Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAdaptive Estimators Show Information Compression in Deep Neural Networks
To improve how neural networks function it is crucial to understand their learning process. The information bottleneck theory of deep learning proposes that neural networks achieve good generalization by compressing their representations to disregard information that is not relevant to the task. However, empirical evidence for this theory is conflicting, as compression was only observed when networks used saturating activation functions. In contrast, networks with non-saturating activation functions achieved comparable levels of task performance but did not show compression. In this paper we developed more robust mutual information estimation techniques, that adapt to hidden activity of neural networks and produce more sensitive measurements of activations from all functions, especially unbounded functions. Using these adaptive estimation techniques, we explored compression in networks with a range of different activation functions. With two improved methods of estimation, firstly, we show that saturation of the activation function is not required for compression, and the amount of compression varies between different activation functions. We also find that there is a large amount of variation in compression between different network initializations. Secondary, we see that L2 regularization leads to significantly increased compression, while preventing overfitting. Finally, we show that only compression of the last layer is positively correlated with generalization.
FEAT: Free energy Estimators with Adaptive Transport
We present Free energy Estimators with Adaptive Transport (FEAT), a novel framework for free energy estimation -- a critical challenge across scientific domains. FEAT leverages learned transports implemented via stochastic interpolants and provides consistent, minimum-variance estimators based on escorted Jarzynski equality and controlled Crooks theorem, alongside variational upper and lower bounds on free energy differences. Unifying equilibrium and non-equilibrium methods under a single theoretical framework, FEAT establishes a principled foundation for neural free energy calculations. Experimental validation on toy examples, molecular simulations, and quantum field theory demonstrates improvements over existing learning-based methods.
Panoptic animal pose estimators are zero-shot performers
Animal pose estimation is critical in applications ranging from life science research, agriculture, to veterinary medicine. Compared to human pose estimation, the performance of animal pose estimation is limited by the size of available datasets and the generalization of a model across datasets. Typically different keypoints are labeled regardless of whether the species are the same or not, leaving animal pose datasets to have disjoint or partially overlapping keypoints. As a consequence, a model cannot be used as a plug-and-play solution across datasets. This reality motivates us to develop panoptic animal pose estimation models that are able to predict keypoints defined in all datasets. In this work we propose a simple yet effective way to merge differentially labeled datasets to obtain the largest quadruped and lab mouse pose dataset. Using a gradient masking technique, so called SuperAnimal-models are able to predict keypoints that are distributed across datasets and exhibit strong zero-shot performance. The models can be further improved by (pseudo) labeled fine-tuning. These models outperform ImageNet-initialized models.
Kernel Density Estimators in Large Dimensions
This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings.
Extending 6D Object Pose Estimators for Stereo Vision
Estimating the 6D pose of objects accurately, quickly, and robustly remains a difficult task. However, recent methods for directly regressing poses from RGB images using dense features have achieved state-of-the-art results. Stereo vision, which provides an additional perspective on the object, can help reduce pose ambiguity and occlusion. Moreover, stereo can directly infer the distance of an object, while mono-vision requires internalized knowledge of the object's size. To extend the state-of-the-art in 6D object pose estimation to stereo, we created a BOP compatible stereo version of the YCB-V dataset. Our method outperforms state-of-the-art 6D pose estimation algorithms by utilizing stereo vision and can easily be adopted for other dense feature-based algorithms.
Grokking in Linear Estimators -- A Solvable Model that Groks without Understanding
Grokking is the intriguing phenomenon where a model learns to generalize long after it has fit the training data. We show both analytically and numerically that grokking can surprisingly occur in linear networks performing linear tasks in a simple teacher-student setup with Gaussian inputs. In this setting, the full training dynamics is derived in terms of the training and generalization data covariance matrix. We present exact predictions on how the grokking time depends on input and output dimensionality, train sample size, regularization, and network initialization. We demonstrate that the sharp increase in generalization accuracy may not imply a transition from "memorization" to "understanding", but can simply be an artifact of the accuracy measure. We provide empirical verification for our calculations, along with preliminary results indicating that some predictions also hold for deeper networks, with non-linear activations.
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Likelihood-free inference methods typically make use of a distance between simulated and real data. A common example is the maximum mean discrepancy (MMD), which has previously been used for approximate Bayesian computation, minimum distance estimation, generalised Bayesian inference, and within the nonparametric learning framework. The MMD is commonly estimated at a root-m rate, where m is the number of simulated samples. This can lead to significant computational challenges since a large m is required to obtain an accurate estimate, which is crucial for parameter estimation. In this paper, we propose a novel estimator for the MMD with significantly improved sample complexity. The estimator is particularly well suited for computationally expensive smooth simulators with low- to mid-dimensional inputs. This claim is supported through both theoretical results and an extensive simulation study on benchmark simulators.
Unifying Gradient Estimators for Meta-Reinforcement Learning via Off-Policy Evaluation
Model-agnostic meta-reinforcement learning requires estimating the Hessian matrix of value functions. This is challenging from an implementation perspective, as repeatedly differentiating policy gradient estimates may lead to biased Hessian estimates. In this work, we provide a unifying framework for estimating higher-order derivatives of value functions, based on off-policy evaluation. Our framework interprets a number of prior approaches as special cases and elucidates the bias and variance trade-off of Hessian estimates. This framework also opens the door to a new family of estimates, which can be easily implemented with auto-differentiation libraries, and lead to performance gains in practice.
Removing Cost Volumes from Optical Flow Estimators
Cost volumes are used in every modern optical flow estimator, but due to their computational and space complexity, they are often a limiting factor regarding both processing speed and the resolution of input frames. Motivated by our empirical observation that cost volumes lose their importance once all other network parts of, e.g., a RAFT-based pipeline have been sufficiently trained, we introduce a training strategy that allows removing the cost volume from optical flow estimators throughout training. This leads to significantly improved inference speed and reduced memory requirements. Using our training strategy, we create three different models covering different compute budgets. Our most accurate model reaches state-of-the-art accuracy while being 1.2times faster and having a 6times lower memory footprint than comparable models; our fastest model is capable of processing Full HD frames at 20,FPS using only 500,MB of GPU memory.
Fast and Unified Path Gradient Estimators for Normalizing Flows
Recent work shows that path gradient estimators for normalizing flows have lower variance compared to standard estimators for variational inference, resulting in improved training. However, they are often prohibitively more expensive from a computational point of view and cannot be applied to maximum likelihood training in a scalable manner, which severely hinders their widespread adoption. In this work, we overcome these crucial limitations. Specifically, we propose a fast path gradient estimator which improves computational efficiency significantly and works for all normalizing flow architectures of practical relevance. We then show that this estimator can also be applied to maximum likelihood training for which it has a regularizing effect as it can take the form of a given target energy function into account. We empirically establish its superior performance and reduced variance for several natural sciences applications.
Diffusion Models are Minimax Optimal Distribution Estimators
While efficient distribution learning is no doubt behind the groundbreaking success of diffusion modeling, its theoretical guarantees are quite limited. In this paper, we provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling for well-known function spaces. The highlight of this paper is that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates in the total variation distance and in the Wasserstein distance of order one. Furthermore, we extend our theory to demonstrate how diffusion models adapt to low-dimensional data distributions. We expect these results advance theoretical understandings of diffusion modeling and its ability to generate verisimilar outputs.
Sampling-Based Accuracy Testing of Posterior Estimators for General Inference
Parameter inference, i.e. inferring the posterior distribution of the parameters of a statistical model given some data, is a central problem to many scientific disciplines. Generative models can be used as an alternative to Markov Chain Monte Carlo methods for conducting posterior inference, both in likelihood-based and simulation-based problems. However, assessing the accuracy of posteriors encoded in generative models is not straightforward. In this paper, we introduce `Tests of Accuracy with Random Points' (TARP) coverage testing as a method to estimate coverage probabilities of generative posterior estimators. Our method differs from previously-existing coverage-based methods, which require posterior evaluations. We prove that our approach is necessary and sufficient to show that a posterior estimator is accurate. We demonstrate the method on a variety of synthetic examples, and show that TARP can be used to test the results of posterior inference analyses in high-dimensional spaces. We also show that our method can detect inaccurate inferences in cases where existing methods fail.
GENNAPE: Towards Generalized Neural Architecture Performance Estimators
Predicting neural architecture performance is a challenging task and is crucial to neural architecture design and search. Existing approaches either rely on neural performance predictors which are limited to modeling architectures in a predefined design space involving specific sets of operators and connection rules, and cannot generalize to unseen architectures, or resort to zero-cost proxies which are not always accurate. In this paper, we propose GENNAPE, a Generalized Neural Architecture Performance Estimator, which is pretrained on open neural architecture benchmarks, and aims to generalize to completely unseen architectures through combined innovations in network representation, contrastive pretraining, and fuzzy clustering-based predictor ensemble. Specifically, GENNAPE represents a given neural network as a Computation Graph (CG) of atomic operations which can model an arbitrary architecture. It first learns a graph encoder via Contrastive Learning to encourage network separation by topological features, and then trains multiple predictor heads, which are soft-aggregated according to the fuzzy membership of a neural network. Experiments show that GENNAPE pretrained on NAS-Bench-101 can achieve superior transferability to 5 different public neural network benchmarks, including NAS-Bench-201, NAS-Bench-301, MobileNet and ResNet families under no or minimum fine-tuning. We further introduce 3 challenging newly labelled neural network benchmarks: HiAML, Inception and Two-Path, which can concentrate in narrow accuracy ranges. Extensive experiments show that GENNAPE can correctly discern high-performance architectures in these families. Finally, when paired with a search algorithm, GENNAPE can find architectures that improve accuracy while reducing FLOPs on three families.
Reasons for the Superiority of Stochastic Estimators over Deterministic Ones: Robustness, Consistency and Perceptual Quality
Stochastic restoration algorithms allow to explore the space of solutions that correspond to the degraded input. In this paper we reveal additional fundamental advantages of stochastic methods over deterministic ones, which further motivate their use. First, we prove that any restoration algorithm that attains perfect perceptual quality and whose outputs are consistent with the input must be a posterior sampler, and is thus required to be stochastic. Second, we illustrate that while deterministic restoration algorithms may attain high perceptual quality, this can be achieved only by filling up the space of all possible source images using an extremely sensitive mapping, which makes them highly vulnerable to adversarial attacks. Indeed, we show that enforcing deterministic models to be robust to such attacks profoundly hinders their perceptual quality, while robustifying stochastic models hardly influences their perceptual quality, and improves their output variability. These findings provide a motivation to foster progress in stochastic restoration methods, paving the way to better recovery algorithms.
Understanding the Limitations of Variational Mutual Information Estimators
Variational approaches based on neural networks are showing promise for estimating mutual information (MI) between high dimensional variables. However, they can be difficult to use in practice due to poorly understood bias/variance tradeoffs. We theoretically show that, under some conditions, estimators such as MINE exhibit variance that could grow exponentially with the true amount of underlying MI. We also empirically demonstrate that existing estimators fail to satisfy basic self-consistency properties of MI, such as data processing and additivity under independence. Based on a unified perspective of variational approaches, we develop a new estimator that focuses on variance reduction. Empirical results on standard benchmark tasks demonstrate that our proposed estimator exhibits improved bias-variance trade-offs on standard benchmark tasks.
Are Large Language Models State-of-the-art Quality Estimators for Machine Translation of User-generated Content?
This paper investigates whether large language models (LLMs) are state-of-the-art quality estimators for machine translation of user-generated content (UGC) that contains emotional expressions, without the use of reference translations. To achieve this, we employ an existing emotion-related dataset with human-annotated errors and calculate quality evaluation scores based on the Multi-dimensional Quality Metrics. We compare the accuracy of several LLMs with that of our fine-tuned baseline models, under in-context learning and parameter-efficient fine-tuning (PEFT) scenarios. We find that PEFT of LLMs leads to better performance in score prediction with human interpretable explanations than fine-tuned models. However, a manual analysis of LLM outputs reveals that they still have problems such as refusal to reply to a prompt and unstable output while evaluating machine translation of UGC.
Motion Guidance: Diffusion-Based Image Editing with Differentiable Motion Estimators
Diffusion models are capable of generating impressive images conditioned on text descriptions, and extensions of these models allow users to edit images at a relatively coarse scale. However, the ability to precisely edit the layout, position, pose, and shape of objects in images with diffusion models is still difficult. To this end, we propose motion guidance, a zero-shot technique that allows a user to specify dense, complex motion fields that indicate where each pixel in an image should move. Motion guidance works by steering the diffusion sampling process with the gradients through an off-the-shelf optical flow network. Specifically, we design a guidance loss that encourages the sample to have the desired motion, as estimated by a flow network, while also being visually similar to the source image. By simultaneously sampling from a diffusion model and guiding the sample to have low guidance loss, we can obtain a motion-edited image. We demonstrate that our technique works on complex motions and produces high quality edits of real and generated images.
Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators
A collection of robust Mahalanobis distances for multivariate outlier detection is proposed, based on the notion of shrinkage. Robust intensity and scaling factors are optimally estimated to define the shrinkage. Some properties are investigated, such as affine equivariance and breakdown value. The performance of the proposal is illustrated through the comparison to other techniques from the literature, in a simulation study and with a real dataset. The behavior when the underlying distribution is heavy-tailed or skewed, shows the appropriateness of the method when we deviate from the common assumption of normality. The resulting high correct detection rates and low false detection rates in the vast majority of cases, as well as the significantly smaller computation time shows the advantages of our proposal.
FreeReg: Image-to-Point Cloud Registration Leveraging Pretrained Diffusion Models and Monocular Depth Estimators
Matching cross-modality features between images and point clouds is a fundamental problem for image-to-point cloud registration. However, due to the modality difference between images and points, it is difficult to learn robust and discriminative cross-modality features by existing metric learning methods for feature matching. Instead of applying metric learning on cross-modality data, we propose to unify the modality between images and point clouds by pretrained large-scale models first, and then establish robust correspondence within the same modality. We show that the intermediate features, called diffusion features, extracted by depth-to-image diffusion models are semantically consistent between images and point clouds, which enables the building of coarse but robust cross-modality correspondences. We further extract geometric features on depth maps produced by the monocular depth estimator. By matching such geometric features, we significantly improve the accuracy of the coarse correspondences produced by diffusion features. Extensive experiments demonstrate that without any task-specific training, direct utilization of both features produces accurate image-to-point cloud registration. On three public indoor and outdoor benchmarks, the proposed method averagely achieves a 20.6 percent improvement in Inlier Ratio, a three-fold higher Inlier Number, and a 48.6 percent improvement in Registration Recall than existing state-of-the-arts.
Escaping saddle points in zeroth-order optimization: the power of two-point estimators
Two-point zeroth order methods are important in many applications of zeroth-order optimization, such as robotics, wind farms, power systems, online optimization, and adversarial robustness to black-box attacks in deep neural networks, where the problem may be high-dimensional and/or time-varying. Most problems in these applications are nonconvex and contain saddle points. While existing works have shown that zeroth-order methods utilizing Omega(d) function valuations per iteration (with d denoting the problem dimension) can escape saddle points efficiently, it remains an open question if zeroth-order methods based on two-point estimators can escape saddle points. In this paper, we show that by adding an appropriate isotropic perturbation at each iteration, a zeroth-order algorithm based on 2m (for any 1 leq m leq d) function evaluations per iteration can not only find epsilon-second order stationary points polynomially fast, but do so using only Oleft(d{mepsilon^{2}psi}right) function evaluations, where psi geq Omegaleft(epsilonright) is a parameter capturing the extent to which the function of interest exhibits the strict saddle property.
Estimation Beyond Data Reweighting: Kernel Method of Moments
Moment restrictions and their conditional counterparts emerge in many areas of machine learning and statistics ranging from causal inference to reinforcement learning. Estimators for these tasks, generally called methods of moments, include the prominent generalized method of moments (GMM) which has recently gained attention in causal inference. GMM is a special case of the broader family of empirical likelihood estimators which are based on approximating a population distribution by means of minimizing a varphi-divergence to an empirical distribution. However, the use of varphi-divergences effectively limits the candidate distributions to reweightings of the data samples. We lift this long-standing limitation and provide a method of moments that goes beyond data reweighting. This is achieved by defining an empirical likelihood estimator based on maximum mean discrepancy which we term the kernel method of moments (KMM). We provide a variant of our estimator for conditional moment restrictions and show that it is asymptotically first-order optimal for such problems. Finally, we show that our method achieves competitive performance on several conditional moment restriction tasks.
Learning Invariant Representations with Missing Data
Spurious correlations allow flexible models to predict well during training but poorly on related test distributions. Recent work has shown that models that satisfy particular independencies involving correlation-inducing nuisance variables have guarantees on their test performance. Enforcing such independencies requires nuisances to be observed during training. However, nuisances, such as demographics or image background labels, are often missing. Enforcing independence on just the observed data does not imply independence on the entire population. Here we derive mmd estimators used for invariance objectives under missing nuisances. On simulations and clinical data, optimizing through these estimates achieves test performance similar to using estimators that make use of the full data.
CO2-Meter: A Comprehensive Carbon Footprint Estimator for LLMs on Edge Devices
LLMs have transformed NLP, yet deploying them on edge devices poses great carbon challenges. Prior estimators remain incomplete, neglecting peripheral energy use, distinct prefill/decode behaviors, and SoC design complexity. This paper presents CO2-Meter, a unified framework for estimating operational and embodied carbon in LLM edge inference. Contributions include: (1) equation-based peripheral energy models and datasets; (2) a GNN-based predictor with phase-specific LLM energy data; (3) a unit-level embodied carbon model for SoC bottleneck analysis; and (4) validation showing superior accuracy over prior methods. Case studies show CO2-Meter's effectiveness in identifying carbon hotspots and guiding sustainable LLM design on edge platforms. Source code: https://github.com/fuzhenxiao/CO2-Meter
d2: Improved Techniques for Training Reasoning Diffusion Language Models
While diffusion language models (DLMs) have achieved competitive performance in text generation, improving their reasoning ability with reinforcement learning remains an active research area. Here, we introduce d2, a reasoning framework tailored for masked DLMs. Central to our framework is a new policy gradient algorithm that relies on properties of masking to accurately estimate the likelihoods of sampling trajectories. Our estimators trade off computation for approximation accuracy in an analytically tractable manner, and are particularly effective for DLMs that support any-order likelihood estimation. We characterize and study this property in popular DLMs and show that it is key for efficient diffusion-based reasoning. Empirically, d2 significantly improves over previous diffusion reasoning frameworks using only RL (without relying on supervised fine-tuning), and sets a new state-of-the-art performance for DLMs on logical reasoning tasks (Countdown and Sudoku) and math reasoning benchmarks (GSM8K and MATH500).
BLADE: Single-view Body Mesh Learning through Accurate Depth Estimation
Single-image human mesh recovery is a challenging task due to the ill-posed nature of simultaneous body shape, pose, and camera estimation. Existing estimators work well on images taken from afar, but they break down as the person moves close to the camera. Moreover, current methods fail to achieve both accurate 3D pose and 2D alignment at the same time. Error is mainly introduced by inaccurate perspective projection heuristically derived from orthographic parameters. To resolve this long-standing challenge, we present our method BLADE which accurately recovers perspective parameters from a single image without heuristic assumptions. We start from the inverse relationship between perspective distortion and the person's Z-translation Tz, and we show that Tz can be reliably estimated from the image. We then discuss the important role of Tz for accurate human mesh recovery estimated from close-range images. Finally, we show that, once Tz and the 3D human mesh are estimated, one can accurately recover the focal length and full 3D translation. Extensive experiments on standard benchmarks and real-world close-range images show that our method is the first to accurately recover projection parameters from a single image, and consequently attain state-of-the-art accuracy on 3D pose estimation and 2D alignment for a wide range of images. https://research.nvidia.com/labs/amri/projects/blade/
Plug-and-Play Acceleration of Occupancy Grid-based NeRF Rendering using VDB Grid and Hierarchical Ray Traversal
Transmittance estimators such as Occupancy Grid (OG) can accelerate the training and rendering of Neural Radiance Field (NeRF) by predicting important samples that contributes much to the generated image. However, OG manages occupied regions in the form of the dense binary grid, in which there are many blocks with the same values that cause redundant examination of voxels' emptiness in ray-tracing. In our work, we introduce two techniques to improve the efficiency of ray-tracing in trained OG without fine-tuning. First, we replace the dense grids with VDB grids to reduce the spatial redundancy. Second, we use hierarchical digital differential analyzer (HDDA) to efficiently trace voxels in the VDB grids. Our experiments on NeRF-Synthetic and Mip-NeRF 360 datasets show that our proposed method successfully accelerates rendering NeRF-Synthetic dataset by 12% in average and Mip-NeRF 360 dataset by 4% in average, compared to a fast implementation of OG, NerfAcc, without losing the quality of rendered images.
On the Identifiability and Estimation of Causal Location-Scale Noise Models
We study the class of location-scale or heteroscedastic noise models (LSNMs), in which the effect Y can be written as a function of the cause X and a noise source N independent of X, which may be scaled by a positive function g over the cause, i.e., Y = f(X) + g(X)N. Despite the generality of the model class, we show the causal direction is identifiable up to some pathological cases. To empirically validate these theoretical findings, we propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks. Both model the conditional distribution of Y given X as a Gaussian parameterized by its natural parameters. When the feature maps are correctly specified, we prove that our estimator is jointly concave, and a consistent estimator for the cause-effect identification task. Although the the neural network does not inherit those guarantees, it can fit functions of arbitrary complexity, and reaches state-of-the-art performance across benchmarks.
Multiple outlier detection tests for parametric models
We propose a simple multiple outlier identification method for parametric location-scale and shape-scale models when the number of possible outliers is not specified. The method is based on a result giving asymptotic properties of extreme z-scores. Robust estimators of model parameters are used defining z-scores. An extensive simulation study was done for comparing of the proposed method with existing methods. For the normal family, the method is compared with the well known Davies-Gather, Rosner's, Hawking's and Bolshev's multiple outlier identification methods. The choice of an upper limit for the number of possible outliers in case of Rosner's test application is discussed. For other families, the proposed method is compared with a method generalizing Gather-Davies method. In most situations, the new method has the highest outlier identification power in terms of masking and swamping values. We also created R package outliersTests for proposed test.
Direct Estimation of Information Divergence Using Nearest Neighbor Ratios
We propose a direct estimation method for R\'{e}nyi and f-divergence measures based on a new graph theoretical interpretation. Suppose that we are given two sample sets X and Y, respectively with N and M samples, where eta:=M/N is a constant value. Considering the k-nearest neighbor (k-NN) graph of Y in the joint data set (X,Y), we show that the average powered ratio of the number of X points to the number of Y points among all k-NN points is proportional to R\'{e}nyi divergence of X and Y densities. A similar method can also be used to estimate f-divergence measures. We derive bias and variance rates, and show that for the class of gamma-H\"{o}lder smooth functions, the estimator achieves the MSE rate of O(N^{-2gamma/(gamma+d)}). Furthermore, by using a weighted ensemble estimation technique, for density functions with continuous and bounded derivatives of up to the order d, and some extra conditions at the support set boundary, we derive an ensemble estimator that achieves the parametric MSE rate of O(1/N). Our estimators are more computationally tractable than other competing estimators, which makes them appealing in many practical applications.
Jumping Ahead: Improving Reconstruction Fidelity with JumpReLU Sparse Autoencoders
Sparse autoencoders (SAEs) are a promising unsupervised approach for identifying causally relevant and interpretable linear features in a language model's (LM) activations. To be useful for downstream tasks, SAEs need to decompose LM activations faithfully; yet to be interpretable the decomposition must be sparse -- two objectives that are in tension. In this paper, we introduce JumpReLU SAEs, which achieve state-of-the-art reconstruction fidelity at a given sparsity level on Gemma 2 9B activations, compared to other recent advances such as Gated and TopK SAEs. We also show that this improvement does not come at the cost of interpretability through manual and automated interpretability studies. JumpReLU SAEs are a simple modification of vanilla (ReLU) SAEs -- where we replace the ReLU with a discontinuous JumpReLU activation function -- and are similarly efficient to train and run. By utilising straight-through-estimators (STEs) in a principled manner, we show how it is possible to train JumpReLU SAEs effectively despite the discontinuous JumpReLU function introduced in the SAE's forward pass. Similarly, we use STEs to directly train L0 to be sparse, instead of training on proxies such as L1, avoiding problems like shrinkage.
Unbalancedness in Neural Monge Maps Improves Unpaired Domain Translation
In optimal transport (OT), a Monge map is known as a mapping that transports a source distribution to a target distribution in the most cost-efficient way. Recently, multiple neural estimators for Monge maps have been developed and applied in diverse unpaired domain translation tasks, e.g. in single-cell biology and computer vision. However, the classic OT framework enforces mass conservation, which makes it prone to outliers and limits its applicability in real-world scenarios. The latter can be particularly harmful in OT domain translation tasks, where the relative position of a sample within a distribution is explicitly taken into account. While unbalanced OT tackles this challenge in the discrete setting, its integration into neural Monge map estimators has received limited attention. We propose a theoretically grounded method to incorporate unbalancedness into any Monge map estimator. We improve existing estimators to model cell trajectories over time and to predict cellular responses to perturbations. Moreover, our approach seamlessly integrates with the OT flow matching (OT-FM) framework. While we show that OT-FM performs competitively in image translation, we further improve performance by incorporating unbalancedness (UOT-FM), which better preserves relevant features. We hence establish UOT-FM as a principled method for unpaired image translation.
Zero-Variance Gradients for Variational Autoencoders
Training deep generative models like Variational Autoencoders (VAEs) is often hindered by the need to backpropagate gradients through the stochastic sampling of their latent variables, a process that inherently introduces estimation variance, which can slow convergence and degrade performance. In this paper, we propose a new perspective that sidesteps this problem, which we call Silent Gradients. Instead of improving stochastic estimators, we leverage specific decoder architectures to analytically compute the expected ELBO, yielding a gradient with zero variance. We first provide a theoretical foundation for this method and demonstrate its superiority over existing estimators in a controlled setting with a linear decoder. To generalize our approach for practical use with complex, expressive decoders, we introduce a novel training dynamic that uses the exact, zero-variance gradient to guide the early stages of encoder training before annealing to a standard stochastic estimator. Our experiments show that this technique consistently improves the performance of established baselines, including reparameterization, Gumbel-Softmax, and REINFORCE, across multiple datasets. This work opens a new direction for training generative models by combining the stability of analytical computation with the expressiveness of deep, nonlinear architecture.
Regression Discontinuity Design with Distribution-Valued Outcomes
This article introduces Regression Discontinuity Design (RDD) with Distribution-Valued Outcomes (R3D), extending the standard RDD framework to settings where the outcome is a distribution rather than a scalar. Such settings arise when treatment is assigned at a higher level of aggregation than the outcome-for example, when a subsidy is allocated based on a firm-level revenue cutoff while the outcome of interest is the distribution of employee wages within the firm. Since standard RDD methods cannot accommodate such two-level randomness, I propose a novel approach based on random distributions. The target estimand is a "local average quantile treatment effect", which averages across random quantiles. To estimate this target, I introduce two related approaches: one that extends local polynomial regression to random quantiles and another based on local Fr\'echet regression, a form of functional regression. For both estimators, I establish asymptotic normality and develop uniform, debiased confidence bands together with a data-driven bandwidth selection procedure. Simulations validate these theoretical properties and show existing methods to be biased and inconsistent in this setting. I then apply the proposed methods to study the effects of gubernatorial party control on within-state income distributions in the US, using a close-election design. The results suggest a classic equality-efficiency tradeoff under Democratic governorship, driven by reductions in income at the top of the distribution.
$\texttt{metabench}$ -- A Sparse Benchmark to Measure General Ability in Large Language Models
Large Language Models (LLMs) vary in their abilities on a range of tasks. Initiatives such as the Open LLM Leaderboard aim to quantify these differences with several large benchmarks (sets of test items to which an LLM can respond either correctly or incorrectly). However, high correlations within and between benchmark scores suggest that (1) there exists a small set of common underlying abilities that these benchmarks measure, and (2) items tap into redundant information and the benchmarks may thus be considerably compressed. We use data from n > 5000 LLMs to identify the most informative items of six benchmarks, ARC, GSM8K, HellaSwag, MMLU, TruthfulQA and WinoGrande (with d=28,632 items in total). From them we distill a sparse benchmark, metabench, that has less than 3% of the original size of all six benchmarks combined. This new sparse benchmark goes beyond point scores by yielding estimators of the underlying benchmark-specific abilities. We show that these estimators (1) can be used to reconstruct each original individual benchmark score with, on average, 1.5% root mean square error (RMSE), (2) reconstruct the original total score with 0.8% RMSE, and (3) have a single underlying common factor whose Spearman correlation with the total score is r = 0.93.
SGD with Clipping is Secretly Estimating the Median Gradient
There are several applications of stochastic optimization where one can benefit from a robust estimate of the gradient. For example, domains such as distributed learning with corrupted nodes, the presence of large outliers in the training data, learning under privacy constraints, or even heavy-tailed noise due to the dynamics of the algorithm itself. Here we study SGD with robust gradient estimators based on estimating the median. We first consider computing the median gradient across samples, and show that the resulting method can converge even under heavy-tailed, state-dependent noise. We then derive iterative methods based on the stochastic proximal point method for computing the geometric median and generalizations thereof. Finally we propose an algorithm estimating the median gradient across iterations, and find that several well known methods - in particular different forms of clipping - are particular cases of this framework.
Estimator Meets Equilibrium Perspective: A Rectified Straight Through Estimator for Binary Neural Networks Training
Binarization of neural networks is a dominant paradigm in neural networks compression. The pioneering work BinaryConnect uses Straight Through Estimator (STE) to mimic the gradients of the sign function, but it also causes the crucial inconsistency problem. Most of the previous methods design different estimators instead of STE to mitigate it. However, they ignore the fact that when reducing the estimating error, the gradient stability will decrease concomitantly. These highly divergent gradients will harm the model training and increase the risk of gradient vanishing and gradient exploding. To fully take the gradient stability into consideration, we present a new perspective to the BNNs training, regarding it as the equilibrium between the estimating error and the gradient stability. In this view, we firstly design two indicators to quantitatively demonstrate the equilibrium phenomenon. In addition, in order to balance the estimating error and the gradient stability well, we revise the original straight through estimator and propose a power function based estimator, Rectified Straight Through Estimator (ReSTE for short). Comparing to other estimators, ReSTE is rational and capable of flexibly balancing the estimating error with the gradient stability. Extensive experiments on CIFAR-10 and ImageNet datasets show that ReSTE has excellent performance and surpasses the state-of-the-art methods without any auxiliary modules or losses.
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Selecting hyperparameters in deep learning greatly impacts its effectiveness but requires manual effort and expertise. Recent works show that Bayesian model selection with Laplace approximations can allow to optimize such hyperparameters just like standard neural network parameters using gradients and on the training data. However, estimating a single hyperparameter gradient requires a pass through the entire dataset, limiting the scalability of such algorithms. In this work, we overcome this issue by introducing lower bounds to the linearized Laplace approximation of the marginal likelihood. In contrast to previous estimators, these bounds are amenable to stochastic-gradient-based optimization and allow to trade off estimation accuracy against computational complexity. We derive them using the function-space form of the linearized Laplace, which can be estimated using the neural tangent kernel. Experimentally, we show that the estimators can significantly accelerate gradient-based hyperparameter optimization.
Hybrid Energy Based Model in the Feature Space for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is a critical requirement for the deployment of deep neural networks. This paper introduces the HEAT model, a new post-hoc OOD detection method estimating the density of in-distribution (ID) samples using hybrid energy-based models (EBM) in the feature space of a pre-trained backbone. HEAT complements prior density estimators of the ID density, e.g. parametric models like the Gaussian Mixture Model (GMM), to provide an accurate yet robust density estimation. A second contribution is to leverage the EBM framework to provide a unified density estimation and to compose several energy terms. Extensive experiments demonstrate the significance of the two contributions. HEAT sets new state-of-the-art OOD detection results on the CIFAR-10 / CIFAR-100 benchmark as well as on the large-scale Imagenet benchmark. The code is available at: https://github.com/MarcLafon/heatood.
Reference-guided Controllable Inpainting of Neural Radiance Fields
The popularity of Neural Radiance Fields (NeRFs) for view synthesis has led to a desire for NeRF editing tools. Here, we focus on inpainting regions in a view-consistent and controllable manner. In addition to the typical NeRF inputs and masks delineating the unwanted region in each view, we require only a single inpainted view of the scene, i.e., a reference view. We use monocular depth estimators to back-project the inpainted view to the correct 3D positions. Then, via a novel rendering technique, a bilateral solver can construct view-dependent effects in non-reference views, making the inpainted region appear consistent from any view. For non-reference disoccluded regions, which cannot be supervised by the single reference view, we devise a method based on image inpainters to guide both the geometry and appearance. Our approach shows superior performance to NeRF inpainting baselines, with the additional advantage that a user can control the generated scene via a single inpainted image. Project page: https://ashmrz.github.io/reference-guided-3d
One scalar is all you need -- absolute depth estimation using monocular self-supervision
Self-supervised monocular depth estimators can be trained or fine-tuned on new scenes using only images and no ground-truth depth data, achieving good accuracy. However, these estimators suffer from the inherent ambiguity of the depth scale, significantly limiting their applicability. In this work, we present a method for transferring the depth-scale from existing source datasets collected with ground-truth depths to depth estimators that are trained using self-supervision on a newly collected target dataset consisting of images only, solving a significant limiting factor. We show that self-supervision based on projective geometry results in predicted depths that are linearly correlated with their ground-truth depths. Moreover, the linearity of this relationship also holds when jointly training on images from two different (real or synthetic) source and target domains. We utilize this observed property and model the relationship between the ground-truth and the predicted up-to-scale depths of images from the source domain using a single global scalar. Then, we scale the predicted up-to-scale depths of images from the target domain using the estimated global scaling factor, performing depth-scale transfer between the two domains. This suggested method was evaluated on the target KITTI and DDAD datasets, while using other real or synthetic source datasets, that have a larger field-of-view, other image style or structural content. Our approach achieves competitive accuracy on KITTI, even without using the specially tailored vKITTI or vKITTI2 datasets, and higher accuracy on DDAD, when using both real or synthetic source datasets.
Evaluating Self-Supervised Learning via Risk Decomposition
Self-supervised learning (SSL) pipelines differ in many design choices such as the architecture, augmentations, or pretraining data. Yet SSL is typically evaluated using a single metric: linear probing on ImageNet. This does not provide much insight into why or when a model is better, now how to improve it. To address this, we propose an SSL risk decomposition, which generalizes the classical supervised approximation-estimation decomposition by considering errors arising from the representation learning step. Our decomposition consists of four error components: approximation, representation usability, probe generalization, and encoder generalization. We provide efficient estimators for each component and use them to analyze the effect of 30 design choices on 169 SSL vision models evaluated on ImageNet. Our analysis gives valuable insights for designing and using SSL models. For example, it highlights the main sources of error and shows how to improve SSL in specific settings (full- vs few-shot) by trading off error components. All results and pretrained models are at https://github.com/YannDubs/SSL-Risk-Decomposition.
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Previous works on Treatment Effect Estimation (TEE) are not in widespread use because they are predominantly theoretical, where strong parametric assumptions are made but untractable for practical application. Recent work uses multilayer perceptron (MLP) for modeling casual relationships, however, MLPs lag far behind recent advances in ML methodology, which limits their applicability and generalizability. To extend beyond the single domain formulation and towards more realistic learning scenarios, we explore model design spaces beyond MLPs, i.e., transformer backbones, which provide flexibility where attention layers govern interactions among treatments and covariates to exploit structural similarities of potential outcomes for confounding control. Through careful model design, Transformers as Treatment Effect Estimators (TransTEE) is proposed. We show empirically that TransTEE can: (1) serve as a general purpose treatment effect estimator that significantly outperforms competitive baselines in a variety of challenging TEE problems (e.g., discrete, continuous, structured, or dosage-associated treatments) and is applicable to both when covariates are tabular and when they consist of structural data (e.g., texts, graphs); (2) yield multiple advantages: compatibility with propensity score modeling, parameter efficiency, robustness to continuous treatment value distribution shifts, explainable in covariate adjustment, and real-world utility in auditing pre-trained language models
Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation
Monocular depth estimation is a fundamental computer vision task. Recovering 3D depth from a single image is geometrically ill-posed and requires scene understanding, so it is not surprising that the rise of deep learning has led to a breakthrough. The impressive progress of monocular depth estimators has mirrored the growth in model capacity, from relatively modest CNNs to large Transformer architectures. Still, monocular depth estimators tend to struggle when presented with images with unfamiliar content and layout, since their knowledge of the visual world is restricted by the data seen during training, and challenged by zero-shot generalization to new domains. This motivates us to explore whether the extensive priors captured in recent generative diffusion models can enable better, more generalizable depth estimation. We introduce Marigold, a method for affine-invariant monocular depth estimation that is derived from Stable Diffusion and retains its rich prior knowledge. The estimator can be fine-tuned in a couple of days on a single GPU using only synthetic training data. It delivers state-of-the-art performance across a wide range of datasets, including over 20% performance gains in specific cases. Project page: https://marigoldmonodepth.github.io.
Adafactor: Adaptive Learning Rates with Sublinear Memory Cost
In several recently proposed stochastic optimization methods (e.g. RMSProp, Adam, Adadelta), parameter updates are scaled by the inverse square roots of exponential moving averages of squared past gradients. Maintaining these per-parameter second-moment estimators requires memory equal to the number of parameters. For the case of neural network weight matrices, we propose maintaining only the per-row and per-column sums of these moving averages, and estimating the per-parameter second moments based on these sums. We demonstrate empirically that this method produces similar results to the baseline. Secondly, we show that adaptive methods can produce larger-than-desired updates when the decay rate of the second moment accumulator is too slow. We propose update clipping and a gradually increasing decay rate scheme as remedies. Combining these methods and dropping momentum, we achieve comparable results to the published Adam regime in training the Transformer model on the WMT 2014 English-German machine translation task, while using very little auxiliary storage in the optimizer. Finally, we propose scaling the parameter updates based on the scale of the parameters themselves.
An Analysis of Causal Effect Estimation using Outcome Invariant Data Augmentation
The technique of data augmentation (DA) is often used in machine learning for regularization purposes to better generalize under i.i.d. settings. In this work, we present a unifying framework with topics in causal inference to make a case for the use of DA beyond just the i.i.d. setting, but for generalization across interventions as well. Specifically, we argue that when the outcome generating mechanism is invariant to our choice of DA, then such augmentations can effectively be thought of as interventions on the treatment generating mechanism itself. This can potentially help to reduce bias in causal effect estimation arising from hidden confounders. In the presence of such unobserved confounding we typically make use of instrumental variables (IVs) -- sources of treatment randomization that are conditionally independent of the outcome. However, IVs may not be as readily available as DA for many applications, which is the main motivation behind this work. By appropriately regularizing IV based estimators, we introduce the concept of IV-like (IVL) regression for mitigating confounding bias and improving predictive performance across interventions even when certain IV properties are relaxed. Finally, we cast parameterized DA as an IVL regression problem and show that when used in composition can simulate a worst-case application of such DA, further improving performance on causal estimation and generalization tasks beyond what simple DA may offer. This is shown both theoretically for the population case and via simulation experiments for the finite sample case using a simple linear example. We also present real data experiments to support our case.
YOLOBench: Benchmarking Efficient Object Detectors on Embedded Systems
We present YOLOBench, a benchmark comprised of 550+ YOLO-based object detection models on 4 different datasets and 4 different embedded hardware platforms (x86 CPU, ARM CPU, Nvidia GPU, NPU). We collect accuracy and latency numbers for a variety of YOLO-based one-stage detectors at different model scales by performing a fair, controlled comparison of these detectors with a fixed training environment (code and training hyperparameters). Pareto-optimality analysis of the collected data reveals that, if modern detection heads and training techniques are incorporated into the learning process, multiple architectures of the YOLO series achieve a good accuracy-latency trade-off, including older models like YOLOv3 and YOLOv4. We also evaluate training-free accuracy estimators used in neural architecture search on YOLOBench and demonstrate that, while most state-of-the-art zero-cost accuracy estimators are outperformed by a simple baseline like MAC count, some of them can be effectively used to predict Pareto-optimal detection models. We showcase that by using a zero-cost proxy to identify a YOLO architecture competitive against a state-of-the-art YOLOv8 model on a Raspberry Pi 4 CPU. The code and data are available at https://github.com/Deeplite/deeplite-torch-zoo
TROLL: Trust Regions improve Reinforcement Learning for Large Language Models
On-policy Reinforcement Learning (RL) with PPO-like clip objectives has become the standard choice for reward-based fine-tuning of large language models (LLMs). Although recent work has explored improved estimators of advantages and normalization, the clipping mechanism itself has remained untouched. Originally introduced as a proxy for principled KL-based trust regions, clipping is a crude approximation that often causes unstable updates and suboptimal performance. We replace the clip objective with a novel discrete differentiable trust region projection, which provides principled token-level KL constraints. The projection operates on a sparse subset of the model's most important token logits to balance computational cost and projection effectiveness. Our approach, Trust Region Optimization for Large Language Models (TROLL), serves as a direct replacement for PPO-like clipping during training and does not alter the model's inference behavior. Across datasets, model families, and advantage-estimation methods, TROLL consistently outperforms PPO-like clipping in terms of training speed, stability, and final success rates.
Model-free Approach to Evaluate a Censored Intermediate Outcome as a Surrogate for Overall Survival
Clinical trials or studies oftentimes require long-term and/or costly follow-up of participants to evaluate a novel treatment/drug/vaccine. There has been increasing interest in the past few decades in using short-term surrogate outcomes as a replacement of the primary outcome i.e., in using the surrogate outcome, which can potentially be observed sooner, to make inference about the treatment effect on the long-term primary outcome. Very few of the available statistical methods to evaluate a surrogate are applicable to settings where both the surrogate and the primary outcome are time-to-event outcomes subject to censoring. Methods that can handle this setting tend to require parametric assumptions or be limited to assessing only the restricted mean survival time. In this paper, we propose a non-parametric approach to evaluate a censored surrogate outcome, such as time to progression, when the primary outcome is also a censored time-to-event outcome, such as time to death, and the treatment effect of interest is the difference in overall survival. Specifically, we define the proportion of the treatment effect on the primary outcome that is explained (PTE) by the censored surrogate outcome in this context, and estimate this proportion by defining and deriving an optimal transformation of the surrogate information. Our approach provides the added advantage of relaxed assumptions to guarantee that the true PTE is within (0,1), along with being model-free. Finite sample performance of our estimators are illustrated via extensive simulation studies and a real data application examining progression-free survival as a surrogate for overall survival for patients with metastatic colorectal cancer.
Towards Assessing and Benchmarking Risk-Return Tradeoff of Off-Policy Evaluation
Off-Policy Evaluation (OPE) aims to assess the effectiveness of counterfactual policies using only offline logged data and is often used to identify the top-k promising policies for deployment in online A/B tests. Existing evaluation metrics for OPE estimators primarily focus on the "accuracy" of OPE or that of downstream policy selection, neglecting risk-return tradeoff in the subsequent online policy deployment. To address this issue, we draw inspiration from portfolio evaluation in finance and develop a new metric, called SharpeRatio@k, which measures the risk-return tradeoff of policy portfolios formed by an OPE estimator under varying online evaluation budgets (k). We validate our metric in two example scenarios, demonstrating its ability to effectively distinguish between low-risk and high-risk estimators and to accurately identify the most efficient one. Efficiency of an estimator is characterized by its capability to form the most advantageous policy portfolios, maximizing returns while minimizing risks during online deployment, a nuance that existing metrics typically overlook. To facilitate a quick, accurate, and consistent evaluation of OPE via SharpeRatio@k, we have also integrated this metric into an open-source software, SCOPE-RL (https://github.com/hakuhodo-technologies/scope-rl). Employing SharpeRatio@k and SCOPE-RL, we conduct comprehensive benchmarking experiments on various estimators and RL tasks, focusing on their risk-return tradeoff. These experiments offer several interesting directions and suggestions for future OPE research.
AccFlow: Backward Accumulation for Long-Range Optical Flow
Recent deep learning-based optical flow estimators have exhibited impressive performance in generating local flows between consecutive frames. However, the estimation of long-range flows between distant frames, particularly under complex object deformation and large motion occlusion, remains a challenging task. One promising solution is to accumulate local flows explicitly or implicitly to obtain the desired long-range flow. Nevertheless, the accumulation errors and flow misalignment can hinder the effectiveness of this approach. This paper proposes a novel recurrent framework called AccFlow, which recursively backward accumulates local flows using a deformable module called as AccPlus. In addition, an adaptive blending module is designed along with AccPlus to alleviate the occlusion effect by backward accumulation and rectify the accumulation error. Notably, we demonstrate the superiority of backward accumulation over conventional forward accumulation, which to the best of our knowledge has not been explicitly established before. To train and evaluate the proposed AccFlow, we have constructed a large-scale high-quality dataset named CVO, which provides ground-truth optical flow labels between adjacent and distant frames. Extensive experiments validate the effectiveness of AccFlow in handling long-range optical flow estimation. Codes are available at https://github.com/mulns/AccFlow .
TrackFlow: Multi-Object Tracking with Normalizing Flows
The field of multi-object tracking has recently seen a renewed interest in the good old schema of tracking-by-detection, as its simplicity and strong priors spare it from the complex design and painful babysitting of tracking-by-attention approaches. In view of this, we aim at extending tracking-by-detection to multi-modal settings, where a comprehensive cost has to be computed from heterogeneous information e.g., 2D motion cues, visual appearance, and pose estimates. More precisely, we follow a case study where a rough estimate of 3D information is also available and must be merged with other traditional metrics (e.g., the IoU). To achieve that, recent approaches resort to either simple rules or complex heuristics to balance the contribution of each cost. However, i) they require careful tuning of tailored hyperparameters on a hold-out set, and ii) they imply these costs to be independent, which does not hold in reality. We address these issues by building upon an elegant probabilistic formulation, which considers the cost of a candidate association as the negative log-likelihood yielded by a deep density estimator, trained to model the conditional joint probability distribution of correct associations. Our experiments, conducted on both simulated and real benchmarks, show that our approach consistently enhances the performance of several tracking-by-detection algorithms.
PoSynDA: Multi-Hypothesis Pose Synthesis Domain Adaptation for Robust 3D Human Pose Estimation
The current 3D human pose estimators face challenges in adapting to new datasets due to the scarcity of 2D-3D pose pairs in target domain training sets. We present the Multi-Hypothesis \textbf{Pose Synthesis Domain Adaptation} (PoSynDA) framework to overcome this issue without extensive target domain annotation. Utilizing a diffusion-centric structure, PoSynDA simulates the 3D pose distribution in the target domain, filling the data diversity gap. By incorporating a multi-hypothesis network, it creates diverse pose hypotheses and aligns them with the target domain. Target-specific source augmentation obtains the target domain distribution data from the source domain by decoupling the scale and position parameters. The teacher-student paradigm and low-rank adaptation further refine the process. PoSynDA demonstrates competitive performance on benchmarks, such as Human3.6M, MPI-INF-3DHP, and 3DPW, even comparable with the target-trained MixSTE model~zhang2022mixste. This work paves the way for the practical application of 3D human pose estimation. The code is available at https://github.com/hbing-l/PoSynDA.
Differentially Private Episodic Reinforcement Learning with Heavy-tailed Rewards
In this paper, we study the problem of (finite horizon tabular) Markov decision processes (MDPs) with heavy-tailed rewards under the constraint of differential privacy (DP). Compared with the previous studies for private reinforcement learning that typically assume rewards are sampled from some bounded or sub-Gaussian distributions to ensure DP, we consider the setting where reward distributions have only finite (1+v)-th moments with some v in (0,1]. By resorting to robust mean estimators for rewards, we first propose two frameworks for heavy-tailed MDPs, i.e., one is for value iteration and another is for policy optimization. Under each framework, we consider both joint differential privacy (JDP) and local differential privacy (LDP) models. Based on our frameworks, we provide regret upper bounds for both JDP and LDP cases and show that the moment of distribution and privacy budget both have significant impacts on regrets. Finally, we establish a lower bound of regret minimization for heavy-tailed MDPs in JDP model by reducing it to the instance-independent lower bound of heavy-tailed multi-armed bandits in DP model. We also show the lower bound for the problem in LDP by adopting some private minimax methods. Our results reveal that there are fundamental differences between the problem of private RL with sub-Gaussian and that with heavy-tailed rewards.
Sequential Underspecified Instrument Selection for Cause-Effect Estimation
Instrumental variable (IV) methods are used to estimate causal effects in settings with unobserved confounding, where we cannot directly experiment on the treatment variable. Instruments are variables which only affect the outcome indirectly via the treatment variable(s). Most IV applications focus on low-dimensional treatments and crucially require at least as many instruments as treatments. This assumption is restrictive: in the natural sciences we often seek to infer causal effects of high-dimensional treatments (e.g., the effect of gene expressions or microbiota on health and disease), but can only run few experiments with a limited number of instruments (e.g., drugs or antibiotics). In such underspecified problems, the full treatment effect is not identifiable in a single experiment even in the linear case. We show that one can still reliably recover the projection of the treatment effect onto the instrumented subspace and develop techniques to consistently combine such partial estimates from different sets of instruments. We then leverage our combined estimators in an algorithm that iteratively proposes the most informative instruments at each round of experimentation to maximize the overall information about the full causal effect.
Refined Regret for Adversarial MDPs with Linear Function Approximation
We consider learning in an adversarial Markov Decision Process (MDP) where the loss functions can change arbitrarily over K episodes and the state space can be arbitrarily large. We assume that the Q-function of any policy is linear in some known features, that is, a linear function approximation exists. The best existing regret upper bound for this setting (Luo et al., 2021) is of order mathcal O(K^{2/3}) (omitting all other dependencies), given access to a simulator. This paper provides two algorithms that improve the regret to mathcal O(sqrt K) in the same setting. Our first algorithm makes use of a refined analysis of the Follow-the-Regularized-Leader (FTRL) algorithm with the log-barrier regularizer. This analysis allows the loss estimators to be arbitrarily negative and might be of independent interest. Our second algorithm develops a magnitude-reduced loss estimator, further removing the polynomial dependency on the number of actions in the first algorithm and leading to the optimal regret bound (up to logarithmic terms and dependency on the horizon). Moreover, we also extend the first algorithm to simulator-free linear MDPs, which achieves mathcal O(K^{8/9}) regret and greatly improves over the best existing bound mathcal O(K^{14/15}). This algorithm relies on a better alternative to the Matrix Geometric Resampling procedure by Neu & Olkhovskaya (2020), which could again be of independent interest.
Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates
Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.
Design-based composite estimation of small proportions in small domains
Traditional direct estimation methods are not efficient for domains of a survey population with small sample sizes. To estimate the domain proportions, we combine the direct estimators and the regression-synthetic estimators based on domain-level auxiliary information. For the case of small true proportions, we introduce the design-based linear combination that is a robust alternative to the empirical best linear unbiased predictor (EBLUP) based on the Fay--Herriot model. We also consider an adaptive procedure optimizing a sample-size-dependent composite estimator, which depends on a single parameter for all domains. We imitate the Lithuanian Labor Force Survey, where we estimate the proportions of the unemployed and employed in municipalities. We show where the considered design-based compositions and estimators of their mean square errors are competitive for EBLUP and its accuracy estimation.
Adaptive Reordering Sampler with Neurally Guided MAGSAC
We propose a new sampler for robust estimators that always selects the sample with the highest probability of consisting only of inliers. After every unsuccessful iteration, the inlier probabilities are updated in a principled way via a Bayesian approach. The probabilities obtained by the deep network are used as prior (so-called neural guidance) inside the sampler. Moreover, we introduce a new loss that exploits, in a geometrically justifiable manner, the orientation and scale that can be estimated for any type of feature, e.g., SIFT or SuperPoint, to estimate two-view geometry. The new loss helps to learn higher-order information about the underlying scene geometry. Benefiting from the new sampler and the proposed loss, we combine the neural guidance with the state-of-the-art MAGSAC++. Adaptive Reordering Sampler with Neurally Guided MAGSAC (ARS-MAGSAC) is superior to the state-of-the-art in terms of accuracy and run-time on the PhotoTourism and KITTI datasets for essential and fundamental matrix estimation. The code and trained models are available at https://github.com/weitong8591/ars_magsac.
Group equivariant neural posterior estimation
Simulation-based inference with conditional neural density estimators is a powerful approach to solving inverse problems in science. However, these methods typically treat the underlying forward model as a black box, with no way to exploit geometric properties such as equivariances. Equivariances are common in scientific models, however integrating them directly into expressive inference networks (such as normalizing flows) is not straightforward. We here describe an alternative method to incorporate equivariances under joint transformations of parameters and data. Our method -- called group equivariant neural posterior estimation (GNPE) -- is based on self-consistently standardizing the "pose" of the data while estimating the posterior over parameters. It is architecture-independent, and applies both to exact and approximate equivariances. As a real-world application, we use GNPE for amortized inference of astrophysical binary black hole systems from gravitational-wave observations. We show that GNPE achieves state-of-the-art accuracy while reducing inference times by three orders of magnitude.
TraDE: Transformers for Density Estimation
We present TraDE, a self-attention-based architecture for auto-regressive density estimation with continuous and discrete valued data. Our model is trained using a penalized maximum likelihood objective, which ensures that samples from the density estimate resemble the training data distribution. The use of self-attention means that the model need not retain conditional sufficient statistics during the auto-regressive process beyond what is needed for each covariate. On standard tabular and image data benchmarks, TraDE produces significantly better density estimates than existing approaches such as normalizing flow estimators and recurrent auto-regressive models. However log-likelihood on held-out data only partially reflects how useful these estimates are in real-world applications. In order to systematically evaluate density estimators, we present a suite of tasks such as regression using generated samples, out-of-distribution detection, and robustness to noise in the training data and demonstrate that TraDE works well in these scenarios.
Solving Rubik's Cube with a Robot Hand
We demonstrate that models trained only in simulation can be used to solve a manipulation problem of unprecedented complexity on a real robot. This is made possible by two key components: a novel algorithm, which we call automatic domain randomization (ADR) and a robot platform built for machine learning. ADR automatically generates a distribution over randomized environments of ever-increasing difficulty. Control policies and vision state estimators trained with ADR exhibit vastly improved sim2real transfer. For control policies, memory-augmented models trained on an ADR-generated distribution of environments show clear signs of emergent meta-learning at test time. The combination of ADR with our custom robot platform allows us to solve a Rubik's cube with a humanoid robot hand, which involves both control and state estimation problems. Videos summarizing our results are available: https://openai.com/blog/solving-rubiks-cube/
Self-Supervised Learning of 3D Human Pose using Multi-view Geometry
Training accurate 3D human pose estimators requires large amount of 3D ground-truth data which is costly to collect. Various weakly or self supervised pose estimation methods have been proposed due to lack of 3D data. Nevertheless, these methods, in addition to 2D ground-truth poses, require either additional supervision in various forms (e.g. unpaired 3D ground truth data, a small subset of labels) or the camera parameters in multiview settings. To address these problems, we present EpipolarPose, a self-supervised learning method for 3D human pose estimation, which does not need any 3D ground-truth data or camera extrinsics. During training, EpipolarPose estimates 2D poses from multi-view images, and then, utilizes epipolar geometry to obtain a 3D pose and camera geometry which are subsequently used to train a 3D pose estimator. We demonstrate the effectiveness of our approach on standard benchmark datasets i.e. Human3.6M and MPI-INF-3DHP where we set the new state-of-the-art among weakly/self-supervised methods. Furthermore, we propose a new performance measure Pose Structure Score (PSS) which is a scale invariant, structure aware measure to evaluate the structural plausibility of a pose with respect to its ground truth. Code and pretrained models are available at https://github.com/mkocabas/EpipolarPose
Dueling Network Architectures for Deep Reinforcement Learning
In recent years there have been many successes of using deep representations in reinforcement learning. Still, many of these applications use conventional architectures, such as convolutional networks, LSTMs, or auto-encoders. In this paper, we present a new neural network architecture for model-free reinforcement learning. Our dueling network represents two separate estimators: one for the state value function and one for the state-dependent action advantage function. The main benefit of this factoring is to generalize learning across actions without imposing any change to the underlying reinforcement learning algorithm. Our results show that this architecture leads to better policy evaluation in the presence of many similar-valued actions. Moreover, the dueling architecture enables our RL agent to outperform the state-of-the-art on the Atari 2600 domain.
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Stochastic neurons and hard non-linearities can be useful for a number of reasons in deep learning models, but in many cases they pose a challenging problem: how to estimate the gradient of a loss function with respect to the input of such stochastic or non-smooth neurons? I.e., can we "back-propagate" through these stochastic neurons? We examine this question, existing approaches, and compare four families of solutions, applicable in different settings. One of them is the minimum variance unbiased gradient estimator for stochatic binary neurons (a special case of the REINFORCE algorithm). A second approach, introduced here, decomposes the operation of a binary stochastic neuron into a stochastic binary part and a smooth differentiable part, which approximates the expected effect of the pure stochatic binary neuron to first order. A third approach involves the injection of additive or multiplicative noise in a computational graph that is otherwise differentiable. A fourth approach heuristically copies the gradient with respect to the stochastic output directly as an estimator of the gradient with respect to the sigmoid argument (we call this the straight-through estimator). To explore a context where these estimators are useful, we consider a small-scale version of {\em conditional computation}, where sparse stochastic units form a distributed representation of gaters that can turn off in combinatorially many ways large chunks of the computation performed in the rest of the neural network. In this case, it is important that the gating units produce an actual 0 most of the time. The resulting sparsity can be potentially be exploited to greatly reduce the computational cost of large deep networks for which conditional computation would be useful.
DigiRL: Training In-The-Wild Device-Control Agents with Autonomous Reinforcement Learning
Training corpuses for vision language models (VLMs) typically lack sufficient amounts of decision-centric data. This renders off-the-shelf VLMs sub-optimal for decision-making tasks such as in-the-wild device control through graphical user interfaces (GUIs). While training with static demonstrations has shown some promise, we show that such methods fall short for controlling real GUIs due to their failure to deal with real-world stochasticity and non-stationarity not captured in static observational data. This paper introduces a novel autonomous RL approach, called DigiRL, for training in-the-wild device control agents through fine-tuning a pre-trained VLM in two stages: offline RL to initialize the model, followed by offline-to-online RL. To do this, we build a scalable and parallelizable Android learning environment equipped with a VLM-based evaluator and develop a simple yet effective RL approach for learning in this domain. Our approach runs advantage-weighted RL with advantage estimators enhanced to account for stochasticity along with an automatic curriculum for deriving maximal learning signal. We demonstrate the effectiveness of DigiRL using the Android-in-the-Wild (AitW) dataset, where our 1.3B VLM trained with RL achieves a 49.5% absolute improvement -- from 17.7 to 67.2% success rate -- over supervised fine-tuning with static human demonstration data. These results significantly surpass not only the prior best agents, including AppAgent with GPT-4V (8.3% success rate) and the 17B CogAgent trained with AitW data (38.5%), but also the prior best autonomous RL approach based on filtered behavior cloning (57.8%), thereby establishing a new state-of-the-art for digital agents for in-the-wild device control.
Invisible Stitch: Generating Smooth 3D Scenes with Depth Inpainting
3D scene generation has quickly become a challenging new research direction, fueled by consistent improvements of 2D generative diffusion models. Most prior work in this area generates scenes by iteratively stitching newly generated frames with existing geometry. These works often depend on pre-trained monocular depth estimators to lift the generated images into 3D, fusing them with the existing scene representation. These approaches are then often evaluated via a text metric, measuring the similarity between the generated images and a given text prompt. In this work, we make two fundamental contributions to the field of 3D scene generation. First, we note that lifting images to 3D with a monocular depth estimation model is suboptimal as it ignores the geometry of the existing scene. We thus introduce a novel depth completion model, trained via teacher distillation and self-training to learn the 3D fusion process, resulting in improved geometric coherence of the scene. Second, we introduce a new benchmarking scheme for scene generation methods that is based on ground truth geometry, and thus measures the quality of the structure of the scene.
On the Robustness of Language Guidance for Low-Level Vision Tasks: Findings from Depth Estimation
Recent advances in monocular depth estimation have been made by incorporating natural language as additional guidance. Although yielding impressive results, the impact of the language prior, particularly in terms of generalization and robustness, remains unexplored. In this paper, we address this gap by quantifying the impact of this prior and introduce methods to benchmark its effectiveness across various settings. We generate "low-level" sentences that convey object-centric, three-dimensional spatial relationships, incorporate them as additional language priors and evaluate their downstream impact on depth estimation. Our key finding is that current language-guided depth estimators perform optimally only with scene-level descriptions and counter-intuitively fare worse with low level descriptions. Despite leveraging additional data, these methods are not robust to directed adversarial attacks and decline in performance with an increase in distribution shift. Finally, to provide a foundation for future research, we identify points of failures and offer insights to better understand these shortcomings. With an increasing number of methods using language for depth estimation, our findings highlight the opportunities and pitfalls that require careful consideration for effective deployment in real-world settings
MIST: Mutual Information Via Supervised Training
We propose a fully data-driven approach to designing mutual information (MI) estimators. Since any MI estimator is a function of the observed sample from two random variables, we parameterize this function with a neural network (MIST) and train it end-to-end to predict MI values. Training is performed on a large meta-dataset of 625,000 synthetic joint distributions with known ground-truth MI. To handle variable sample sizes and dimensions, we employ a two-dimensional attention scheme ensuring permutation invariance across input samples. To quantify uncertainty, we optimize a quantile regression loss, enabling the estimator to approximate the sampling distribution of MI rather than return a single point estimate. This research program departs from prior work by taking a fully empirical route, trading universal theoretical guarantees for flexibility and efficiency. Empirically, the learned estimators largely outperform classical baselines across sample sizes and dimensions, including on joint distributions unseen during training. The resulting quantile-based intervals are well-calibrated and more reliable than bootstrap-based confidence intervals, while inference is orders of magnitude faster than existing neural baselines. Beyond immediate empirical gains, this framework yields trainable, fully differentiable estimators that can be embedded into larger learning pipelines. Moreover, exploiting MI's invariance to invertible transformations, meta-datasets can be adapted to arbitrary data modalities via normalizing flows, enabling flexible training for diverse target meta-distributions.
Estimating Machine Translation Difficulty
Machine translation quality has steadily improved over the years, achieving near-perfect translations in recent benchmarks. These high-quality outputs make it difficult to distinguish between state-of-the-art models and to identify areas for future improvement. In this context, automatically identifying texts where machine translation systems struggle holds promise for developing more discriminative evaluations and guiding future research. In this work, we address this gap by formalizing the task of translation difficulty estimation, defining a text's difficulty based on the expected quality of its translations. We introduce a new metric to evaluate difficulty estimators and use it to assess both baselines and novel approaches. Finally, we demonstrate the practical utility of difficulty estimators by using them to construct more challenging benchmarks for machine translation. Our results show that dedicated models outperform both heuristic-based methods and LLM-as-a-judge approaches, with Sentinel-src achieving the best performance. Thus, we release two improved models for difficulty estimation, Sentinel-src-24 and Sentinel-src-25, which can be used to scan large collections of texts and select those most likely to challenge contemporary machine translation systems.
Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset. The code is available at https:// github.com/ VRPO/ VRPO.
Probabilistic Programming with Programmable Variational Inference
Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.
Pose-Robust Calibration Strategy for Point-of-Gaze Estimation on Mobile Phones
Although appearance-based point-of-gaze (PoG) estimation has improved, the estimators still struggle to generalize across individuals due to personal differences. Therefore, person-specific calibration is required for accurate PoG estimation. However, calibrated PoG estimators are often sensitive to head pose variations. To address this, we investigate the key factors influencing calibrated estimators and explore pose-robust calibration strategies. Specifically, we first construct a benchmark, MobilePoG, which includes facial images from 32 individuals focusing on designated points under either fixed or continuously changing head poses. Using this benchmark, we systematically analyze how the diversity of calibration points and head poses influences estimation accuracy. Our experiments show that introducing a wider range of head poses during calibration improves the estimator's ability to handle pose variation. Building on this insight, we propose a dynamic calibration strategy in which users fixate on calibration points while moving their phones. This strategy naturally introduces head pose variation during a user-friendly and efficient calibration process, ultimately producing a better calibrated PoG estimator that is less sensitive to head pose variations than those using conventional calibration strategies. Codes and datasets are available at our project page.
Learning an Implicit Physics Model for Image-based Fluid Simulation
Humans possess an exceptional ability to imagine 4D scenes, encompassing both motion and 3D geometry, from a single still image. This ability is rooted in our accumulated observations of similar scenes and an intuitive understanding of physics. In this paper, we aim to replicate this capacity in neural networks, specifically focusing on natural fluid imagery. Existing methods for this task typically employ simplistic 2D motion estimators to animate the image, leading to motion predictions that often defy physical principles, resulting in unrealistic animations. Our approach introduces a novel method for generating 4D scenes with physics-consistent animation from a single image. We propose the use of a physics-informed neural network that predicts motion for each surface point, guided by a loss term derived from fundamental physical principles, including the Navier-Stokes equations. To capture appearance, we predict feature-based 3D Gaussians from the input image and its estimated depth, which are then animated using the predicted motions and rendered from any desired camera perspective. Experimental results highlight the effectiveness of our method in producing physically plausible animations, showcasing significant performance improvements over existing methods. Our project page is https://physfluid.github.io/ .
Tilt-To-Length Coupling in LISA -- Uncertainty and Biases
The coupling of the angular jitter of the spacecraft and their sub-assemblies with the optical bench and the telescope into the interferometric length readout will be a major noise source in the LISA mission. We refer to this noise as tilt-to-length (TTL) coupling. It will be reduced directly by realignments, and the residual noise will then be subtracted in post-processing. The success of these mitigation strategies depends on an accurate computation of the TTL coupling coefficients. We present here a thorough analysis of the accuracy of the coefficient estimation under different jitter characteristics, angular readout noise levels, and gravitational wave sources. We analyze in which cases the estimates degrade using two estimators, the common least squares estimator and the instrumental variables estimator. Our investigations show that angular readout noise leads to a bias of the least squares estimator, depending on the TTL coupling coefficients, jitter and readout noise level, while the instrumental variable estimator is not biased. We present an equation that predicts the estimation bias of the least squares method due to angular readout noise.
Double Machine Learning meets Panel Data -- Promises, Pitfalls, and Potential Solutions
Estimating causal effect using machine learning (ML) algorithms can help to relax functional form assumptions if used within appropriate frameworks. However, most of these frameworks assume settings with cross-sectional data, whereas researchers often have access to panel data, which in traditional methods helps to deal with unobserved heterogeneity between units. In this paper, we explore how we can adapt double/debiased machine learning (DML) (Chernozhukov et al., 2018) for panel data in the presence of unobserved heterogeneity. This adaptation is challenging because DML's cross-fitting procedure assumes independent data and the unobserved heterogeneity is not necessarily additively separable in settings with nonlinear observed confounding. We assess the performance of several intuitively appealing estimators in a variety of simulations. While we find violations of the cross-fitting assumptions to be largely inconsequential for the accuracy of the effect estimates, many of the considered methods fail to adequately account for the presence of unobserved heterogeneity. However, we find that using predictive models based on the correlated random effects approach (Mundlak, 1978) within DML leads to accurate coefficient estimates across settings, given a sample size that is large relative to the number of observed confounders. We also show that the influence of the unobserved heterogeneity on the observed confounders plays a significant role for the performance of most alternative methods.
Measuring Retrieval Complexity in Question Answering Systems
In this paper, we investigate which questions are challenging for retrieval-based Question Answering (QA). We (i) propose retrieval complexity (RC), a novel metric conditioned on the completeness of retrieved documents, which measures the difficulty of answering questions, and (ii) propose an unsupervised pipeline to measure RC given an arbitrary retrieval system. Our proposed pipeline measures RC more accurately than alternative estimators, including LLMs, on six challenging QA benchmarks. Further investigation reveals that RC scores strongly correlate with both QA performance and expert judgment across five of the six studied benchmarks, indicating that RC is an effective measure of question difficulty. Subsequent categorization of high-RC questions shows that they span a broad set of question shapes, including multi-hop, compositional, and temporal QA, indicating that RC scores can categorize a new subset of complex questions. Our system can also have a major impact on retrieval-based systems by helping to identify more challenging questions on existing datasets.
Distributionally Robust Receive Beamforming
This article investigates signal estimation in wireless transmission (i.e., receive beamforming) from the perspective of statistical machine learning, where the transmit signals may be from an integrated sensing and communication system; that is, 1) signals may be not only discrete constellation points but also arbitrary complex values; 2) signals may be spatially correlated. Particular attention is paid to handling various uncertainties such as the uncertainty of the transmit signal covariance, the uncertainty of the channel matrix, the uncertainty of the channel noise covariance, the existence of channel impulse noises, and the limited sample size of pilots. To proceed, a distributionally robust machine learning framework that is insensitive to the above uncertainties is proposed, which reveals that channel estimation is not a necessary operation. For optimal linear estimation, the proposed framework includes several existing beamformers as special cases such as diagonal loading and eigenvalue thresholding. For optimal nonlinear estimation, estimators are limited in reproducing kernel Hilbert spaces and neural network function spaces, and corresponding uncertainty-aware solutions (e.g., kernelized diagonal loading) are derived. In addition, we prove that the ridge and kernel ridge regression methods in machine learning are distributionally robust against diagonal perturbation in feature covariance.
Tackling Interference Induced by Data Training Loops in A/B Tests: A Weighted Training Approach
In modern recommendation systems, the standard pipeline involves training machine learning models on historical data to predict user behaviors and improve recommendations continuously. However, these data training loops can introduce interference in A/B tests, where data generated by control and treatment algorithms, potentially with different distributions, are combined. To address these challenges, we introduce a novel approach called weighted training. This approach entails training a model to predict the probability of each data point appearing in either the treatment or control data and subsequently applying weighted losses during model training. We demonstrate that this approach achieves the least variance among all estimators that do not cause shifts in the training distributions. Through simulation studies, we demonstrate the lower bias and variance of our approach compared to other methods.
Estimating Shape Distances on Neural Representations with Limited Samples
Measuring geometric similarity between high-dimensional network representations is a topic of longstanding interest to neuroscience and deep learning. Although many methods have been proposed, only a few works have rigorously analyzed their statistical efficiency or quantified estimator uncertainty in data-limited regimes. Here, we derive upper and lower bounds on the worst-case convergence of standard estimators of shape distancex2014a measure of representational dissimilarity proposed by Williams et al. (2021).These bounds reveal the challenging nature of the problem in high-dimensional feature spaces. To overcome these challenges, we introduce a new method-of-moments estimator with a tunable bias-variance tradeoff. We show that this estimator achieves substantially lower bias than standard estimators in simulation and on neural data, particularly in high-dimensional settings. Thus, we lay the foundation for a rigorous statistical theory for high-dimensional shape analysis, and we contribute a new estimation method that is well-suited to practical scientific settings.
Noise-Robust DSP-Assisted Neural Pitch Estimation with Very Low Complexity
Pitch estimation is an essential step of many speech processing algorithms, including speech coding, synthesis, and enhancement. Recently, pitch estimators based on deep neural networks (DNNs) have have been outperforming well-established DSP-based techniques. Unfortunately, these new estimators can be impractical to deploy in real-time systems, both because of their relatively high complexity, and the fact that some require significant lookahead. We show that a hybrid estimator using a small deep neural network (DNN) with traditional DSP-based features can match or exceed the performance of pure DNN-based models, with a complexity and algorithmic delay comparable to traditional DSP-based algorithms. We further demonstrate that this hybrid approach can provide benefits for a neural vocoding task.
Ad-load Balancing via Off-policy Learning in a Content Marketplace
Ad-load balancing is a critical challenge in online advertising systems, particularly in the context of social media platforms, where the goal is to maximize user engagement and revenue while maintaining a satisfactory user experience. This requires the optimization of conflicting objectives, such as user satisfaction and ads revenue. Traditional approaches to ad-load balancing rely on static allocation policies, which fail to adapt to changing user preferences and contextual factors. In this paper, we present an approach that leverages off-policy learning and evaluation from logged bandit feedback. We start by presenting a motivating analysis of the ad-load balancing problem, highlighting the conflicting objectives between user satisfaction and ads revenue. We emphasize the nuances that arise due to user heterogeneity and the dependence on the user's position within a session. Based on this analysis, we define the problem as determining the optimal ad-load for a particular feed fetch. To tackle this problem, we propose an off-policy learning framework that leverages unbiased estimators such as Inverse Propensity Scoring (IPS) and Doubly Robust (DR) to learn and estimate the policy values using offline collected stochastic data. We present insights from online A/B experiments deployed at scale across over 80 million users generating over 200 million sessions, where we find statistically significant improvements in both user satisfaction metrics and ads revenue for the platform.
Covariate balancing using the integral probability metric for causal inference
Weighting methods in causal inference have been widely used to achieve a desirable level of covariate balancing. However, the existing weighting methods have desirable theoretical properties only when a certain model, either the propensity score or outcome regression model, is correctly specified. In addition, the corresponding estimators do not behave well for finite samples due to large variance even when the model is correctly specified. In this paper, we consider to use the integral probability metric (IPM), which is a metric between two probability measures, for covariate balancing. Optimal weights are determined so that weighted empirical distributions for the treated and control groups have the smallest IPM value for a given set of discriminators. We prove that the corresponding estimator can be consistent without correctly specifying any model (neither the propensity score nor the outcome regression model). In addition, we empirically show that our proposed method outperforms existing weighting methods with large margins for finite samples.
Sliced Wasserstein Estimation with Control Variates
The sliced Wasserstein (SW) distances between two probability measures are defined as the expectation of the Wasserstein distance between two one-dimensional projections of the two measures. The randomness comes from a projecting direction that is used to project the two input measures to one dimension. Due to the intractability of the expectation, Monte Carlo integration is performed to estimate the value of the SW distance. Despite having various variants, there has been no prior work that improves the Monte Carlo estimation scheme for the SW distance in terms of controlling its variance. To bridge the literature on variance reduction and the literature on the SW distance, we propose computationally efficient control variates to reduce the variance of the empirical estimation of the SW distance. The key idea is to first find Gaussian approximations of projected one-dimensional measures, then we utilize the closed-form of the Wasserstein-2 distance between two Gaussian distributions to design the control variates. In particular, we propose using a lower bound and an upper bound of the Wasserstein-2 distance between two fitted Gaussians as two computationally efficient control variates. We empirically show that the proposed control variate estimators can help to reduce the variance considerably when comparing measures over images and point-clouds. Finally, we demonstrate the favorable performance of the proposed control variate estimators in gradient flows to interpolate between two point-clouds and in deep generative modeling on standard image datasets, such as CIFAR10 and CelebA.
Taming graph kernels with random features
We introduce in this paper the mechanism of graph random features (GRFs). GRFs can be used to construct unbiased randomized estimators of several important kernels defined on graphs' nodes, in particular the regularized Laplacian kernel. As regular RFs for non-graph kernels, they provide means to scale up kernel methods defined on graphs to larger networks. Importantly, they give substantial computational gains also for smaller graphs, while applied in downstream applications. Consequently, GRFs address the notoriously difficult problem of cubic (in the number of the nodes of the graph) time complexity of graph kernels algorithms. We provide a detailed theoretical analysis of GRFs and an extensive empirical evaluation: from speed tests, through Frobenius relative error analysis to kmeans graph-clustering with graph kernels. We show that the computation of GRFs admits an embarrassingly simple distributed algorithm that can be applied if the graph under consideration needs to be split across several machines. We also introduce a (still unbiased) quasi Monte Carlo variant of GRFs, q-GRFs, relying on the so-called reinforced random walks, that might be used to optimize the variance of GRFs. As a byproduct, we obtain a novel approach to solve certain classes of linear equations with positive and symmetric matrices.
Diffusion-Based 3D Human Pose Estimation with Multi-Hypothesis Aggregation
In this paper, a novel Diffusion-based 3D Pose estimation (D3DP) method with Joint-wise reProjection-based Multi-hypothesis Aggregation (JPMA) is proposed for probabilistic 3D human pose estimation. On the one hand, D3DP generates multiple possible 3D pose hypotheses for a single 2D observation. It gradually diffuses the ground truth 3D poses to a random distribution, and learns a denoiser conditioned on 2D keypoints to recover the uncontaminated 3D poses. The proposed D3DP is compatible with existing 3D pose estimators and supports users to balance efficiency and accuracy during inference through two customizable parameters. On the other hand, JPMA is proposed to assemble multiple hypotheses generated by D3DP into a single 3D pose for practical use. It reprojects 3D pose hypotheses to the 2D camera plane, selects the best hypothesis joint-by-joint based on the reprojection errors, and combines the selected joints into the final pose. The proposed JPMA conducts aggregation at the joint level and makes use of the 2D prior information, both of which have been overlooked by previous approaches. Extensive experiments on Human3.6M and MPI-INF-3DHP datasets show that our method outperforms the state-of-the-art deterministic and probabilistic approaches by 1.5% and 8.9%, respectively. Code is available at https://github.com/paTRICK-swk/D3DP.
Multi-Feature Integration for Perception-Dependent Examination-Bias Estimation
Eliminating examination bias accurately is pivotal to apply click-through data to train an unbiased ranking model. However, most examination-bias estimators are limited to the hypothesis of Position-Based Model (PBM), which supposes that the calculation of examination bias only depends on the rank of the document. Recently, although some works introduce information such as clicks in the same query list and contextual information when calculating the examination bias, they still do not model the impact of document representation on search engine result pages (SERPs) that seriously affects one's perception of document relevance to a query when examining. Therefore, we propose a Multi-Feature Integration Model (MFIM) where the examination bias depends on the representation of document except the rank of it. Furthermore, we mine a key factor slipoff counts that can indirectly reflects the influence of all perception-bias factors. Real world experiments on Baidu-ULTR dataset demonstrate the superior effectiveness and robustness of the new approach. The source code is available at https://github.com/lixsh6/Tencent_wsdm_cup2023/tree/main/pytorch_unbias{https://github.com/lixsh6/Tencent\_wsdm\_cup2023}
High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors
In location estimation, we are given n samples from a known distribution f shifted by an unknown translation lambda, and want to estimate lambda as precisely as possible. Asymptotically, the maximum likelihood estimate achieves the Cram\'er-Rao bound of error mathcal N(0, 1{nmathcal I}), where mathcal I is the Fisher information of f. However, the n required for convergence depends on f, and may be arbitrarily large. We build on the theory using smoothed estimators to bound the error for finite n in terms of mathcal I_r, the Fisher information of the r-smoothed distribution. As n to infty, r to 0 at an explicit rate and this converges to the Cram\'er-Rao bound. We (1) improve the prior work for 1-dimensional f to converge for constant failure probability in addition to high probability, and (2) extend the theory to high-dimensional distributions. In the process, we prove a new bound on the norm of a high-dimensional random variable whose 1-dimensional projections are subgamma, which may be of independent interest.
From Robustness to Privacy and Back
We study the relationship between two desiderata of algorithms in statistical inference and machine learning: differential privacy and robustness to adversarial data corruptions. Their conceptual similarity was first observed by Dwork and Lei (STOC 2009), who observed that private algorithms satisfy robustness, and gave a general method for converting robust algorithms to private ones. However, all general methods for transforming robust algorithms into private ones lead to suboptimal error rates. Our work gives the first black-box transformation that converts any adversarially robust algorithm into one that satisfies pure differential privacy. Moreover, we show that for any low-dimensional estimation task, applying our transformation to an optimal robust estimator results in an optimal private estimator. Thus, we conclude that for any low-dimensional task, the optimal error rate for varepsilon-differentially private estimators is essentially the same as the optimal error rate for estimators that are robust to adversarially corrupting 1/varepsilon training samples. We apply our transformation to obtain new optimal private estimators for several high-dimensional tasks, including Gaussian (sparse) linear regression and PCA. Finally, we present an extension of our transformation that leads to approximate differentially private algorithms whose error does not depend on the range of the output space, which is impossible under pure differential privacy.
A Fully First-Order Method for Stochastic Bilevel Optimization
We consider stochastic unconstrained bilevel optimization problems when only the first-order gradient oracles are available. While numerous optimization methods have been proposed for tackling bilevel problems, existing methods either tend to require possibly expensive calculations regarding Hessians of lower-level objectives, or lack rigorous finite-time performance guarantees. In this work, we propose a Fully First-order Stochastic Approximation (F2SA) method, and study its non-asymptotic convergence properties. Specifically, we show that F2SA converges to an epsilon-stationary solution of the bilevel problem after epsilon^{-7/2}, epsilon^{-5/2}, and epsilon^{-3/2} iterations (each iteration using O(1) samples) when stochastic noises are in both level objectives, only in the upper-level objective, and not present (deterministic settings), respectively. We further show that if we employ momentum-assisted gradient estimators, the iteration complexities can be improved to epsilon^{-5/2}, epsilon^{-4/2}, and epsilon^{-3/2}, respectively. We demonstrate even superior practical performance of the proposed method over existing second-order based approaches on MNIST data-hypercleaning experiments.
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
We consider the optimization problem of the form min_{x in R^d} f(x) triangleq E_{xi} [F(x; xi)], where the component F(x;xi) is L-mean-squared Lipschitz but possibly nonconvex and nonsmooth. The recently proposed gradient-free method requires at most O( L^4 d^{3/2} epsilon^{-4} + Delta L^3 d^{3/2} delta^{-1} epsilon^{-4}) stochastic zeroth-order oracle complexity to find a (delta,epsilon)-Goldstein stationary point of objective function, where Delta = f(x_0) - inf_{x in R^d} f(x) and x_0 is the initial point of the algorithm. This paper proposes a more efficient algorithm using stochastic recursive gradient estimators, which improves the complexity to O(L^3 d^{3/2} epsilon^{-3}+ Delta L^2 d^{3/2} delta^{-1} epsilon^{-3}).
Parallel Bayesian Optimization of Agent-based Transportation Simulation
MATSim (Multi-Agent Transport Simulation Toolkit) is an open source large-scale agent-based transportation planning project applied to various areas like road transport, public transport, freight transport, regional evacuation, etc. BEAM (Behavior, Energy, Autonomy, and Mobility) framework extends MATSim to enable powerful and scalable analysis of urban transportation systems. The agents from the BEAM simulation exhibit 'mode choice' behavior based on multinomial logit model. In our study, we consider eight mode choices viz. bike, car, walk, ride hail, driving to transit, walking to transit, ride hail to transit, and ride hail pooling. The 'alternative specific constants' for each mode choice are critical hyperparameters in a configuration file related to a particular scenario under experimentation. We use the 'Urbansim-10k' BEAM scenario (with 10,000 population size) for all our experiments. Since these hyperparameters affect the simulation in complex ways, manual calibration methods are time consuming. We present a parallel Bayesian optimization method with early stopping rule to achieve fast convergence for the given multi-in-multi-out problem to its optimal configurations. Our model is based on an open source HpBandSter package. This approach combines hierarchy of several 1D Kernel Density Estimators (KDE) with a cheap evaluator (Hyperband, a single multidimensional KDE). Our model has also incorporated extrapolation based early stopping rule. With our model, we could achieve a 25% L1 norm for a large-scale BEAM simulation in fully autonomous manner. To the best of our knowledge, our work is the first of its kind applied to large-scale multi-agent transportation simulations. This work can be useful for surrogate modeling of scenarios with very large populations.
How Much Does Home Field Advantage Matter in Soccer Games? A Causal Inference Approach for English Premier League Analysis
In many sports, it is commonly believed that the home team has an advantage over the visiting team, known as the home field advantage. Yet its causal effect on team performance is largely unknown. In this paper, we propose a novel causal inference approach to study the causal effect of home field advantage in English Premier League. We develop a hierarchical causal model and show that both league level and team level causal effects are identifiable and can be conveniently estimated. We further develop an inference procedure for the proposed estimators and demonstrate its excellent numerical performance via simulation studies. We implement our method on the 2020-21 English Premier League data and assess the causal effect of home advantage on eleven summary statistics that measure the offensive and defensive performance and referee bias. We find that the home field advantage resides more heavily in offensive statistics than it does in defensive or referee statistics. We also find evidence that teams that had lower rankings retain a higher home field advantage.
Treatment Effects Estimation by Uniform Transformer
In observational studies, balancing covariates in different treatment groups is essential to estimate treatment effects. One of the most commonly used methods for such purposes is weighting. The performance of this class of methods usually depends on strong regularity conditions for the underlying model, which might not hold in practice. In this paper, we investigate weighting methods from a functional estimation perspective and argue that the weights needed for covariate balancing could differ from those needed for treatment effects estimation under low regularity conditions. Motivated by this observation, we introduce a new framework of weighting that directly targets the treatment effects estimation. Unlike existing methods, the resulting estimator for a treatment effect under this new framework is a simple kernel-based U-statistic after applying a data-driven transformation to the observed covariates. We characterize the theoretical properties of the new estimators of treatment effects under a nonparametric setting and show that they are able to work robustly under low regularity conditions. The new framework is also applied to several numerical examples to demonstrate its practical merits.
stream-learn -- open-source Python library for difficult data stream batch analysis
stream-learn is a Python package compatible with scikit-learn and developed for the drifting and imbalanced data stream analysis. Its main component is a stream generator, which allows to produce a synthetic data stream that may incorporate each of the three main concept drift types (i.e. sudden, gradual and incremental drift) in their recurring or non-recurring versions. The package allows conducting experiments following established evaluation methodologies (i.e. Test-Then-Train and Prequential). In addition, estimators adapted for data stream classification have been implemented, including both simple classifiers and state-of-art chunk-based and online classifier ensembles. To improve computational efficiency, package utilises its own implementations of prediction metrics for imbalanced binary classification tasks.
Demystifying MMD GANs
We investigate the training and performance of generative adversarial networks using the Maximum Mean Discrepancy (MMD) as critic, termed MMD GANs. As our main theoretical contribution, we clarify the situation with bias in GAN loss functions raised by recent work: we show that gradient estimators used in the optimization process for both MMD GANs and Wasserstein GANs are unbiased, but learning a discriminator based on samples leads to biased gradients for the generator parameters. We also discuss the issue of kernel choice for the MMD critic, and characterize the kernel corresponding to the energy distance used for the Cramer GAN critic. Being an integral probability metric, the MMD benefits from training strategies recently developed for Wasserstein GANs. In experiments, the MMD GAN is able to employ a smaller critic network than the Wasserstein GAN, resulting in a simpler and faster-training algorithm with matching performance. We also propose an improved measure of GAN convergence, the Kernel Inception Distance, and show how to use it to dynamically adapt learning rates during GAN training.
Preserving Statistical Validity in Adaptive Data Analysis
A great deal of effort has been devoted to reducing the risk of spurious scientific discoveries, from the use of sophisticated validation techniques, to deep statistical methods for controlling the false discovery rate in multiple hypothesis testing. However, there is a fundamental disconnect between the theoretical results and the practice of data analysis: the theory of statistical inference assumes a fixed collection of hypotheses to be tested, or learning algorithms to be applied, selected non-adaptively before the data are gathered, whereas in practice data is shared and reused with hypotheses and new analyses being generated on the basis of data exploration and the outcomes of previous analyses. In this work we initiate a principled study of how to guarantee the validity of statistical inference in adaptive data analysis. As an instance of this problem, we propose and investigate the question of estimating the expectations of m adaptively chosen functions on an unknown distribution given n random samples. We show that, surprisingly, there is a way to estimate an exponential in n number of expectations accurately even if the functions are chosen adaptively. This gives an exponential improvement over standard empirical estimators that are limited to a linear number of estimates. Our result follows from a general technique that counter-intuitively involves actively perturbing and coordinating the estimates, using techniques developed for privacy preservation. We give additional applications of this technique to our question.
Vector-Valued Control Variates
Control variates are variance reduction tools for Monte Carlo estimators. They can provide significant variance reduction, but usually require a large number of samples, which can be prohibitive when sampling or evaluating the integrand is computationally expensive. Furthermore, there are many scenarios where we need to compute multiple related integrals simultaneously or sequentially, which can further exacerbate computational costs. In this paper, we propose vector-valued control variates, an extension of control variates which can be used to reduce the variance of multiple Monte Carlo estimators jointly. This allows for the transfer of information across integration tasks, and hence reduces the need for a large number of samples. We focus on control variates based on kernel interpolants and our novel construction is obtained through a generalised Stein identity and the development of novel matrix-valued Stein reproducing kernels. We demonstrate our methodology on a range of problems including multifidelity modelling, Bayesian inference for dynamical systems, and model evidence computation through thermodynamic integration.
Fine-Tuning Image-Conditional Diffusion Models is Easier than You Think
Recent work showed that large diffusion models can be reused as highly precise monocular depth estimators by casting depth estimation as an image-conditional image generation task. While the proposed model achieved state-of-the-art results, high computational demands due to multi-step inference limited its use in many scenarios. In this paper, we show that the perceived inefficiency was caused by a flaw in the inference pipeline that has so far gone unnoticed. The fixed model performs comparably to the best previously reported configuration while being more than 200times faster. To optimize for downstream task performance, we perform end-to-end fine-tuning on top of the single-step model with task-specific losses and get a deterministic model that outperforms all other diffusion-based depth and normal estimation models on common zero-shot benchmarks. We surprisingly find that this fine-tuning protocol also works directly on Stable Diffusion and achieves comparable performance to current state-of-the-art diffusion-based depth and normal estimation models, calling into question some of the conclusions drawn from prior works.
Controlling Space and Time with Diffusion Models
We present 4DiM, a cascaded diffusion model for 4D novel view synthesis (NVS), conditioned on one or more images of a general scene, and a set of camera poses and timestamps. To overcome challenges due to limited availability of 4D training data, we advocate joint training on 3D (with camera pose), 4D (pose+time) and video (time but no pose) data and propose a new architecture that enables the same. We further advocate the calibration of SfM posed data using monocular metric depth estimators for metric scale camera control. For model evaluation, we introduce new metrics to enrich and overcome shortcomings of current evaluation schemes, demonstrating state-of-the-art results in both fidelity and pose control compared to existing diffusion models for 3D NVS, while at the same time adding the ability to handle temporal dynamics. 4DiM is also used for improved panorama stitching, pose-conditioned video to video translation, and several other tasks. For an overview see https://4d-diffusion.github.io
Mergenetic: a Simple Evolutionary Model Merging Library
Model merging allows combining the capabilities of existing models into a new one - post hoc, without additional training. This has made it increasingly popular thanks to its low cost and the availability of libraries that support merging on consumer GPUs. Recent work shows that pairing merging with evolutionary algorithms can boost performance, but no framework currently supports flexible experimentation with such strategies in language models. We introduce Mergenetic, an open-source library for evolutionary model merging. Mergenetic enables easy composition of merging methods and evolutionary algorithms while incorporating lightweight fitness estimators to reduce evaluation costs. We describe its design and demonstrate that Mergenetic produces competitive results across tasks and languages using modest hardware.
How to Select Datapoints for Efficient Human Evaluation of NLG Models?
Human evaluation is the gold-standard for evaluating text generation models. It is also expensive, and to fit budgetary constraints, a random subset of the test data is often chosen in practice. The randomly selected data may not accurately represent test performance, making this approach economically inefficient for model comparison. Thus, in this work, we develop a suite of selectors to get the most informative datapoints for human evaluation while taking the evaluation costs into account. We show that selectors based on variance in automated metric scores, diversity in model outputs, or Item Response Theory outperform random selection. We further develop an approach to distill these selectors to the scenario where the model outputs are not yet available. In particular, we introduce source-based estimators, which predict item usefulness for human evaluation just based on the source texts. We demonstrate the efficacy of our selectors in two common NLG tasks, machine translation and summarization, and show that up to only ~50% of the test data is needed to produce the same evaluation result as the entire data. Our implementations are published in the subset2evaluate package.
3D-aware Image Generation using 2D Diffusion Models
In this paper, we introduce a novel 3D-aware image generation method that leverages 2D diffusion models. We formulate the 3D-aware image generation task as multiview 2D image set generation, and further to a sequential unconditional-conditional multiview image generation process. This allows us to utilize 2D diffusion models to boost the generative modeling power of the method. Additionally, we incorporate depth information from monocular depth estimators to construct the training data for the conditional diffusion model using only still images. We train our method on a large-scale dataset, i.e., ImageNet, which is not addressed by previous methods. It produces high-quality images that significantly outperform prior methods. Furthermore, our approach showcases its capability to generate instances with large view angles, even though the training images are diverse and unaligned, gathered from "in-the-wild" real-world environments.
Principled Reinforcement Learning with Human Feedback from Pairwise or $K$-wise Comparisons
We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF). Our analysis shows that when the true reward function is linear, the widely used maximum likelihood estimator (MLE) converges under both the Bradley-Terry-Luce (BTL) model and the Plackett-Luce (PL) model. However, we show that when training a policy based on the learned reward model, MLE fails while a pessimistic MLE provides policies with improved performance under certain coverage assumptions. Additionally, we demonstrate that under the PL model, the true MLE and an alternative MLE that splits the K-wise comparison into pairwise comparisons both converge. Moreover, the true MLE is asymptotically more efficient. Our results validate the empirical success of existing RLHF algorithms in InstructGPT and provide new insights for algorithm design. Furthermore, our results unify the problem of RLHF and max-entropy Inverse Reinforcement Learning (IRL), and provide the first sample complexity bound for max-entropy IRL.
Distributed Learning of Mixtures of Experts
In modern machine learning problems we deal with datasets that are either distributed by nature or potentially large for which distributing the computations is usually a standard way to proceed, since centralized algorithms are in general ineffective. We propose a distributed learning approach for mixtures of experts (MoE) models with an aggregation strategy to construct a reduction estimator from local estimators fitted parallelly to distributed subsets of the data. The aggregation is based on an optimal minimization of an expected transportation divergence between the large MoE composed of local estimators and the unknown desired MoE model. We show that the provided reduction estimator is consistent as soon as the local estimators to be aggregated are consistent, and its construction is performed by a proposed majorization-minimization (MM) algorithm that is computationally effective. We study the statistical and numerical properties for the proposed reduction estimator on experiments that demonstrate its performance compared to namely the global estimator constructed in a centralized way from the full dataset. For some situations, the computation time is more than ten times faster, for a comparable performance. Our source codes are publicly available on Github.
Industrial Application of 6D Pose Estimation for Robotic Manipulation in Automotive Internal Logistics
Despite the advances in robotics a large proportion of the of parts handling tasks in the automotive industry's internal logistics are not automated but still performed by humans. A key component to competitively automate these processes is a 6D pose estimation that can handle a large number of different parts, is adaptable to new parts with little manual effort, and is sufficiently accurate and robust with respect to industry requirements. In this context, the question arises as to the current status quo with respect to these measures. To address this we built a representative 6D pose estimation pipeline with state-of-the-art components from economically scalable real to synthetic data generation to pose estimators and evaluated it on automotive parts with regards to a realistic sequencing process. We found that using the data generation approaches, the performance of the trained 6D pose estimators are promising, but do not meet industry requirements. We reveal that the reason for this is the inability of the estimators to provide reliable uncertainties for their poses, rather than the ability of to provide sufficiently accurate poses. In this context we further analyzed how RGB- and RGB-D-based approaches compare against this background and show that they are differently vulnerable to the domain gap induced by synthetic data.
Open Set Label Shift with Test Time Out-of-Distribution Reference
Open set label shift (OSLS) occurs when label distributions change from a source to a target distribution, and the target distribution has an additional out-of-distribution (OOD) class. In this work, we build estimators for both source and target open set label distributions using a source domain in-distribution (ID) classifier and an ID/OOD classifier. With reasonable assumptions on the ID/OOD classifier, the estimators are assembled into a sequence of three stages: 1) an estimate of the source label distribution of the OOD class, 2) an EM algorithm for Maximum Likelihood estimates (MLE) of the target label distribution, and 3) an estimate of the target label distribution of OOD class under relaxed assumptions on the OOD classifier. The sampling errors of estimates in 1) and 3) are quantified with a concentration inequality. The estimation result allows us to correct the ID classifier trained on the source distribution to the target distribution without retraining. Experiments on a variety of open set label shift settings demonstrate the effectiveness of our model. Our code is available at https://github.com/ChangkunYe/OpenSetLabelShift.
LLM Safety Alignment is Divergence Estimation in Disguise
We propose a theoretical framework demonstrating that popular Large Language Model (LLM) alignment methods, including Reinforcement Learning from Human Feedback (RLHF) and alternatives, fundamentally function as divergence estimators between aligned (preferred or safe) and unaligned (less-preferred or harmful) distributions. This explains the separation phenomenon between safe and harmful prompts in the model hidden representation after alignment. Inspired by the theoretical results, we identify that some alignment methods are better than others in terms of separation and, introduce a new method, KLDO, and further demonstrate the implication of our theories. We advocate for compliance-refusal datasets over preference datasets to enhance safety alignment, supported by both theoretical reasoning and empirical evidence. Additionally, to quantify safety separation, we leverage a distance metric in the representation space and statistically validate its efficacy as a statistical significant indicator of LLM resilience against jailbreak attacks.
Horizon-Free Regret for Linear Markov Decision Processes
A recent line of works showed regret bounds in reinforcement learning (RL) can be (nearly) independent of planning horizon, a.k.a.~the horizon-free bounds. However, these regret bounds only apply to settings where a polynomial dependency on the size of transition model is allowed, such as tabular Markov Decision Process (MDP) and linear mixture MDP. We give the first horizon-free bound for the popular linear MDP setting where the size of the transition model can be exponentially large or even uncountable. In contrast to prior works which explicitly estimate the transition model and compute the inhomogeneous value functions at different time steps, we directly estimate the value functions and confidence sets. We obtain the horizon-free bound by: (1) maintaining multiple weighted least square estimators for the value functions; and (2) a structural lemma which shows the maximal total variation of the inhomogeneous value functions is bounded by a polynomial factor of the feature dimension.
Optimizing Illuminant Estimation in Dual-Exposure HDR Imaging
High dynamic range (HDR) imaging involves capturing a series of frames of the same scene, each with different exposure settings, to broaden the dynamic range of light. This can be achieved through burst capturing or using staggered HDR sensors that capture long and short exposures simultaneously in the camera image signal processor (ISP). Within camera ISP pipeline, illuminant estimation is a crucial step aiming to estimate the color of the global illuminant in the scene. This estimation is used in camera ISP white-balance module to remove undesirable color cast in the final image. Despite the multiple frames captured in the HDR pipeline, conventional illuminant estimation methods often rely only on a single frame of the scene. In this paper, we explore leveraging information from frames captured with different exposure times. Specifically, we introduce a simple feature extracted from dual-exposure images to guide illuminant estimators, referred to as the dual-exposure feature (DEF). To validate the efficiency of DEF, we employed two illuminant estimators using the proposed DEF: 1) a multilayer perceptron network (MLP), referred to as exposure-based MLP (EMLP), and 2) a modified version of the convolutional color constancy (CCC) to integrate our DEF, that we call ECCC. Both EMLP and ECCC achieve promising results, in some cases surpassing prior methods that require hundreds of thousands or millions of parameters, with only a few hundred parameters for EMLP and a few thousand parameters for ECCC.
Adaptive Instrument Design for Indirect Experiments
Indirect experiments provide a valuable framework for estimating treatment effects in situations where conducting randomized control trials (RCTs) is impractical or unethical. Unlike RCTs, indirect experiments estimate treatment effects by leveraging (conditional) instrumental variables, enabling estimation through encouragement and recommendation rather than strict treatment assignment. However, the sample efficiency of such estimators depends not only on the inherent variability in outcomes but also on the varying compliance levels of users with the instrumental variables and the choice of estimator being used, especially when dealing with numerous instrumental variables. While adaptive experiment design has a rich literature for direct experiments, in this paper we take the initial steps towards enhancing sample efficiency for indirect experiments by adaptively designing a data collection policy over instrumental variables. Our main contribution is a practical computational procedure that utilizes influence functions to search for an optimal data collection policy, minimizing the mean-squared error of the desired (non-linear) estimator. Through experiments conducted in various domains inspired by real-world applications, we showcase how our method can significantly improve the sample efficiency of indirect experiments.
Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration
Deep learning methods for unsupervised registration often rely on objectives that assume a uniform noise level across the spatial domain (e.g. mean-squared error loss), but noise distributions are often heteroscedastic and input-dependent in real-world medical images. Thus, this assumption often leads to degradation in registration performance, mainly due to the undesired influence of noise-induced outliers. To mitigate this, we propose a framework for heteroscedastic image uncertainty estimation that can adaptively reduce the influence of regions with high uncertainty during unsupervised registration. The framework consists of a collaborative training strategy for the displacement and variance estimators, and a novel image fidelity weighting scheme utilizing signal-to-noise ratios. Our approach prevents the model from being driven away by spurious gradients caused by the simplified homoscedastic assumption, leading to more accurate displacement estimation. To illustrate its versatility and effectiveness, we tested our framework on two representative registration architectures across three medical image datasets. Our method consistently outperforms baselines and produces sensible uncertainty estimates. The code is publicly available at https://voldemort108x.github.io/hetero_uncertainty/.
SCOPE-RL: A Python Library for Offline Reinforcement Learning and Off-Policy Evaluation
This paper introduces SCOPE-RL, a comprehensive open-source Python software designed for offline reinforcement learning (offline RL), off-policy evaluation (OPE), and selection (OPS). Unlike most existing libraries that focus solely on either policy learning or evaluation, SCOPE-RL seamlessly integrates these two key aspects, facilitating flexible and complete implementations of both offline RL and OPE processes. SCOPE-RL put particular emphasis on its OPE modules, offering a range of OPE estimators and robust evaluation-of-OPE protocols. This approach enables more in-depth and reliable OPE compared to other packages. For instance, SCOPE-RL enhances OPE by estimating the entire reward distribution under a policy rather than its mere point-wise expected value. Additionally, SCOPE-RL provides a more thorough evaluation-of-OPE by presenting the risk-return tradeoff in OPE results, extending beyond mere accuracy evaluations in existing OPE literature. SCOPE-RL is designed with user accessibility in mind. Its user-friendly APIs, comprehensive documentation, and a variety of easy-to-follow examples assist researchers and practitioners in efficiently implementing and experimenting with various offline RL methods and OPE estimators, tailored to their specific problem contexts. The documentation of SCOPE-RL is available at https://scope-rl.readthedocs.io/en/latest/.
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
We study principal component analysis (PCA), where given a dataset in R^d from a distribution, the task is to find a unit vector v that approximately maximizes the variance of the distribution after being projected along v. Despite being a classical task, standard estimators fail drastically if the data contains even a small fraction of outliers, motivating the problem of robust PCA. Recent work has developed computationally-efficient algorithms for robust PCA that either take super-linear time or have sub-optimal error guarantees. Our main contribution is to develop a nearly-linear time algorithm for robust PCA with near-optimal error guarantees. We also develop a single-pass streaming algorithm for robust PCA with memory usage nearly-linear in the dimension.
Improved Policy Evaluation for Randomized Trials of Algorithmic Resource Allocation
We consider the task of evaluating policies of algorithmic resource allocation through randomized controlled trials (RCTs). Such policies are tasked with optimizing the utilization of limited intervention resources, with the goal of maximizing the benefits derived. Evaluation of such allocation policies through RCTs proves difficult, notwithstanding the scale of the trial, because the individuals' outcomes are inextricably interlinked through resource constraints controlling the policy decisions. Our key contribution is to present a new estimator leveraging our proposed novel concept, that involves retrospective reshuffling of participants across experimental arms at the end of an RCT. We identify conditions under which such reassignments are permissible and can be leveraged to construct counterfactual trials, whose outcomes can be accurately ascertained, for free. We prove theoretically that such an estimator is more accurate than common estimators based on sample means -- we show that it returns an unbiased estimate and simultaneously reduces variance. We demonstrate the value of our approach through empirical experiments on synthetic, semi-synthetic as well as real case study data and show improved estimation accuracy across the board.
Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation
We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estimation under binary treatments. Unlike model selection in machine learning, there is no perfect analogue of cross-validation as we do not observe the counterfactual potential outcome for any data point. Towards this, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models estimated from the observed data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can access the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics introduced in the literature, and novel ones introduced in this work, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. Our analysis suggests novel model selection strategies based on careful hyperparameter tuning of CATE estimators and causal ensembling.
Training Normalizing Flows from Dependent Data
Normalizing flows are powerful non-parametric statistical models that function as a hybrid between density estimators and generative models. Current learning algorithms for normalizing flows assume that data points are sampled independently, an assumption that is frequently violated in practice, which may lead to erroneous density estimation and data generation. We propose a likelihood objective of normalizing flows incorporating dependencies between the data points, for which we derive a flexible and efficient learning algorithm suitable for different dependency structures. We show that respecting dependencies between observations can improve empirical results on both synthetic and real-world data, and leads to higher statistical power in a downstream application to genome-wide association studies.
Comparison of meta-learners for estimating multi-valued treatment heterogeneous effects
Conditional Average Treatment Effects (CATE) estimation is one of the main challenges in causal inference with observational data. In addition to Machine Learning based-models, nonparametric estimators called meta-learners have been developed to estimate the CATE with the main advantage of not restraining the estimation to a specific supervised learning method. This task becomes, however, more complicated when the treatment is not binary as some limitations of the naive extensions emerge. This paper looks into meta-learners for estimating the heterogeneous effects of multi-valued treatments. We consider different meta-learners, and we carry out a theoretical analysis of their error upper bounds as functions of important parameters such as the number of treatment levels, showing that the naive extensions do not always provide satisfactory results. We introduce and discuss meta-learners that perform well as the number of treatments increases. We empirically confirm the strengths and weaknesses of those methods with synthetic and semi-synthetic datasets.
Universalizing Weak Supervision
Weak supervision (WS) frameworks are a popular way to bypass hand-labeling large datasets for training data-hungry models. These approaches synthesize multiple noisy but cheaply-acquired estimates of labels into a set of high-quality pseudolabels for downstream training. However, the synthesis technique is specific to a particular kind of label, such as binary labels or sequences, and each new label type requires manually designing a new synthesis algorithm. Instead, we propose a universal technique that enables weak supervision over any label type while still offering desirable properties, including practical flexibility, computational efficiency, and theoretical guarantees. We apply this technique to important problems previously not tackled by WS frameworks including learning to rank, regression, and learning in hyperbolic space. Theoretically, our synthesis approach produces a consistent estimators for learning some challenging but important generalizations of the exponential family model. Experimentally, we validate our framework and show improvement over baselines in diverse settings including real-world learning-to-rank and regression problems along with learning on hyperbolic manifolds.
Categorical Reparameterization with Gumbel-Softmax
Categorical variables are a natural choice for representing discrete structure in the world. However, stochastic neural networks rarely use categorical latent variables due to the inability to backpropagate through samples. In this work, we present an efficient gradient estimator that replaces the non-differentiable sample from a categorical distribution with a differentiable sample from a novel Gumbel-Softmax distribution. This distribution has the essential property that it can be smoothly annealed into a categorical distribution. We show that our Gumbel-Softmax estimator outperforms state-of-the-art gradient estimators on structured output prediction and unsupervised generative modeling tasks with categorical latent variables, and enables large speedups on semi-supervised classification.
