new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse (NC). Recent papers have theoretically shown that NC emerges in the global minimizers of training problems with the simplified "unconstrained feature model". In this context, we take a step further and prove the NC occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit NC properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of NC under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.

  • 6 authors
·
Jan 1, 2023

Critical Learning Periods Emerge Even in Deep Linear Networks

Critical learning periods are periods early in development where temporary sensory deficits can have a permanent effect on behavior and learned representations. Despite the radical differences between biological and artificial networks, critical learning periods have been empirically observed in both systems. This suggests that critical periods may be fundamental to learning and not an accident of biology. Yet, why exactly critical periods emerge in deep networks is still an open question, and in particular it is unclear whether the critical periods observed in both systems depend on particular architectural or optimization details. To isolate the key underlying factors, we focus on deep linear network models, and show that, surprisingly, such networks also display much of the behavior seen in biology and artificial networks, while being amenable to analytical treatment. We show that critical periods depend on the depth of the model and structure of the data distribution. We also show analytically and in simulations that the learning of features is tied to competition between sources. Finally, we extend our analysis to multi-task learning to show that pre-training on certain tasks can damage the transfer performance on new tasks, and show how this depends on the relationship between tasks and the duration of the pre-training stage. To the best of our knowledge, our work provides the first analytically tractable model that sheds light into why critical learning periods emerge in biological and artificial networks.

  • 3 authors
·
Aug 23, 2023

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks

Despite the widespread practical success of deep learning methods, our theoretical understanding of the dynamics of learning in deep neural networks remains quite sparse. We attempt to bridge the gap between the theory and practice of deep learning by systematically analyzing learning dynamics for the restricted case of deep linear neural networks. Despite the linearity of their input-output map, such networks have nonlinear gradient descent dynamics on weights that change with the addition of each new hidden layer. We show that deep linear networks exhibit nonlinear learning phenomena similar to those seen in simulations of nonlinear networks, including long plateaus followed by rapid transitions to lower error solutions, and faster convergence from greedy unsupervised pretraining initial conditions than from random initial conditions. We provide an analytical description of these phenomena by finding new exact solutions to the nonlinear dynamics of deep learning. Our theoretical analysis also reveals the surprising finding that as the depth of a network approaches infinity, learning speed can nevertheless remain finite: for a special class of initial conditions on the weights, very deep networks incur only a finite, depth independent, delay in learning speed relative to shallow networks. We show that, under certain conditions on the training data, unsupervised pretraining can find this special class of initial conditions, while scaled random Gaussian initializations cannot. We further exhibit a new class of random orthogonal initial conditions on weights that, like unsupervised pre-training, enjoys depth independent learning times. We further show that these initial conditions also lead to faithful propagation of gradients even in deep nonlinear networks, as long as they operate in a special regime known as the edge of chaos.

  • 3 authors
·
Dec 20, 2013

How JEPA Avoids Noisy Features: The Implicit Bias of Deep Linear Self Distillation Networks

Two competing paradigms exist for self-supervised learning of data representations. Joint Embedding Predictive Architecture (JEPA) is a class of architectures in which semantically similar inputs are encoded into representations that are predictive of each other. A recent successful approach that falls under the JEPA framework is self-distillation, where an online encoder is trained to predict the output of the target encoder, sometimes using a lightweight predictor network. This is contrasted with the Masked AutoEncoder (MAE) paradigm, where an encoder and decoder are trained to reconstruct missing parts of the input in the data space rather, than its latent representation. A common motivation for using the JEPA approach over MAE is that the JEPA objective prioritizes abstract features over fine-grained pixel information (which can be unpredictable and uninformative). In this work, we seek to understand the mechanism behind this empirical observation by analyzing the training dynamics of deep linear models. We uncover a surprising mechanism: in a simplified linear setting where both approaches learn similar representations, JEPAs are biased to learn high-influence features, i.e., features characterized by having high regression coefficients. Our results point to a distinct implicit bias of predicting in latent space that may shed light on its success in practice.

  • 7 authors
·
Jul 3, 2024

RelP: Faithful and Efficient Circuit Discovery via Relevance Patching

Activation patching is a standard method in mechanistic interpretability for localizing the components of a model responsible for specific behaviors, but it is computationally expensive to apply at scale. Attribution patching offers a faster, gradient-based approximation, yet suffers from noise and reduced reliability in deep, highly non-linear networks. In this work, we introduce Relevance Patching (RelP), which replaces the local gradients in attribution patching with propagation coefficients derived from Layer-wise Relevance Propagation (LRP). LRP propagates the network's output backward through the layers, redistributing relevance to lower-level components according to local propagation rules that ensure properties such as relevance conservation or improved signal-to-noise ratio. Like attribution patching, RelP requires only two forward passes and one backward pass, maintaining computational efficiency while improving faithfulness. We validate RelP across a range of models and tasks, showing that it more accurately approximates activation patching than standard attribution patching, particularly when analyzing residual stream and MLP outputs in the Indirect Object Identification (IOI) task. For instance, for MLP outputs in GPT-2 Large, attribution patching achieves a Pearson correlation of 0.006, whereas RelP reaches 0.956, highlighting the improvement offered by RelP. Additionally, we compare the faithfulness of sparse feature circuits identified by RelP and Integrated Gradients (IG), showing that RelP achieves comparable faithfulness without the extra computational cost associated with IG.

  • 4 authors
·
Aug 28, 2025

Deep Networks Always Grok and Here is Why

Grokking, or delayed generalization, is a phenomenon where generalization in a deep neural network (DNN) occurs long after achieving near zero training error. Previous studies have reported the occurrence of grokking in specific controlled settings, such as DNNs initialized with large-norm parameters or transformers trained on algorithmic datasets. We demonstrate that grokking is actually much more widespread and materializes in a wide range of practical settings, such as training of a convolutional neural network (CNN) on CIFAR10 or a Resnet on Imagenette. We introduce the new concept of delayed robustness, whereby a DNN groks adversarial examples and becomes robust, long after interpolation and/or generalization. We develop an analytical explanation for the emergence of both delayed generalization and delayed robustness based on a new measure of the local complexity of a DNN's input-output mapping. Our local complexity measures the density of the so-called 'linear regions' (aka, spline partition regions) that tile the DNN input space, and serves as a utile progress measure for training. We provide the first evidence that for classification problems, the linear regions undergo a phase transition during training whereafter they migrate away from the training samples (making the DNN mapping smoother there) and towards the decision boundary (making the DNN mapping less smooth there). Grokking occurs post phase transition as a robust partition of the input space emerges thanks to the linearization of the DNN mapping around the training points. Website: https://bit.ly/grok-adversarial

  • 3 authors
·
Feb 23, 2024

B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable

B-cos Networks have been shown to be effective for obtaining highly human interpretable explanations of model decisions by architecturally enforcing stronger alignment between inputs and weight. B-cos variants of convolutional networks (CNNs) and vision transformers (ViTs), which primarily replace linear layers with B-cos transformations, perform competitively to their respective standard variants while also yielding explanations that are faithful by design. However, it has so far been necessary to train these models from scratch, which is increasingly infeasible in the era of large, pre-trained foundation models. In this work, inspired by the architectural similarities in standard DNNs and B-cos networks, we propose 'B-cosification', a novel approach to transform existing pre-trained models to become inherently interpretable. We perform a thorough study of design choices to perform this conversion, both for convolutional neural networks and vision transformers. We find that B-cosification can yield models that are on par with B-cos models trained from scratch in terms of interpretability, while often outperforming them in terms of classification performance at a fraction of the training cost. Subsequently, we apply B-cosification to a pretrained CLIP model, and show that, even with limited data and compute cost, we obtain a B-cosified version that is highly interpretable and competitive on zero shot performance across a variety of datasets. We release our code and pre-trained model weights at https://github.com/shrebox/B-cosification.

Tversky Neural Networks: Psychologically Plausible Deep Learning with Differentiable Tversky Similarity

Work in psychology has highlighted that the geometric model of similarity standard in deep learning is not psychologically plausible because its metric properties such as symmetry do not align with human perception. In contrast, Tversky (1977) proposed an axiomatic theory of similarity based on a representation of objects as sets of features, and their similarity as a function of common and distinctive features. However, this model has not been used in deep learning before, partly due to the challenge of incorporating discrete set operations. We develop a differentiable parameterization of Tversky's similarity that is learnable through gradient descent, and derive neural network building blocks such as the Tversky projection layer, which unlike the linear projection layer can model non-linear functions such as XOR. Through experiments with image recognition and language modeling, we show that the Tversky projection layer is a beneficial replacement for the linear projection layer, which employs geometric similarity. On the NABirds image classification task, a frozen ResNet-50 adapted with a Tversky projection layer achieves a 24.7% relative accuracy improvement over the linear layer adapter baseline. With Tversky projection layers, GPT-2's perplexity on PTB decreases by 7.5%, and its parameter count by 34.8%. Finally, we propose a unified interpretation of both projection layers as computing similarities of input stimuli to learned prototypes, for which we also propose a novel visualization technique highlighting the interpretability of Tversky projection layers. Our work offers a new paradigm for thinking about the similarity model implicit in deep learning, and designing networks that are interpretable under an established theory of psychological similarity.

  • 3 authors
·
May 20, 2025

Information-Theoretic Generalization Bounds for Deep Neural Networks

Deep neural networks (DNNs) exhibit an exceptional capacity for generalization in practical applications. This work aims to capture the effect and benefits of depth for supervised learning via information-theoretic generalization bounds. We first derive two hierarchical bounds on the generalization error in terms of the Kullback-Leibler (KL) divergence or the 1-Wasserstein distance between the train and test distributions of the network internal representations. The KL divergence bound shrinks as the layer index increases, while the Wasserstein bound implies the existence of a layer that serves as a generalization funnel, which attains a minimal 1-Wasserstein distance. Analytic expressions for both bounds are derived under the setting of binary Gaussian classification with linear DNNs. To quantify the contraction of the relevant information measures when moving deeper into the network, we analyze the strong data processing inequality (SDPI) coefficient between consecutive layers of three regularized DNN models: Dropout, DropConnect, and Gaussian noise injection. This enables refining our generalization bounds to capture the contraction as a function of the network architecture parameters. Specializing our results to DNNs with a finite parameter space and the Gibbs algorithm reveals that deeper yet narrower network architectures generalize better in those examples, although how broadly this statement applies remains a question.

  • 3 authors
·
Apr 3, 2024

A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction

Deep convolutional neural networks have led to breakthrough results in numerous practical machine learning tasks such as classification of images in the ImageNet data set, control-policy-learning to play Atari games or the board game Go, and image captioning. Many of these applications first perform feature extraction and then feed the results thereof into a trainable classifier. The mathematical analysis of deep convolutional neural networks for feature extraction was initiated by Mallat, 2012. Specifically, Mallat considered so-called scattering networks based on a wavelet transform followed by the modulus non-linearity in each network layer, and proved translation invariance (asymptotically in the wavelet scale parameter) and deformation stability of the corresponding feature extractor. This paper complements Mallat's results by developing a theory that encompasses general convolutional transforms, or in more technical parlance, general semi-discrete frames (including Weyl-Heisenberg filters, curvelets, shearlets, ridgelets, wavelets, and learned filters), general Lipschitz-continuous non-linearities (e.g., rectified linear units, shifted logistic sigmoids, hyperbolic tangents, and modulus functions), and general Lipschitz-continuous pooling operators emulating, e.g., sub-sampling and averaging. In addition, all of these elements can be different in different network layers. For the resulting feature extractor we prove a translation invariance result of vertical nature in the sense of the features becoming progressively more translation-invariant with increasing network depth, and we establish deformation sensitivity bounds that apply to signal classes such as, e.g., band-limited functions, cartoon functions, and Lipschitz functions.

  • 2 authors
·
Dec 19, 2015

Efficient Joint Optimization of Layer-Adaptive Weight Pruning in Deep Neural Networks

In this paper, we propose a novel layer-adaptive weight-pruning approach for Deep Neural Networks (DNNs) that addresses the challenge of optimizing the output distortion minimization while adhering to a target pruning ratio constraint. Our approach takes into account the collective influence of all layers to design a layer-adaptive pruning scheme. We discover and utilize a very important additivity property of output distortion caused by pruning weights on multiple layers. This property enables us to formulate the pruning as a combinatorial optimization problem and efficiently solve it through dynamic programming. By decomposing the problem into sub-problems, we achieve linear time complexity, making our optimization algorithm fast and feasible to run on CPUs. Our extensive experiments demonstrate the superiority of our approach over existing methods on the ImageNet and CIFAR-10 datasets. On CIFAR-10, our method achieves remarkable improvements, outperforming others by up to 1.0% for ResNet-32, 0.5% for VGG-16, and 0.7% for DenseNet-121 in terms of top-1 accuracy. On ImageNet, we achieve up to 4.7% and 4.6% higher top-1 accuracy compared to other methods for VGG-16 and ResNet-50, respectively. These results highlight the effectiveness and practicality of our approach for enhancing DNN performance through layer-adaptive weight pruning. Code will be available on https://github.com/Akimoto-Cris/RD_VIT_PRUNE.

  • 7 authors
·
Aug 20, 2023

The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks

This paper studies model-inversion attacks, in which the access to a model is abused to infer information about the training data. Since its first introduction, such attacks have raised serious concerns given that training data usually contain privacy-sensitive information. Thus far, successful model-inversion attacks have only been demonstrated on simple models, such as linear regression and logistic regression. Previous attempts to invert neural networks, even the ones with simple architectures, have failed to produce convincing results. We present a novel attack method, termed the generative model-inversion attack, which can invert deep neural networks with high success rates. Rather than reconstructing private training data from scratch, we leverage partial public information, which can be very generic, to learn a distributional prior via generative adversarial networks (GANs) and use it to guide the inversion process. Moreover, we theoretically prove that a model's predictive power and its vulnerability to inversion attacks are indeed two sides of the same coin---highly predictive models are able to establish a strong correlation between features and labels, which coincides exactly with what an adversary exploits to mount the attacks. Our extensive experiments demonstrate that the proposed attack improves identification accuracy over the existing work by about 75\% for reconstructing face images from a state-of-the-art face recognition classifier. We also show that differential privacy, in its canonical form, is of little avail to defend against our attacks.

  • 6 authors
·
Nov 16, 2019

MixUp as Locally Linear Out-Of-Manifold Regularization

MixUp is a recently proposed data-augmentation scheme, which linearly interpolates a random pair of training examples and correspondingly the one-hot representations of their labels. Training deep neural networks with such additional data is shown capable of significantly improving the predictive accuracy of the current art. The power of MixUp, however, is primarily established empirically and its working and effectiveness have not been explained in any depth. In this paper, we develop an understanding for MixUp as a form of "out-of-manifold regularization", which imposes certain "local linearity" constraints on the model's input space beyond the data manifold. This analysis enables us to identify a limitation of MixUp, which we call "manifold intrusion". In a nutshell, manifold intrusion in MixUp is a form of under-fitting resulting from conflicts between the synthetic labels of the mixed-up examples and the labels of original training data. Such a phenomenon usually happens when the parameters controlling the generation of mixing policies are not sufficiently fine-tuned on the training data. To address this issue, we propose a novel adaptive version of MixUp, where the mixing policies are automatically learned from the data using an additional network and objective function designed to avoid manifold intrusion. The proposed regularizer, AdaMixUp, is empirically evaluated on several benchmark datasets. Extensive experiments demonstrate that AdaMixUp improves upon MixUp when applied to the current art of deep classification models.

  • 3 authors
·
Sep 7, 2018

Collapsible Linear Blocks for Super-Efficient Super Resolution

With the advent of smart devices that support 4K and 8K resolution, Single Image Super Resolution (SISR) has become an important computer vision problem. However, most super resolution deep networks are computationally very expensive. In this paper, we propose Super-Efficient Super Resolution (SESR) networks that establish a new state-of-the-art for efficient super resolution. Our approach is based on linear overparameterization of CNNs and creates an efficient model architecture for SISR. With theoretical analysis, we uncover the limitations of existing overparameterization methods and show how the proposed method alleviates them. Detailed experiments across six benchmark datasets demonstrate that SESR achieves similar or better image quality than state-of-the-art models while requiring 2x to 330x fewer Multiply-Accumulate (MAC) operations. As a result, SESR can be used on constrained hardware to perform x2 (1080p to 4K) and x4 (1080p to 8K) SISR. Towards this, we estimate hardware performance numbers for a commercial Arm mobile-Neural Processing Unit (NPU) for 1080p to 4K (x2) and 1080p to 8K (x4) SISR. Our results highlight the challenges faced by super resolution on AI accelerators and demonstrate that SESR is significantly faster (e.g., 6x-8x higher FPS) than existing models on mobile-NPU. Finally, SESR outperforms prior models by 1.5x-2x in latency on Arm CPU and GPU when deployed on a real mobile device. The code for this work is available at https://github.com/ARM-software/sesr.

  • 9 authors
·
Mar 16, 2021

Neural networks behave as hash encoders: An empirical study

The input space of a neural network with ReLU-like activations is partitioned into multiple linear regions, each corresponding to a specific activation pattern of the included ReLU-like activations. We demonstrate that this partition exhibits the following encoding properties across a variety of deep learning models: (1) {\it determinism}: almost every linear region contains at most one training example. We can therefore represent almost every training example by a unique activation pattern, which is parameterized by a {\it neural code}; and (2) {\it categorization}: according to the neural code, simple algorithms, such as K-Means, K-NN, and logistic regression, can achieve fairly good performance on both training and test data. These encoding properties surprisingly suggest that {\it normal neural networks well-trained for classification behave as hash encoders without any extra efforts.} In addition, the encoding properties exhibit variability in different scenarios. {Further experiments demonstrate that {\it model size}, {\it training time}, {\it training sample size}, {\it regularization}, and {\it label noise} contribute in shaping the encoding properties, while the impacts of the first three are dominant.} We then define an {\it activation hash phase chart} to represent the space expanded by {model size}, training time, training sample size, and the encoding properties, which is divided into three canonical regions: {\it under-expressive regime}, {\it critically-expressive regime}, and {\it sufficiently-expressive regime}. The source code package is available at https://github.com/LeavesLei/activation-code.

  • 4 authors
·
Jan 14, 2021

LDLT $\mathcal{L}$-Lipschitz Network: Generalized Deep End-To-End Lipschitz Network Construction

Deep residual networks (ResNets) have demonstrated outstanding success in computer vision tasks, attributed to their ability to maintain gradient flow through deep architectures. Simultaneously, controlling the Lipschitz constant in neural networks has emerged as an essential area of research to enhance adversarial robustness and network certifiability. This paper presents a rigorous approach to the general design of L-Lipschitz deep residual networks using a Linear Matrix Inequality (LMI) framework. Initially, the ResNet architecture was reformulated as a cyclic tridiagonal LMI, and closed-form constraints on network parameters were derived to ensure L-Lipschitz continuity; however, using a new LDL^top decomposition approach for certifying LMI feasibility, we extend the construction of L-Lipchitz networks to any other nonlinear architecture. Our contributions include a provable parameterization methodology for constructing Lipschitz-constrained residual networks and other hierarchical architectures. Cholesky decomposition is also used for efficient parameterization. These findings enable robust network designs applicable to adversarial robustness, certified training, and control systems. The LDL^top formulation is shown to be a tight relaxation of the SDP-based network, maintaining full expressiveness and achieving 3\%-13\% accuracy gains over SLL Layers on 121 UCI data sets.

  • 4 authors
·
Dec 5, 2025

Deep Generative Modeling with Spatial and Network Images: An Explainable AI (XAI) Approach

This article addresses the challenge of modeling the amplitude of spatially indexed low frequency fluctuations (ALFF) in resting state functional MRI as a function of cortical structural features and a multi-task coactivation network in the Adolescent Brain Cognitive Development (ABCD) Study. It proposes a generative model that integrates effects of spatially-varying inputs and a network-valued input using deep neural networks to capture complex non-linear and spatial associations with the output. The method models spatial smoothness, accounts for subject heterogeneity and complex associations between network and spatial images at different scales, enables accurate inference of each images effect on the output image, and allows prediction with uncertainty quantification via Monte Carlo dropout, contributing to one of the first Explainable AI (XAI) frameworks for heterogeneous imaging data. The model is highly scalable to high-resolution data without the heavy pre-processing or summarization often required by Bayesian methods. Empirical results demonstrate its strong performance compared to existing statistical and deep learning methods. We applied the XAI model to the ABCD data which revealed associations between cortical features and ALFF throughout the entire brain. Our model performed comparably to existing methods in predictive accuracy but provided superior uncertainty quantification and faster computation, demonstrating its effectiveness for large-scale neuroimaging analysis. Open-source software in Python for XAI is available.

  • 3 authors
·
May 19, 2025

Combining Recurrent, Convolutional, and Continuous-time Models with Linear State-Space Layers

Recurrent neural networks (RNNs), temporal convolutions, and neural differential equations (NDEs) are popular families of deep learning models for time-series data, each with unique strengths and tradeoffs in modeling power and computational efficiency. We introduce a simple sequence model inspired by control systems that generalizes these approaches while addressing their shortcomings. The Linear State-Space Layer (LSSL) maps a sequence u mapsto y by simply simulating a linear continuous-time state-space representation x = Ax + Bu, y = Cx + Du. Theoretically, we show that LSSL models are closely related to the three aforementioned families of models and inherit their strengths. For example, they generalize convolutions to continuous-time, explain common RNN heuristics, and share features of NDEs such as time-scale adaptation. We then incorporate and generalize recent theory on continuous-time memorization to introduce a trainable subset of structured matrices A that endow LSSLs with long-range memory. Empirically, stacking LSSL layers into a simple deep neural network obtains state-of-the-art results across time series benchmarks for long dependencies in sequential image classification, real-world healthcare regression tasks, and speech. On a difficult speech classification task with length-16000 sequences, LSSL outperforms prior approaches by 24 accuracy points, and even outperforms baselines that use hand-crafted features on 100x shorter sequences.

  • 7 authors
·
Oct 26, 2021

Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks

Auxiliary tasks improve the representations learned by deep reinforcement learning agents. Analytically, their effect is reasonably well understood; in practice, however, their primary use remains in support of a main learning objective, rather than as a method for learning representations. This is perhaps surprising given that many auxiliary tasks are defined procedurally, and hence can be treated as an essentially infinite source of information about the environment. Based on this observation, we study the effectiveness of auxiliary tasks for learning rich representations, focusing on the setting where the number of tasks and the size of the agent's network are simultaneously increased. For this purpose, we derive a new family of auxiliary tasks based on the successor measure. These tasks are easy to implement and have appealing theoretical properties. Combined with a suitable off-policy learning rule, the result is a representation learning algorithm that can be understood as extending Mahadevan & Maggioni (2007)'s proto-value functions to deep reinforcement learning -- accordingly, we call the resulting object proto-value networks. Through a series of experiments on the Arcade Learning Environment, we demonstrate that proto-value networks produce rich features that may be used to obtain performance comparable to established algorithms, using only linear approximation and a small number (~4M) of interactions with the environment's reward function.

  • 7 authors
·
Apr 25, 2023

FCN: Fusing Exponential and Linear Cross Network for Click-Through Rate Prediction

As an important modeling paradigm in click-through rate (CTR) prediction, the Deep & Cross Network (DCN) and its derivative models have gained widespread recognition primarily due to their success in a trade-off between computational cost and performance. This paradigm employs a cross network to explicitly model feature interactions with linear growth, while leveraging deep neural networks (DNN) to implicitly capture higher-order feature interactions. However, these models still face several key limitations: (1) The performance of existing explicit feature interaction methods lags behind that of implicit DNN, resulting in overall model performance being dominated by the DNN; (2) While these models claim to capture high-order feature interactions, they often overlook potential noise within these interactions; (3) The learning process for different interaction network branches lacks appropriate supervision signals; and (4) The high-order feature interactions captured by these models are often implicit and non-interpretable due to their reliance on DNN. To address the identified limitations, this paper proposes a novel model, called Fusing Cross Network (FCN), along with two sub-networks: Linear Cross Network (LCN) and Exponential Cross Network (ECN). FCN explicitly captures feature interactions with both linear and exponential growth, eliminating the need to rely on implicit DNN. Moreover, we introduce the Self-Mask operation to filter noise layer by layer and reduce the number of parameters in the cross network by half. To effectively train these two cross networks, we propose a simple yet effective loss function called Tri-BCE, which provides tailored supervision signals for each network. We evaluate the effectiveness, efficiency, and interpretability of FCN on six benchmark datasets. Furthermore, by integrating LCN and ECN, FCN achieves a new state-of-the-art performance.

  • 6 authors
·
Jul 18, 2024

Sound propagation in realistic interactive 3D scenes with parameterized sources using deep neural operators

We address the challenge of sound propagation simulations in 3D virtual rooms with moving sources, which have applications in virtual/augmented reality, game audio, and spatial computing. Solutions to the wave equation can describe wave phenomena such as diffraction and interference. However, simulating them using conventional numerical discretization methods with hundreds of source and receiver positions is intractable, making stimulating a sound field with moving sources impractical. To overcome this limitation, we propose using deep operator networks to approximate linear wave-equation operators. This enables the rapid prediction of sound propagation in realistic 3D acoustic scenes with moving sources, achieving millisecond-scale computations. By learning a compact surrogate model, we avoid the offline calculation and storage of impulse responses for all relevant source/listener pairs. Our experiments, including various complex scene geometries, show good agreement with reference solutions, with root mean squared errors ranging from 0.02 Pa to 0.10 Pa. Notably, our method signifies a paradigm shift as no prior machine learning approach has achieved precise predictions of complete wave fields within realistic domains. We anticipate that our findings will drive further exploration of deep neural operator methods, advancing research in immersive user experiences within virtual environments.

  • 5 authors
·
Aug 9, 2023

CosmoBench: A Multiscale, Multiview, Multitask Cosmology Benchmark for Geometric Deep Learning

Cosmological simulations provide a wealth of data in the form of point clouds and directed trees. A crucial goal is to extract insights from this data that shed light on the nature and composition of the Universe. In this paper we introduce CosmoBench, a benchmark dataset curated from state-of-the-art cosmological simulations whose runs required more than 41 million core-hours and generated over two petabytes of data. CosmoBench is the largest dataset of its kind: it contains 34 thousand point clouds from simulations of dark matter halos and galaxies at three different length scales, as well as 25 thousand directed trees that record the formation history of halos on two different time scales. The data in CosmoBench can be used for multiple tasks -- to predict cosmological parameters from point clouds and merger trees, to predict the velocities of individual halos and galaxies from their collective positions, and to reconstruct merger trees on finer time scales from those on coarser time scales. We provide several baselines on these tasks, some based on established approaches from cosmological modeling and others rooted in machine learning. For the latter, we study different approaches -- from simple linear models that are minimally constrained by symmetries to much larger and more computationally-demanding models in deep learning, such as graph neural networks. We find that least-squares fits with a handful of invariant features sometimes outperform deep architectures with many more parameters and far longer training times. Still there remains tremendous potential to improve these baselines by combining machine learning and cosmology to fully exploit the data. CosmoBench sets the stage for bridging cosmology and geometric deep learning at scale. We invite the community to push the frontier of scientific discovery by engaging with this dataset, available at https://cosmobench.streamlit.app

  • 9 authors
·
Jul 4, 2025

Lessons Learned from the 1st ARIEL Machine Learning Challenge: Correcting Transiting Exoplanet Light Curves for Stellar Spots

The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit depths from transit light curves in the presence of stellar spots. The methods and results we present were obtained in the context of the 1st Machine Learning Challenge organized for the European Space Agency's upcoming Ariel mission. We first present the problem, the simulated Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing -deep neural networks and ensemble methods- or amount to obtaining meaningful statistics from the light curves, constructing linear models on which yields comparably good predictive performance.

  • 23 authors
·
Oct 29, 2020

A Boundary Tilting Persepective on the Phenomenon of Adversarial Examples

Deep neural networks have been shown to suffer from a surprising weakness: their classification outputs can be changed by small, non-random perturbations of their inputs. This adversarial example phenomenon has been explained as originating from deep networks being "too linear" (Goodfellow et al., 2014). We show here that the linear explanation of adversarial examples presents a number of limitations: the formal argument is not convincing, linear classifiers do not always suffer from the phenomenon, and when they do their adversarial examples are different from the ones affecting deep networks. We propose a new perspective on the phenomenon. We argue that adversarial examples exist when the classification boundary lies close to the submanifold of sampled data, and present a mathematical analysis of this new perspective in the linear case. We define the notion of adversarial strength and show that it can be reduced to the deviation angle between the classifier considered and the nearest centroid classifier. Then, we show that the adversarial strength can be made arbitrarily high independently of the classification performance due to a mechanism that we call boundary tilting. This result leads us to defining a new taxonomy of adversarial examples. Finally, we show that the adversarial strength observed in practice is directly dependent on the level of regularisation used and the strongest adversarial examples, symptomatic of overfitting, can be avoided by using a proper level of regularisation.

  • 2 authors
·
Aug 27, 2016

Transformer brain encoders explain human high-level visual responses

A major goal of neuroscience is to understand brain computations during visual processing in naturalistic settings. A dominant approach is to use image-computable deep neural networks trained with different task objectives as a basis for linear encoding models. However, in addition to requiring tuning a large number of parameters, the linear encoding approach ignores the structure of the feature maps both in the brain and the models. Recently proposed alternatives have focused on decomposing the linear mapping to spatial and feature components but focus on finding static receptive fields for units that are applicable only in early visual areas. In this work, we employ the attention mechanism used in the transformer architecture to study how retinotopic visual features can be dynamically routed to category-selective areas in high-level visual processing. We show that this computational motif is significantly more powerful than alternative methods in predicting brain activity during natural scene viewing, across different feature basis models and modalities. We also show that this approach is inherently more interpretable, without the need to create importance maps, by interpreting the attention routing signal for different high-level categorical areas. Our approach proposes a mechanistic model of how visual information from retinotopic maps can be routed based on the relevance of the input content to different category-selective regions.

  • 3 authors
·
May 22, 2025

Lightweight Image Super-Resolution with Information Multi-distillation Network

In recent years, single image super-resolution (SISR) methods using deep convolution neural network (CNN) have achieved impressive results. Thanks to the powerful representation capabilities of the deep networks, numerous previous ways can learn the complex non-linear mapping between low-resolution (LR) image patches and their high-resolution (HR) versions. However, excessive convolutions will limit the application of super-resolution technology in low computing power devices. Besides, super-resolution of any arbitrary scale factor is a critical issue in practical applications, which has not been well solved in the previous approaches. To address these issues, we propose a lightweight information multi-distillation network (IMDN) by constructing the cascaded information multi-distillation blocks (IMDB), which contains distillation and selective fusion parts. Specifically, the distillation module extracts hierarchical features step-by-step, and fusion module aggregates them according to the importance of candidate features, which is evaluated by the proposed contrast-aware channel attention mechanism. To process real images with any sizes, we develop an adaptive cropping strategy (ACS) to super-resolve block-wise image patches using the same well-trained model. Extensive experiments suggest that the proposed method performs favorably against the state-of-the-art SR algorithms in term of visual quality, memory footprint, and inference time. Code is available at https://github.com/Zheng222/IMDN.

  • 4 authors
·
Sep 25, 2019

The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up

We present the findings of "The Alzheimer's Disease Prediction Of Longitudinal Evolution" (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of Alzheimer's disease. Challenge participants were required to make a prediction, for each month of a 5-year future time period, of three key outcomes: clinical diagnosis, Alzheimer's Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13), and total volume of the ventricles. The methods used by challenge participants included multivariate linear regression, machine learning methods such as support vector machines and deep neural networks, as well as disease progression models. No single submission was best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-Cog13 no single submitted prediction method was significantly better than random guesswork. Two ensemble methods based on taking the mean and median over all predictions, obtained top scores on almost all tasks. Better than average performance at diagnosis prediction was generally associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume prediction was associated with inclusion of summary statistics, such as the slope or maxima/minima of biomarkers. TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease. However, results call into question the usage of cognitive test scores for patient selection and as a primary endpoint in clinical trials.

  • 96 authors
·
Feb 9, 2020

Pretty darn good control: when are approximate solutions better than approximate models

Existing methods for optimal control struggle to deal with the complexity commonly encountered in real-world systems, including dimensionality, process error, model bias and data heterogeneity. Instead of tackling these system complexities directly, researchers have typically sought to simplify models to fit optimal control methods. But when is the optimal solution to an approximate, stylized model better than an approximate solution to a more accurate model? While this question has largely gone unanswered owing to the difficulty of finding even approximate solutions for complex models, recent algorithmic and computational advances in deep reinforcement learning (DRL) might finally allow us to address these questions. DRL methods have to date been applied primarily in the context of games or robotic mechanics, which operate under precisely known rules. Here, we demonstrate the ability for DRL algorithms using deep neural networks to successfully approximate solutions (the "policy function" or control rule) in a non-linear three-variable model for a fishery without knowing or ever attempting to infer a model for the process itself. We find that the reinforcement learning agent discovers an effective simplification of the problem to obtain an interpretable control rule. We show that the policy obtained with DRL is both more profitable and more sustainable than any constant mortality policy -- the standard family of policies considered in fishery management.

  • 5 authors
·
Aug 25, 2023

Intriguing Properties of Adversarial Examples

It is becoming increasingly clear that many machine learning classifiers are vulnerable to adversarial examples. In attempting to explain the origin of adversarial examples, previous studies have typically focused on the fact that neural networks operate on high dimensional data, they overfit, or they are too linear. Here we argue that the origin of adversarial examples is primarily due to an inherent uncertainty that neural networks have about their predictions. We show that the functional form of this uncertainty is independent of architecture, dataset, and training protocol; and depends only on the statistics of the logit differences of the network, which do not change significantly during training. This leads to adversarial error having a universal scaling, as a power-law, with respect to the size of the adversarial perturbation. We show that this universality holds for a broad range of datasets (MNIST, CIFAR10, ImageNet, and random data), models (including state-of-the-art deep networks, linear models, adversarially trained networks, and networks trained on randomly shuffled labels), and attacks (FGSM, step l.l., PGD). Motivated by these results, we study the effects of reducing prediction entropy on adversarial robustness. Finally, we study the effect of network architectures on adversarial sensitivity. To do this, we use neural architecture search with reinforcement learning to find adversarially robust architectures on CIFAR10. Our resulting architecture is more robust to white and black box attacks compared to previous attempts.

  • 4 authors
·
Nov 8, 2017

Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training

We study the effect of mini-batching on the loss landscape of deep neural networks using spiked, field-dependent random matrix theory. We demonstrate that the magnitude of the extremal values of the batch Hessian are larger than those of the empirical Hessian. We also derive similar results for the Generalised Gauss-Newton matrix approximation of the Hessian. As a consequence of our theorems we derive an analytical expressions for the maximal learning rates as a function of batch size, informing practical training regimens for both stochastic gradient descent (linear scaling) and adaptive algorithms, such as Adam (square root scaling), for smooth, non-convex deep neural networks. Whilst the linear scaling for stochastic gradient descent has been derived under more restrictive conditions, which we generalise, the square root scaling rule for adaptive optimisers is, to our knowledge, completely novel. %For stochastic second-order methods and adaptive methods, we derive that the minimal damping coefficient is proportional to the ratio of the learning rate to batch size. We validate our claims on the VGG/WideResNet architectures on the CIFAR-100 and ImageNet datasets. Based on our investigations of the sub-sampled Hessian we develop a stochastic Lanczos quadrature based on the fly learning rate and momentum learner, which avoids the need for expensive multiple evaluations for these key hyper-parameters and shows good preliminary results on the Pre-Residual Architecure for CIFAR-100.

  • 3 authors
·
Jun 16, 2020

Understanding Certified Training with Interval Bound Propagation

As robustness verification methods are becoming more precise, training certifiably robust neural networks is becoming ever more relevant. To this end, certified training methods compute and then optimize an upper bound on the worst-case loss over a robustness specification. Curiously, training methods based on the imprecise interval bound propagation (IBP) consistently outperform those leveraging more precise bounding methods. Still, we lack an understanding of the mechanisms making IBP so successful. In this work, we thoroughly investigate these mechanisms by leveraging a novel metric measuring the tightness of IBP bounds. We first show theoretically that, for deep linear models, tightness decreases with width and depth at initialization, but improves with IBP training, given sufficient network width. We, then, derive sufficient and necessary conditions on weight matrices for IBP bounds to become exact and demonstrate that these impose strong regularization, explaining the empirically observed trade-off between robustness and accuracy in certified training. Our extensive experimental evaluation validates our theoretical predictions for ReLU networks, including that wider networks improve performance, yielding state-of-the-art results. Interestingly, we observe that while all IBP-based training methods lead to high tightness, this is neither sufficient nor necessary to achieve high certifiable robustness. This hints at the existence of new training methods that do not induce the strong regularization required for tight IBP bounds, leading to improved robustness and standard accuracy.

  • 4 authors
·
Jun 17, 2023

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.

  • 6 authors
·
May 22, 2022

Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions

Deep neural networks are widely used for classification. These deep models often suffer from a lack of interpretability -- they are particularly difficult to understand because of their non-linear nature. As a result, neural networks are often treated as "black box" models, and in the past, have been trained purely to optimize the accuracy of predictions. In this work, we create a novel network architecture for deep learning that naturally explains its own reasoning for each prediction. This architecture contains an autoencoder and a special prototype layer, where each unit of that layer stores a weight vector that resembles an encoded training input. The encoder of the autoencoder allows us to do comparisons within the latent space, while the decoder allows us to visualize the learned prototypes. The training objective has four terms: an accuracy term, a term that encourages every prototype to be similar to at least one encoded input, a term that encourages every encoded input to be close to at least one prototype, and a term that encourages faithful reconstruction by the autoencoder. The distances computed in the prototype layer are used as part of the classification process. Since the prototypes are learned during training, the learned network naturally comes with explanations for each prediction, and the explanations are loyal to what the network actually computes.

  • 4 authors
·
Oct 13, 2017

Noise-Adaptive Layerwise Learning Rates: Accelerating Geometry-Aware Optimization for Deep Neural Network Training

Geometry-aware optimization algorithms, such as Muon, have achieved remarkable success in training deep neural networks (DNNs). These methods leverage the underlying geometry of DNNs by selecting appropriate norms for different layers and updating parameters via norm-constrained linear minimization oracles (LMOs). However, even within a group of layers associated with the same norm, the local curvature can be heterogeneous across layers and vary dynamically over the course of training. For example, recent work shows that sharpness varies substantially across transformer layers and throughout training, yet standard geometry-aware optimizers impose fixed learning rates to layers within the same group, which may be inefficient for DNN training. In this paper, we introduce a noise-adaptive layerwise learning rate scheme on top of geometry-aware optimization algorithms and substantially accelerate DNN training compared to methods that use fixed learning rates within each group. Our method estimates gradient variance in the dual norm induced by the chosen LMO on the fly, and uses it to assign time-varying noise-adaptive layerwise learning rates within each group. We provide a theoretical analysis showing that our algorithm achieves a sharp convergence rate. Empirical results on transformer architectures such as LLaMA and GPT demonstrate that our approach achieves faster convergence than state-of-the-art optimizers.

  • 5 authors
·
Oct 15, 2025

Deep Reinforcement learning for real autonomous mobile robot navigation in indoor environments

Deep Reinforcement Learning has been successfully applied in various computer games [8]. However, it is still rarely used in real-world applications, especially for the navigation and continuous control of real mobile robots [13]. Previous approaches lack safety and robustness and/or need a structured environment. In this paper we present our proof of concept for autonomous self-learning robot navigation in an unknown environment for a real robot without a map or planner. The input for the robot is only the fused data from a 2D laser scanner and a RGB-D camera as well as the orientation to the goal. The map of the environment is unknown. The output actions of an Asynchronous Advantage Actor-Critic network (GA3C) are the linear and angular velocities for the robot. The navigator/controller network is pretrained in a high-speed, parallel, and self-implemented simulation environment to speed up the learning process and then deployed to the real robot. To avoid overfitting, we train relatively small networks, and we add random Gaussian noise to the input laser data. The sensor data fusion with the RGB-D camera allows the robot to navigate in real environments with real 3D obstacle avoidance and without the need to fit the environment to the sensory capabilities of the robot. To further increase the robustness, we train on environments of varying difficulties and run 32 training instances simultaneously. Video: supplementary File / YouTube, Code: GitHub

  • 6 authors
·
May 28, 2020

PointRAFT: 3D deep learning for high-throughput prediction of potato tuber weight from partial point clouds

Potato yield is a key indicator for optimizing cultivation practices in agriculture. Potato yield can be estimated on harvesters using RGB-D cameras, which capture three-dimensional (3D) information of individual tubers moving along the conveyor belt. However, point clouds reconstructed from RGB-D images are incomplete due to self-occlusion, leading to systematic underestimation of tuber weight. To address this, we introduce PointRAFT, a high-throughput point cloud regression network that directly predicts continuous 3D shape properties, such as tuber weight, from partial point clouds. Rather than reconstructing full 3D geometry, PointRAFT infers target values directly from raw 3D data. Its key architectural novelty is an object height embedding that incorporates tuber height as an additional geometric cue, improving weight prediction under practical harvesting conditions. PointRAFT was trained and evaluated on 26,688 partial point clouds collected from 859 potato tubers across four cultivars and three growing seasons on an operational harvester in Japan. On a test set of 5,254 point clouds from 172 tubers, PointRAFT achieved a mean absolute error of 12.0 g and a root mean squared error of 17.2 g, substantially outperforming a linear regression baseline and a standard PointNet++ regression network. With an average inference time of 6.3 ms per point cloud, PointRAFT supports processing rates of up to 150 tubers per second, meeting the high-throughput requirements of commercial potato harvesters. Beyond potato weight estimation, PointRAFT provides a versatile regression network applicable to a wide range of 3D phenotyping and robotic perception tasks. The code, network weights, and a subset of the dataset are publicly available at https://github.com/pieterblok/pointraft.git.

  • 6 authors
·
Dec 30, 2025

Alljoined-1.6M: A Million-Trial EEG-Image Dataset for Evaluating Affordable Brain-Computer Interfaces

We present a new large-scale electroencephalography (EEG) dataset as part of the THINGS initiative, comprising over 1.6 million visual stimulus trials collected from 20 participants, and totaling more than twice the size of the most popular current benchmark dataset, THINGS-EEG2. Crucially, our data was recorded using a 32-channel consumer-grade wet electrode system costing ~$2.2k, around 27x cheaper than research-grade EEG systems typically used in cognitive neuroscience labs. Our work is one of the first open-source, large-scale EEG resource designed to closely reflect the quality of hardware that is practical to deploy in real-world, downstream applications of brain-computer interfaces (BCIs). We aim to explore the specific question of whether deep neural network-based BCI research and semantic decoding methods can be effectively conducted with such affordable systems, filling an important gap in current literature that is extremely relevant for future research. In our analysis, we not only demonstrate that decoding of high-level semantic information from EEG of visualized images is possible at consumer-grade hardware, but also that our data can facilitate effective EEG-to-Image reconstruction even despite significantly lower signal-to-noise ratios. In addition to traditional benchmarks, we also conduct analyses of EEG-to-Image models that demonstrate log-linear decoding performance with increasing data volume on our data, and discuss the trade-offs between hardware cost, signal fidelity, and the scale of data collection efforts in increasing the size and utility of currently available datasets. Our contributions aim to pave the way for large-scale, cost-effective EEG research with widely accessible equipment, and position our dataset as a unique resource for the democratization and development of effective deep neural models of visual cognition.

  • 8 authors
·
Aug 25, 2025

Uncertainty Quantification for Multi-fidelity Simulations

The work focuses on gathering high-fidelity and low-fidelity numerical simulations data using Nektar++ (Solver based on Applied Mathematics) and XFOIL respectively. The utilization of the higher polynomial distribution in calculating the Coefficient of lift and drag has demonstrated superior accuracy and precision. Further, Co-kriging Data fusion and Adaptive sampling technique has been used to obtain the precise data predictions for the lift and drag within the confined domain without conducting the costly simulations on HPC clusters. This creates a methodology to quantifying uncertainty in computational fluid dynamics by minimizing the required number of samples. To minimize the reliability on high-fidelity numerical simulations in Uncertainty Quantification, a multi-fidelity strategy has been adopted. The effectiveness of the multi-fidelity deep neural network model has been validated through the approximation of benchmark functions across 1-, 32-, and 100-dimensional, encompassing both linear and nonlinear correlations. The surrogate modelling results showed that multi-fidelity deep neural network model has shown excellent approximation capabilities for the test functions and multi-fidelity deep neural network method has outperformed Co-kriging in effectiveness. In addition to that, multi-fidelity deep neural network model is utilized for the simulation of aleatory uncertainty propagation in 1-, 32-, and 100 dimensional function test, considering both uniform and Gaussian distributions for input uncertainties. The results have shown that multi-fidelity deep neural network model has efficiently predicted the probability density distributions of quantities of interest as well as the statistical moments with precision and accuracy. The Co-Kriging model has exhibited limitations when addressing 32-Dimension problems due to the limitation of memory capacity for storage and manipulation.

  • 1 authors
·
Mar 11, 2025

Neural Probe-Based Hallucination Detection for Large Language Models

Large language models(LLMs) excel at text generation and knowledge question-answering tasks, but they are prone to generating hallucinated content, severely limiting their application in high-risk domains. Current hallucination detection methods based on uncertainty estimation and external knowledge retrieval suffer from the limitation that they still produce erroneous content at high confidence levels and rely heavily on retrieval efficiency and knowledge coverage. In contrast, probe methods that leverage the model's hidden-layer states offer real-time and lightweight advantages. However, traditional linear probes struggle to capture nonlinear structures in deep semantic spaces.To overcome these limitations, we propose a neural network-based framework for token-level hallucination detection. By freezing language model parameters, we employ lightweight MLP probes to perform nonlinear modeling of high-level hidden states. A multi-objective joint loss function is designed to enhance detection stability and semantic disambiguity. Additionally, we establish a layer position-probe performance response model, using Bayesian optimization to automatically search for optimal probe insertion layers and achieve superior training results.Experimental results on LongFact, HealthBench, and TriviaQA demonstrate that MLP probes significantly outperform state-of-the-art methods in accuracy, recall, and detection capability under low false-positive conditions.

  • 2 authors
·
Dec 24, 2025

M-FAC: Efficient Matrix-Free Approximations of Second-Order Information

Efficiently approximating local curvature information of the loss function is a key tool for optimization and compression of deep neural networks. Yet, most existing methods to approximate second-order information have high computational or storage costs, which can limit their practicality. In this work, we investigate matrix-free, linear-time approaches for estimating Inverse-Hessian Vector Products (IHVPs) for the case when the Hessian can be approximated as a sum of rank-one matrices, as in the classic approximation of the Hessian by the empirical Fisher matrix. We propose two new algorithms as part of a framework called M-FAC: the first algorithm is tailored towards network compression and can compute the IHVP for dimension d, if the Hessian is given as a sum of m rank-one matrices, using O(dm^2) precomputation, O(dm) cost for computing the IHVP, and query cost O(m) for any single element of the inverse Hessian. The second algorithm targets an optimization setting, where we wish to compute the product between the inverse Hessian, estimated over a sliding window of optimization steps, and a given gradient direction, as required for preconditioned SGD. We give an algorithm with cost O(dm + m^2) for computing the IHVP and O(dm + m^3) for adding or removing any gradient from the sliding window. These two algorithms yield state-of-the-art results for network pruning and optimization with lower computational overhead relative to existing second-order methods. Implementations are available at [9] and [17].

  • 3 authors
·
Jul 7, 2021