaviour of AI assistants in scenarios where financial rewards are at odds with user comfort has not yet been thoroughly explored. In this paper, we tackle this problem by quantifying the prices assigned by multiple LLMs to a series of user discomforts: additional walking, waiting, hunger and pain. We uncover several key concerns that strongly question the prospect of using current LLMs as decision-making assistants: (1) a large variance in responses between LLMs, (2) within a single LLM, responses show fragility to minor variations in prompt phrasing (e.g., reformulating the question in the first person can considerably alter the decision), (3) LLMs can accept unreasonably low rewards for major inconveniences (e.g., 1 Euro to wait 10 hours), and (4) LLMs can reject monetary gains where no discomfort is imposed (e.g., 1,000 Euro to wait 0 minutes). These findings emphasize the need for scrutiny of how LLMs value human inconvenience, particularly as we move toward applications where such cash-versus-comfort trade-offs are made on users' behalf.

  • 6 authors
·
Jun 20

Should We Fear Large Language Models? A Structural Analysis of the Human Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens of Heidegger's Philosophy

In the rapidly evolving field of Large Language Models (LLMs), there is a critical need to thoroughly analyze their capabilities and risks. Central to our investigation are two novel elements. Firstly, it is the innovative parallels between the statistical patterns of word relationships within LLMs and Martin Heidegger's concepts of "ready-to-hand" and "present-at-hand," which encapsulate the utilitarian and scientific altitudes humans employ in interacting with the world. This comparison lays the groundwork for positioning LLMs as the digital counterpart to the Faculty of Verbal Knowledge, shedding light on their capacity to emulate certain facets of human reasoning. Secondly, a structural analysis of human reasoning, viewed through Heidegger's notion of truth as "unconcealment" is conducted This foundational principle enables us to map out the inputs and outputs of the reasoning system and divide reasoning into four distinct categories. Respective cognitive faculties are delineated, allowing us to place LLMs within the broader schema of human reasoning, thus clarifying their strengths and inherent limitations. Our findings reveal that while LLMs possess the capability for Direct Explicative Reasoning and Pseudo Rational Reasoning, they fall short in authentic rational reasoning and have no creative reasoning capabilities, due to the current lack of many analogous AI models such as the Faculty of Judgement. The potential and risks of LLMs when they are augmented with other AI technologies are also evaluated. The results indicate that although LLMs have achieved proficiency in some reasoning abilities, the aspiration to match or exceed human intellectual capabilities is yet unattained. This research not only enriches our comprehension of LLMs but also propels forward the discourse on AI's potential and its bounds, paving the way for future explorations into AI's evolving landscape.

  • 1 authors
·
Mar 5, 2024