95 The GAN is dead; long live the GAN! A Modern GAN Baseline There is a widely-spread claim that GANs are difficult to train, and GAN architectures in the literature are littered with empirical tricks. We provide evidence against this claim and build a modern GAN baseline in a more principled manner. First, we derive a well-behaved regularized relativistic GAN loss that addresses issues of mode dropping and non-convergence that were previously tackled via a bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits local convergence guarantees, unlike most existing relativistic losses. Second, our new loss allows us to discard all ad-hoc tricks and replace outdated backbones used in common GANs with modern architectures. Using StyleGAN2 as an example, we present a roadmap of simplification and modernization that results in a new minimalist baseline -- R3GAN. Despite being simple, our approach surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets, and compares favorably against state-of-the-art GANs and diffusion models. 4 authors · Jan 9, 2025 5
- ModEFormer: Modality-Preserving Embedding for Audio-Video Synchronization using Transformers Lack of audio-video synchronization is a common problem during television broadcasts and video conferencing, leading to an unsatisfactory viewing experience. A widely accepted paradigm is to create an error detection mechanism that identifies the cases when audio is leading or lagging. We propose ModEFormer, which independently extracts audio and video embeddings using modality-specific transformers. Different from the other transformer-based approaches, ModEFormer preserves the modality of the input streams which allows us to use a larger batch size with more negative audio samples for contrastive learning. Further, we propose a trade-off between the number of negative samples and number of unique samples in a batch to significantly exceed the performance of previous methods. Experimental results show that ModEFormer achieves state-of-the-art performance, 94.5% for LRS2 and 90.9% for LRS3. Finally, we demonstrate how ModEFormer can be used for offset detection for test clips. 3 authors · Mar 20, 2023
- Enhancing Neural Training via a Correlated Dynamics Model As neural networks grow in scale, their training becomes both computationally demanding and rich in dynamics. Amidst the flourishing interest in these training dynamics, we present a novel observation: Parameters during training exhibit intrinsic correlations over time. Capitalizing on this, we introduce Correlation Mode Decomposition (CMD). This algorithm clusters the parameter space into groups, termed modes, that display synchronized behavior across epochs. This enables CMD to efficiently represent the training dynamics of complex networks, like ResNets and Transformers, using only a few modes. Moreover, test set generalization is enhanced. We introduce an efficient CMD variant, designed to run concurrently with training. Our experiments indicate that CMD surpasses the state-of-the-art method for compactly modeled dynamics on image classification. Our modeling can improve training efficiency and lower communication overhead, as shown by our preliminary experiments in the context of federated learning. 6 authors · Dec 20, 2023
- It's Never Too Late: Noise Optimization for Collapse Recovery in Trained Diffusion Models Contemporary text-to-image models exhibit a surprising degree of mode collapse, as can be seen when sampling several images given the same text prompt. While previous work has attempted to address this issue by steering the model using guidance mechanisms, or by generating a large pool of candidates and refining them, in this work we take a different direction and aim for diversity in generations via noise optimization. Specifically, we show that a simple noise optimization objective can mitigate mode collapse while preserving the fidelity of the base model. We also analyze the frequency characteristics of the noise and show that alternative noise initializations with different frequency profiles can improve both optimization and search. Our experiments demonstrate that noise optimization yields superior results in terms of generation quality and variety. 5 authors · Dec 31, 2025