Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePhoton-Starved Scene Inference using Single Photon Cameras
Scene understanding under low-light conditions is a challenging problem. This is due to the small number of photons captured by the camera and the resulting low signal-to-noise ratio (SNR). Single-photon cameras (SPCs) are an emerging sensing modality that are capable of capturing images with high sensitivity. Despite having minimal read-noise, images captured by SPCs in photon-starved conditions still suffer from strong shot noise, preventing reliable scene inference. We propose photon scale-space a collection of high-SNR images spanning a wide range of photons-per-pixel (PPP) levels (but same scene content) as guides to train inference model on low photon flux images. We develop training techniques that push images with different illumination levels closer to each other in feature representation space. The key idea is that having a spectrum of different brightness levels during training enables effective guidance, and increases robustness to shot noise even in extreme noise cases. Based on the proposed approach, we demonstrate, via simulations and real experiments with a SPAD camera, high-performance on various inference tasks such as image classification and monocular depth estimation under ultra low-light, down to < 1 PPP.
Remote Sensing Image Scene Classification: Benchmark and State of the Art
Remote sensing image scene classification plays an important role in a wide range of applications and hence has been receiving remarkable attention. During the past years, significant efforts have been made to develop various datasets or present a variety of approaches for scene classification from remote sensing images. However, a systematic review of the literature concerning datasets and methods for scene classification is still lacking. In addition, almost all existing datasets have a number of limitations, including the small scale of scene classes and the image numbers, the lack of image variations and diversity, and the saturation of accuracy. These limitations severely limit the development of new approaches especially deep learning-based methods. This paper first provides a comprehensive review of the recent progress. Then, we propose a large-scale dataset, termed "NWPU-RESISC45", which is a publicly available benchmark for REmote Sensing Image Scene Classification (RESISC), created by Northwestern Polytechnical University (NWPU). This dataset contains 31,500 images, covering 45 scene classes with 700 images in each class. The proposed NWPU-RESISC45 (i) is large-scale on the scene classes and the total image number, (ii) holds big variations in translation, spatial resolution, viewpoint, object pose, illumination, background, and occlusion, and (iii) has high within-class diversity and between-class similarity. The creation of this dataset will enable the community to develop and evaluate various data-driven algorithms. Finally, several representative methods are evaluated using the proposed dataset and the results are reported as a useful baseline for future research.
Object Detectors Emerge in Deep Scene CNNs
With the success of new computational architectures for visual processing, such as convolutional neural networks (CNN) and access to image databases with millions of labeled examples (e.g., ImageNet, Places), the state of the art in computer vision is advancing rapidly. One important factor for continued progress is to understand the representations that are learned by the inner layers of these deep architectures. Here we show that object detectors emerge from training CNNs to perform scene classification. As scenes are composed of objects, the CNN for scene classification automatically discovers meaningful objects detectors, representative of the learned scene categories. With object detectors emerging as a result of learning to recognize scenes, our work demonstrates that the same network can perform both scene recognition and object localization in a single forward-pass, without ever having been explicitly taught the notion of objects.
Semantic-Aware Scene Recognition
Scene recognition is currently one of the top-challenging research fields in computer vision. This may be due to the ambiguity between classes: images of several scene classes may share similar objects, which causes confusion among them. The problem is aggravated when images of a particular scene class are notably different. Convolutional Neural Networks (CNNs) have significantly boosted performance in scene recognition, albeit it is still far below from other recognition tasks (e.g., object or image recognition). In this paper, we describe a novel approach for scene recognition based on an end-to-end multi-modal CNN that combines image and context information by means of an attention module. Context information, in the shape of semantic segmentation, is used to gate features extracted from the RGB image by leveraging on information encoded in the semantic representation: the set of scene objects and stuff, and their relative locations. This gating process reinforces the learning of indicative scene content and enhances scene disambiguation by refocusing the receptive fields of the CNN towards them. Experimental results on four publicly available datasets show that the proposed approach outperforms every other state-of-the-art method while significantly reducing the number of network parameters. All the code and data used along this paper is available at https://github.com/vpulab/Semantic-Aware-Scene-Recognition
The iNaturalist Species Classification and Detection Dataset
Existing image classification datasets used in computer vision tend to have a uniform distribution of images across object categories. In contrast, the natural world is heavily imbalanced, as some species are more abundant and easier to photograph than others. To encourage further progress in challenging real world conditions we present the iNaturalist species classification and detection dataset, consisting of 859,000 images from over 5,000 different species of plants and animals. It features visually similar species, captured in a wide variety of situations, from all over the world. Images were collected with different camera types, have varying image quality, feature a large class imbalance, and have been verified by multiple citizen scientists. We discuss the collection of the dataset and present extensive baseline experiments using state-of-the-art computer vision classification and detection models. Results show that current non-ensemble based methods achieve only 67% top one classification accuracy, illustrating the difficulty of the dataset. Specifically, we observe poor results for classes with small numbers of training examples suggesting more attention is needed in low-shot learning.
Graph-Based Classification of Omnidirectional Images
Omnidirectional cameras are widely used in such areas as robotics and virtual reality as they provide a wide field of view. Their images are often processed with classical methods, which might unfortunately lead to non-optimal solutions as these methods are designed for planar images that have different geometrical properties than omnidirectional ones. In this paper we study image classification task by taking into account the specific geometry of omnidirectional cameras with graph-based representations. In particular, we extend deep learning architectures to data on graphs; we propose a principled way of graph construction such that convolutional filters respond similarly for the same pattern on different positions of the image regardless of lens distortions. Our experiments show that the proposed method outperforms current techniques for the omnidirectional image classification problem.
Generating 3D-Consistent Videos from Unposed Internet Photos
We address the problem of generating videos from unposed internet photos. A handful of input images serve as keyframes, and our model interpolates between them to simulate a path moving between the cameras. Given random images, a model's ability to capture underlying geometry, recognize scene identity, and relate frames in terms of camera position and orientation reflects a fundamental understanding of 3D structure and scene layout. However, existing video models such as Luma Dream Machine fail at this task. We design a self-supervised method that takes advantage of the consistency of videos and variability of multiview internet photos to train a scalable, 3D-aware video model without any 3D annotations such as camera parameters. We validate that our method outperforms all baselines in terms of geometric and appearance consistency. We also show our model benefits applications that enable camera control, such as 3D Gaussian Splatting. Our results suggest that we can scale up scene-level 3D learning using only 2D data such as videos and multiview internet photos.
Knowledge Guided Disambiguation for Large-Scale Scene Classification with Multi-Resolution CNNs
Convolutional Neural Networks (CNNs) have made remarkable progress on scene recognition, partially due to these recent large-scale scene datasets, such as the Places and Places2. Scene categories are often defined by multi-level information, including local objects, global layout, and background environment, thus leading to large intra-class variations. In addition, with the increasing number of scene categories, label ambiguity has become another crucial issue in large-scale classification. This paper focuses on large-scale scene recognition and makes two major contributions to tackle these issues. First, we propose a multi-resolution CNN architecture that captures visual content and structure at multiple levels. The multi-resolution CNNs are composed of coarse resolution CNNs and fine resolution CNNs, which are complementary to each other. Second, we design two knowledge guided disambiguation techniques to deal with the problem of label ambiguity. (i) We exploit the knowledge from the confusion matrix computed on validation data to merge ambiguous classes into a super category. (ii) We utilize the knowledge of extra networks to produce a soft label for each image. Then the super categories or soft labels are employed to guide CNN training on the Places2. We conduct extensive experiments on three large-scale image datasets (ImageNet, Places, and Places2), demonstrating the effectiveness of our approach. Furthermore, our method takes part in two major scene recognition challenges, and achieves the second place at the Places2 challenge in ILSVRC 2015, and the first place at the LSUN challenge in CVPR 2016. Finally, we directly test the learned representations on other scene benchmarks, and obtain the new state-of-the-art results on the MIT Indoor67 (86.7\%) and SUN397 (72.0\%). We release the code and models at~https://github.com/wanglimin/MRCNN-Scene-Recognition.
Camera-Driven Representation Learning for Unsupervised Domain Adaptive Person Re-identification
We present a novel unsupervised domain adaption method for person re-identification (reID) that generalizes a model trained on a labeled source domain to an unlabeled target domain. We introduce a camera-driven curriculum learning (CaCL) framework that leverages camera labels of person images to transfer knowledge from source to target domains progressively. To this end, we divide target domain dataset into multiple subsets based on the camera labels, and initially train our model with a single subset (i.e., images captured by a single camera). We then gradually exploit more subsets for training, according to a curriculum sequence obtained with a camera-driven scheduling rule. The scheduler considers maximum mean discrepancies (MMD) between each subset and the source domain dataset, such that the subset closer to the source domain is exploited earlier within the curriculum. For each curriculum sequence, we generate pseudo labels of person images in a target domain to train a reID model in a supervised way. We have observed that the pseudo labels are highly biased toward cameras, suggesting that person images obtained from the same camera are likely to have the same pseudo labels, even for different IDs. To address the camera bias problem, we also introduce a camera-diversity (CD) loss encouraging person images of the same pseudo label, but captured across various cameras, to involve more for discriminative feature learning, providing person representations robust to inter-camera variations. Experimental results on standard benchmarks, including real-to-real and synthetic-to-real scenarios, demonstrate the effectiveness of our framework.
AID: A Benchmark Dataset for Performance Evaluation of Aerial Scene Classification
Aerial scene classification, which aims to automatically label an aerial image with a specific semantic category, is a fundamental problem for understanding high-resolution remote sensing imagery. In recent years, it has become an active task in remote sensing area and numerous algorithms have been proposed for this task, including many machine learning and data-driven approaches. However, the existing datasets for aerial scene classification like UC-Merced dataset and WHU-RS19 are with relatively small sizes, and the results on them are already saturated. This largely limits the development of scene classification algorithms. This paper describes the Aerial Image Dataset (AID): a large-scale dataset for aerial scene classification. The goal of AID is to advance the state-of-the-arts in scene classification of remote sensing images. For creating AID, we collect and annotate more than ten thousands aerial scene images. In addition, a comprehensive review of the existing aerial scene classification techniques as well as recent widely-used deep learning methods is given. Finally, we provide a performance analysis of typical aerial scene classification and deep learning approaches on AID, which can be served as the baseline results on this benchmark.
DETR3D: 3D Object Detection from Multi-view Images via 3D-to-2D Queries
We introduce a framework for multi-camera 3D object detection. In contrast to existing works, which estimate 3D bounding boxes directly from monocular images or use depth prediction networks to generate input for 3D object detection from 2D information, our method manipulates predictions directly in 3D space. Our architecture extracts 2D features from multiple camera images and then uses a sparse set of 3D object queries to index into these 2D features, linking 3D positions to multi-view images using camera transformation matrices. Finally, our model makes a bounding box prediction per object query, using a set-to-set loss to measure the discrepancy between the ground-truth and the prediction. This top-down approach outperforms its bottom-up counterpart in which object bounding box prediction follows per-pixel depth estimation, since it does not suffer from the compounding error introduced by a depth prediction model. Moreover, our method does not require post-processing such as non-maximum suppression, dramatically improving inference speed. We achieve state-of-the-art performance on the nuScenes autonomous driving benchmark.
Towards Understanding Camera Motions in Any Video
We introduce CameraBench, a large-scale dataset and benchmark designed to assess and improve camera motion understanding. CameraBench consists of ~3,000 diverse internet videos, annotated by experts through a rigorous multi-stage quality control process. One of our contributions is a taxonomy of camera motion primitives, designed in collaboration with cinematographers. We find, for example, that some motions like "follow" (or tracking) require understanding scene content like moving subjects. We conduct a large-scale human study to quantify human annotation performance, revealing that domain expertise and tutorial-based training can significantly enhance accuracy. For example, a novice may confuse zoom-in (a change of intrinsics) with translating forward (a change of extrinsics), but can be trained to differentiate the two. Using CameraBench, we evaluate Structure-from-Motion (SfM) and Video-Language Models (VLMs), finding that SfM models struggle to capture semantic primitives that depend on scene content, while VLMs struggle to capture geometric primitives that require precise estimation of trajectories. We then fine-tune a generative VLM on CameraBench to achieve the best of both worlds and showcase its applications, including motion-augmented captioning, video question answering, and video-text retrieval. We hope our taxonomy, benchmark, and tutorials will drive future efforts towards the ultimate goal of understanding camera motions in any video.
ECO: Ensembling Context Optimization for Vision-Language Models
Image recognition has recently witnessed a paradigm shift, where vision-language models are now used to perform few-shot classification based on textual prompts. Among these, the CLIP model has shown remarkable capabilities for zero-shot transfer by matching an image and a custom textual prompt in its latent space. This has paved the way for several works that focus on engineering or learning textual contexts for maximizing CLIP's classification capabilities. In this paper, we follow this trend by learning an ensemble of prompts for image classification. We show that learning diverse and possibly shorter contexts improves considerably and consistently the results rather than relying on a single trainable prompt. In particular, we report better few-shot capabilities with no additional cost at inference time. We demonstrate the capabilities of our approach on 11 different benchmarks.
Vocabulary-free Image Classification
Recent advances in large vision-language models have revolutionized the image classification paradigm. Despite showing impressive zero-shot capabilities, a pre-defined set of categories, a.k.a. the vocabulary, is assumed at test time for composing the textual prompts. However, such assumption can be impractical when the semantic context is unknown and evolving. We thus formalize a novel task, termed as Vocabulary-free Image Classification (VIC), where we aim to assign to an input image a class that resides in an unconstrained language-induced semantic space, without the prerequisite of a known vocabulary. VIC is a challenging task as the semantic space is extremely large, containing millions of concepts, with hard-to-discriminate fine-grained categories. In this work, we first empirically verify that representing this semantic space by means of an external vision-language database is the most effective way to obtain semantically relevant content for classifying the image. We then propose Category Search from External Databases (CaSED), a method that exploits a pre-trained vision-language model and an external vision-language database to address VIC in a training-free manner. CaSED first extracts a set of candidate categories from captions retrieved from the database based on their semantic similarity to the image, and then assigns to the image the best matching candidate category according to the same vision-language model. Experiments on benchmark datasets validate that CaSED outperforms other complex vision-language frameworks, while being efficient with much fewer parameters, paving the way for future research in this direction.
On Large Multimodal Models as Open-World Image Classifiers
Traditional image classification requires a predefined list of semantic categories. In contrast, Large Multimodal Models (LMMs) can sidestep this requirement by classifying images directly using natural language (e.g., answering the prompt "What is the main object in the image?"). Despite this remarkable capability, most existing studies on LMM classification performance are surprisingly limited in scope, often assuming a closed-world setting with a predefined set of categories. In this work, we address this gap by thoroughly evaluating LMM classification performance in a truly open-world setting. We first formalize the task and introduce an evaluation protocol, defining various metrics to assess the alignment between predicted and ground truth classes. We then evaluate 13 models across 10 benchmarks, encompassing prototypical, non-prototypical, fine-grained, and very fine-grained classes, demonstrating the challenges LMMs face in this task. Further analyses based on the proposed metrics reveal the types of errors LMMs make, highlighting challenges related to granularity and fine-grained capabilities, showing how tailored prompting and reasoning can alleviate them.
Deep Learning for Camera Calibration and Beyond: A Survey
Camera calibration involves estimating camera parameters to infer geometric features from captured sequences, which is crucial for computer vision and robotics. However, conventional calibration is laborious and requires dedicated collection. Recent efforts show that learning-based solutions have the potential to be used in place of the repeatability works of manual calibrations. Among these solutions, various learning strategies, networks, geometric priors, and datasets have been investigated. In this paper, we provide a comprehensive survey of learning-based camera calibration techniques, by analyzing their strengths and limitations. Our main calibration categories include the standard pinhole camera model, distortion camera model, cross-view model, and cross-sensor model, following the research trend and extended applications. As there is no unified benchmark in this community, we collect a holistic calibration dataset that can serve as a public platform to evaluate the generalization of existing methods. It comprises both synthetic and real-world data, with images and videos captured by different cameras in diverse scenes. Toward the end of this paper, we discuss the challenges and provide further research directions. To our knowledge, this is the first survey for the learning-based camera calibration (spanned 10 years). The summarized methods, datasets, and benchmarks are available and will be regularly updated at https://github.com/KangLiao929/Awesome-Deep-Camera-Calibration.
Visual Classification via Description from Large Language Models
Vision-language models (VLMs) such as CLIP have shown promising performance on a variety of recognition tasks using the standard zero-shot classification procedure -- computing similarity between the query image and the embedded words for each category. By only using the category name, they neglect to make use of the rich context of additional information that language affords. The procedure gives no intermediate understanding of why a category is chosen, and furthermore provides no mechanism for adjusting the criteria used towards this decision. We present an alternative framework for classification with VLMs, which we call classification by description. We ask VLMs to check for descriptive features rather than broad categories: to find a tiger, look for its stripes; its claws; and more. By basing decisions on these descriptors, we can provide additional cues that encourage using the features we want to be used. In the process, we can get a clear idea of what features the model uses to construct its decision; it gains some level of inherent explainability. We query large language models (e.g., GPT-3) for these descriptors to obtain them in a scalable way. Extensive experiments show our framework has numerous advantages past interpretability. We show improvements in accuracy on ImageNet across distribution shifts; demonstrate the ability to adapt VLMs to recognize concepts unseen during training; and illustrate how descriptors can be edited to effectively mitigate bias compared to the baseline.
N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras
We introduce N-ImageNet, a large-scale dataset targeted for robust, fine-grained object recognition with event cameras. The dataset is collected using programmable hardware in which an event camera consistently moves around a monitor displaying images from ImageNet. N-ImageNet serves as a challenging benchmark for event-based object recognition, due to its large number of classes and samples. We empirically show that pretraining on N-ImageNet improves the performance of event-based classifiers and helps them learn with few labeled data. In addition, we present several variants of N-ImageNet to test the robustness of event-based classifiers under diverse camera trajectories and severe lighting conditions, and propose a novel event representation to alleviate the performance degradation. To the best of our knowledge, we are the first to quantitatively investigate the consequences caused by various environmental conditions on event-based object recognition algorithms. N-ImageNet and its variants are expected to guide practical implementations for deploying event-based object recognition algorithms in the real world.
Why are Visually-Grounded Language Models Bad at Image Classification?
Image classification is one of the most fundamental capabilities of machine vision intelligence. In this work, we revisit the image classification task using visually-grounded language models (VLMs) such as GPT-4V and LLaVA. We find that existing proprietary and public VLMs, despite often using CLIP as a vision encoder and having many more parameters, significantly underperform CLIP on standard image classification benchmarks like ImageNet. To understand the reason, we explore several hypotheses concerning the inference algorithms, training objectives, and data processing in VLMs. Our analysis reveals that the primary cause is data-related: critical information for image classification is encoded in the VLM's latent space but can only be effectively decoded with enough training data. Specifically, there is a strong correlation between the frequency of class exposure during VLM training and instruction-tuning and the VLM's performance in those classes; when trained with sufficient data, VLMs can match the accuracy of state-of-the-art classification models. Based on these findings, we enhance a VLM by integrating classification-focused datasets into its training, and demonstrate that the enhanced classification performance of the VLM transfers to its general capabilities, resulting in an improvement of 11.8% on the newly collected ImageWikiQA dataset.
EXIF as Language: Learning Cross-Modal Associations Between Images and Camera Metadata
We learn a visual representation that captures information about the camera that recorded a given photo. To do this, we train a multimodal embedding between image patches and the EXIF metadata that cameras automatically insert into image files. Our model represents this metadata by simply converting it to text and then processing it with a transformer. The features that we learn significantly outperform other self-supervised and supervised features on downstream image forensics and calibration tasks. In particular, we successfully localize spliced image regions "zero shot" by clustering the visual embeddings for all of the patches within an image.
Conditioning Latent-Space Clusters for Real-World Anomaly Classification
Anomalies in the domain of autonomous driving are a major hindrance to the large-scale deployment of autonomous vehicles. In this work, we focus on high-resolution camera data from urban scenes that include anomalies of various types and sizes. Based on a Variational Autoencoder, we condition its latent space to classify samples as either normal data or anomalies. In order to emphasize especially small anomalies, we perform experiments where we provide the VAE with a discrepancy map as an additional input, evaluating its impact on the detection performance. Our method separates normal data and anomalies into isolated clusters while still reconstructing high-quality images, leading to meaningful latent representations.
Microsoft COCO: Common Objects in Context
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
DISeR: Designing Imaging Systems with Reinforcement Learning
Imaging systems consist of cameras to encode visual information about the world and perception models to interpret this encoding. Cameras contain (1) illumination sources, (2) optical elements, and (3) sensors, while perception models use (4) algorithms. Directly searching over all combinations of these four building blocks to design an imaging system is challenging due to the size of the search space. Moreover, cameras and perception models are often designed independently, leading to sub-optimal task performance. In this paper, we formulate these four building blocks of imaging systems as a context-free grammar (CFG), which can be automatically searched over with a learned camera designer to jointly optimize the imaging system with task-specific perception models. By transforming the CFG to a state-action space, we then show how the camera designer can be implemented with reinforcement learning to intelligently search over the combinatorial space of possible imaging system configurations. We demonstrate our approach on two tasks, depth estimation and camera rig design for autonomous vehicles, showing that our method yields rigs that outperform industry-wide standards. We believe that our proposed approach is an important step towards automating imaging system design.
Learning Fine-Grained Features for Pixel-wise Video Correspondences
Video analysis tasks rely heavily on identifying the pixels from different frames that correspond to the same visual target. To tackle this problem, recent studies have advocated feature learning methods that aim to learn distinctive representations to match the pixels, especially in a self-supervised fashion. Unfortunately, these methods have difficulties for tiny or even single-pixel visual targets. Pixel-wise video correspondences were traditionally related to optical flows, which however lead to deterministic correspondences and lack robustness on real-world videos. We address the problem of learning features for establishing pixel-wise correspondences. Motivated by optical flows as well as the self-supervised feature learning, we propose to use not only labeled synthetic videos but also unlabeled real-world videos for learning fine-grained representations in a holistic framework. We adopt an adversarial learning scheme to enhance the generalization ability of the learned features. Moreover, we design a coarse-to-fine framework to pursue high computational efficiency. Our experimental results on a series of correspondence-based tasks demonstrate that the proposed method outperforms state-of-the-art rivals in both accuracy and efficiency.
Demystifying Contrastive Self-Supervised Learning: Invariances, Augmentations and Dataset Biases
Self-supervised representation learning approaches have recently surpassed their supervised learning counterparts on downstream tasks like object detection and image classification. Somewhat mysteriously the recent gains in performance come from training instance classification models, treating each image and it's augmented versions as samples of a single class. In this work, we first present quantitative experiments to demystify these gains. We demonstrate that approaches like MOCO and PIRL learn occlusion-invariant representations. However, they fail to capture viewpoint and category instance invariance which are crucial components for object recognition. Second, we demonstrate that these approaches obtain further gains from access to a clean object-centric training dataset like Imagenet. Finally, we propose an approach to leverage unstructured videos to learn representations that possess higher viewpoint invariance. Our results show that the learned representations outperform MOCOv2 trained on the same data in terms of invariances encoded and the performance on downstream image classification and semantic segmentation tasks.
AutoCLIP: Auto-tuning Zero-Shot Classifiers for Vision-Language Models
Classifiers built upon vision-language models such as CLIP have shown remarkable zero-shot performance across a broad range of image classification tasks. Prior work has studied different ways of automatically creating descriptor sets for every class based on prompt templates, ranging from manually engineered templates over templates obtained from a large language model to templates built from random words and characters. In contrast, deriving zero-shot classifiers from the respective encoded class descriptors has remained nearly unchanged, that is: classify to the class that maximizes the cosine similarity between its averaged encoded class descriptors and the encoded image. However, weighting all class descriptors equally can be suboptimal when certain descriptors match visual clues on a given image better than others. In this work, we propose AutoCLIP, a method for auto-tuning zero-shot classifiers. AutoCLIP assigns to each prompt template per-image weights, which are derived from statistics of class descriptor-image similarities at inference time. AutoCLIP is fully unsupervised, has very low overhead, and can be easily implemented in few lines of code. We show that for a broad range of vision-language models, datasets, and prompt templates, AutoCLIP outperforms baselines consistently and by up to 3 percent point accuracy.
Multi-Level Correlation Network For Few-Shot Image Classification
Few-shot image classification(FSIC) aims to recognize novel classes given few labeled images from base classes. Recent works have achieved promising classification performance, especially for metric-learning methods, where a measure at only image feature level is usually used. In this paper, we argue that measure at such a level may not be effective enough to generalize from base to novel classes when using only a few images. Instead, a multi-level descriptor of an image is taken for consideration in this paper. We propose a multi-level correlation network (MLCN) for FSIC to tackle this problem by effectively capturing local information. Concretely, we present the self-correlation module and cross-correlation module to learn the semantic correspondence relation of local information based on learned representations. Moreover, we propose a pattern-correlation module to capture the pattern of fine-grained images and find relevant structural patterns between base classes and novel classes. Extensive experiments and analysis show the effectiveness of our proposed method on four widely-used FSIC benchmarks. The code for our approach is available at: https://github.com/Yunkai696/MLCN.
Zero-Shot Visual Classification with Guided Cropping
Pretrained vision-language models, such as CLIP, show promising zero-shot performance across a wide variety of datasets. For closed-set classification tasks, however, there is an inherent limitation: CLIP image encoders are typically designed to extract generic image-level features that summarize superfluous or confounding information for the target tasks. This results in degradation of classification performance, especially when objects of interest cover small areas of input images. In this work, we propose CLIP with Guided Cropping (GC-CLIP), where we use an off-the-shelf zero-shot object detection model in a preprocessing step to increase focus of zero-shot classifier to the object of interest and minimize influence of extraneous image regions. We empirically show that our approach improves zero-shot classification results across architectures and datasets, favorably for small objects.
CAPAA: Classifier-Agnostic Projector-Based Adversarial Attack
Projector-based adversarial attack aims to project carefully designed light patterns (i.e., adversarial projections) onto scenes to deceive deep image classifiers. It has potential applications in privacy protection and the development of more robust classifiers. However, existing approaches primarily focus on individual classifiers and fixed camera poses, often neglecting the complexities of multi-classifier systems and scenarios with varying camera poses. This limitation reduces their effectiveness when introducing new classifiers or camera poses. In this paper, we introduce Classifier-Agnostic Projector-Based Adversarial Attack (CAPAA) to address these issues. First, we develop a novel classifier-agnostic adversarial loss and optimization framework that aggregates adversarial and stealthiness loss gradients from multiple classifiers. Then, we propose an attention-based gradient weighting mechanism that concentrates perturbations on regions of high classification activation, thereby improving the robustness of adversarial projections when applied to scenes with varying camera poses. Our extensive experimental evaluations demonstrate that CAPAA achieves both a higher attack success rate and greater stealthiness compared to existing baselines. Codes are available at: https://github.com/ZhanLiQxQ/CAPAA.
Enhanced Convolutional Neural Networks for Improved Image Classification
Image classification is a fundamental task in computer vision with diverse applications, ranging from autonomous systems to medical imaging. The CIFAR-10 dataset is a widely used benchmark to evaluate the performance of classification models on small-scale, multi-class datasets. Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art results; however, they often suffer from overfitting and suboptimal feature representation when applied to challenging datasets like CIFAR-10. In this paper, we propose an enhanced CNN architecture that integrates deeper convolutional blocks, batch normalization, and dropout regularization to achieve superior performance. The proposed model achieves a test accuracy of 84.95%, outperforming baseline CNN architectures. Through detailed ablation studies, we demonstrate the effectiveness of the enhancements and analyze the hierarchical feature representations. This work highlights the potential of refined CNN architectures for tackling small-scale image classification problems effectively.
Compositional Scene Representation Learning via Reconstruction: A Survey
Visual scenes are composed of visual concepts and have the property of combinatorial explosion. An important reason for humans to efficiently learn from diverse visual scenes is the ability of compositional perception, and it is desirable for artificial intelligence to have similar abilities. Compositional scene representation learning is a task that enables such abilities. In recent years, various methods have been proposed to apply deep neural networks, which have been proven to be advantageous in representation learning, to learn compositional scene representations via reconstruction, advancing this research direction into the deep learning era. Learning via reconstruction is advantageous because it may utilize massive unlabeled data and avoid costly and laborious data annotation. In this survey, we first outline the current progress on reconstruction-based compositional scene representation learning with deep neural networks, including development history and categorizations of existing methods from the perspectives of the modeling of visual scenes and the inference of scene representations; then provide benchmarks, including an open source toolbox to reproduce the benchmark experiments, of representative methods that consider the most extensively studied problem setting and form the foundation for other methods; and finally discuss the limitations of existing methods and future directions of this research topic.
Raw Instinct: Trust Your Classifiers and Skip the Conversion
Using RAW-images in computer vision problems is surprisingly underexplored considering that converting from RAW to RGB does not introduce any new capture information. In this paper, we show that a sufficiently advanced classifier can yield equivalent results on RAW input compared to RGB and present a new public dataset consisting of RAW images and the corresponding converted RGB images. Classifying images directly from RAW is attractive, as it allows for skipping the conversion to RGB, lowering computation time significantly. Two CNN classifiers are used to classify the images in both formats, confirming that classification performance can indeed be preserved. We furthermore show that the total computation time from RAW image data to classification results for RAW images can be up to 8.46 times faster than RGB. These results contribute to the evidence found in related works, that using RAW images as direct input to computer vision algorithms looks very promising.
CHIP: Contrastive Hierarchical Image Pretraining
Few-shot object classification is the task of classifying objects in an image with limited number of examples as supervision. We propose a one-shot/few-shot classification model that can classify an object of any unseen class into a relatively general category in an hierarchically based classification. Our model uses a three-level hierarchical contrastive loss based ResNet152 classifier for classifying an object based on its features extracted from Image embedding, not used during the training phase. For our experimentation, we have used a subset of the ImageNet (ILSVRC-12) dataset that contains only the animal classes for training our model and created our own dataset of unseen classes for evaluating our trained model. Our model provides satisfactory results in classifying the unknown objects into a generic category which has been later discussed in greater detail.
Improving Semantic Embedding Consistency by Metric Learning for Zero-Shot Classification
This paper addresses the task of zero-shot image classification. The key contribution of the proposed approach is to control the semantic embedding of images -- one of the main ingredients of zero-shot learning -- by formulating it as a metric learning problem. The optimized empirical criterion associates two types of sub-task constraints: metric discriminating capacity and accurate attribute prediction. This results in a novel expression of zero-shot learning not requiring the notion of class in the training phase: only pairs of image/attributes, augmented with a consistency indicator, are given as ground truth. At test time, the learned model can predict the consistency of a test image with a given set of attributes , allowing flexible ways to produce recognition inferences. Despite its simplicity, the proposed approach gives state-of-the-art results on four challenging datasets used for zero-shot recognition evaluation.
Self-Supervised Visual Representation Learning with Semantic Grouping
In this paper, we tackle the problem of learning visual representations from unlabeled scene-centric data. Existing works have demonstrated the potential of utilizing the underlying complex structure within scene-centric data; still, they commonly rely on hand-crafted objectness priors or specialized pretext tasks to build a learning framework, which may harm generalizability. Instead, we propose contrastive learning from data-driven semantic slots, namely SlotCon, for joint semantic grouping and representation learning. The semantic grouping is performed by assigning pixels to a set of learnable prototypes, which can adapt to each sample by attentive pooling over the feature and form new slots. Based on the learned data-dependent slots, a contrastive objective is employed for representation learning, which enhances the discriminability of features, and conversely facilitates grouping semantically coherent pixels together. Compared with previous efforts, by simultaneously optimizing the two coupled objectives of semantic grouping and contrastive learning, our approach bypasses the disadvantages of hand-crafted priors and is able to learn object/group-level representations from scene-centric images. Experiments show our approach effectively decomposes complex scenes into semantic groups for feature learning and significantly benefits downstream tasks, including object detection, instance segmentation, and semantic segmentation. Code is available at: https://github.com/CVMI-Lab/SlotCon.
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop
While there has been remarkable progress in the performance of visual recognition algorithms, the state-of-the-art models tend to be exceptionally data-hungry. Large labeled training datasets, expensive and tedious to produce, are required to optimize millions of parameters in deep network models. Lagging behind the growth in model capacity, the available datasets are quickly becoming outdated in terms of size and density. To circumvent this bottleneck, we propose to amplify human effort through a partially automated labeling scheme, leveraging deep learning with humans in the loop. Starting from a large set of candidate images for each category, we iteratively sample a subset, ask people to label them, classify the others with a trained model, split the set into positives, negatives, and unlabeled based on the classification confidence, and then iterate with the unlabeled set. To assess the effectiveness of this cascading procedure and enable further progress in visual recognition research, we construct a new image dataset, LSUN. It contains around one million labeled images for each of 10 scene categories and 20 object categories. We experiment with training popular convolutional networks and find that they achieve substantial performance gains when trained on this dataset.
Shadows Don't Lie and Lines Can't Bend! Generative Models don't know Projective Geometry...for now
Generative models can produce impressively realistic images. This paper demonstrates that generated images have geometric features different from those of real images. We build a set of collections of generated images, prequalified to fool simple, signal-based classifiers into believing they are real. We then show that prequalified generated images can be identified reliably by classifiers that only look at geometric properties. We use three such classifiers. All three classifiers are denied access to image pixels, and look only at derived geometric features. The first classifier looks at the perspective field of the image, the second looks at lines detected in the image, and the third looks at relations between detected objects and shadows. Our procedure detects generated images more reliably than SOTA local signal based detectors, for images from a number of distinct generators. Saliency maps suggest that the classifiers can identify geometric problems reliably. We conclude that current generators cannot reliably reproduce geometric properties of real images.
Land Use Classification in Remote Sensing Images by Convolutional Neural Networks
We explore the use of convolutional neural networks for the semantic classification of remote sensing scenes. Two recently proposed architectures, CaffeNet and GoogLeNet, are adopted, with three different learning modalities. Besides conventional training from scratch, we resort to pre-trained networks that are only fine-tuned on the target data, so as to avoid overfitting problems and reduce design time. Experiments on two remote sensing datasets, with markedly different characteristics, testify on the effectiveness and wide applicability of the proposed solution, which guarantees a significant performance improvement over all state-of-the-art references.
OST: Refining Text Knowledge with Optimal Spatio-Temporal Descriptor for General Video Recognition
Due to the resource-intensive nature of training vision-language models on expansive video data, a majority of studies have centered on adapting pre-trained image-language models to the video domain. Dominant pipelines propose to tackle the visual discrepancies with additional temporal learners while overlooking the substantial discrepancy for web-scaled descriptive narratives and concise action category names, leading to less distinct semantic space and potential performance limitations. In this work, we prioritize the refinement of text knowledge to facilitate generalizable video recognition. To address the limitations of the less distinct semantic space of category names, we prompt a large language model (LLM) to augment action class names into Spatio-Temporal Descriptors thus bridging the textual discrepancy and serving as a knowledge base for general recognition. Moreover, to assign the best descriptors with different video instances, we propose Optimal Descriptor Solver, forming the video recognition problem as solving the optimal matching flow across frame-level representations and descriptors. Comprehensive evaluations in zero-shot, few-shot, and fully supervised video recognition highlight the effectiveness of our approach. Our best model achieves a state-of-the-art zero-shot accuracy of 75.1% on Kinetics-600.
Self-supervised learning of object pose estimation using keypoint prediction
This paper describes recent developments in object specific pose and shape prediction from single images. The main contribution is a new approach to camera pose prediction by self-supervised learning of keypoints corresponding to locations on a category specific deformable shape. We designed a network to generate a proxy ground-truth heatmap from a set of keypoints distributed all over the category-specific mean shape, where each is represented by a unique color on a labeled texture. The proxy ground-truth heatmap is used to train a deep keypoint prediction network, which can be used in online inference. The proposed approach to camera pose prediction show significant improvements when compared with state-of-the-art methods. Our approach to camera pose prediction is used to infer 3D objects from 2D image frames of video sequences online. To train the reconstruction model, it receives only a silhouette mask from a single frame of a video sequence in every training step and a category-specific mean object shape. We conducted experiments using three different datasets representing the bird category: the CUB [51] image dataset, YouTubeVos and the Davis video datasets. The network is trained on the CUB dataset and tested on all three datasets. The online experiments are demonstrated on YouTubeVos and Davis [56] video sequences using a network trained on the CUB training set.
SCAN: Learning to Classify Images without Labels
Can we automatically group images into semantically meaningful clusters when ground-truth annotations are absent? The task of unsupervised image classification remains an important, and open challenge in computer vision. Several recent approaches have tried to tackle this problem in an end-to-end fashion. In this paper, we deviate from recent works, and advocate a two-step approach where feature learning and clustering are decoupled. First, a self-supervised task from representation learning is employed to obtain semantically meaningful features. Second, we use the obtained features as a prior in a learnable clustering approach. In doing so, we remove the ability for cluster learning to depend on low-level features, which is present in current end-to-end learning approaches. Experimental evaluation shows that we outperform state-of-the-art methods by large margins, in particular +26.6% on CIFAR10, +25.0% on CIFAR100-20 and +21.3% on STL10 in terms of classification accuracy. Furthermore, our method is the first to perform well on a large-scale dataset for image classification. In particular, we obtain promising results on ImageNet, and outperform several semi-supervised learning methods in the low-data regime without the use of any ground-truth annotations. The code is made publicly available at https://github.com/wvangansbeke/Unsupervised-Classification.
Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild
Recognizing scenes and objects in 3D from a single image is a longstanding goal of computer vision with applications in robotics and AR/VR. For 2D recognition, large datasets and scalable solutions have led to unprecedented advances. In 3D, existing benchmarks are small in size and approaches specialize in few object categories and specific domains, e.g. urban driving scenes. Motivated by the success of 2D recognition, we revisit the task of 3D object detection by introducing a large benchmark, called Omni3D. Omni3D re-purposes and combines existing datasets resulting in 234k images annotated with more than 3 million instances and 97 categories.3D detection at such scale is challenging due to variations in camera intrinsics and the rich diversity of scene and object types. We propose a model, called Cube R-CNN, designed to generalize across camera and scene types with a unified approach. We show that Cube R-CNN outperforms prior works on the larger Omni3D and existing benchmarks. Finally, we prove that Omni3D is a powerful dataset for 3D object recognition, show that it improves single-dataset performance and can accelerate learning on new smaller datasets via pre-training.
Vocabulary-free Image Classification and Semantic Segmentation
Large vision-language models revolutionized image classification and semantic segmentation paradigms. However, they typically assume a pre-defined set of categories, or vocabulary, at test time for composing textual prompts. This assumption is impractical in scenarios with unknown or evolving semantic context. Here, we address this issue and introduce the Vocabulary-free Image Classification (VIC) task, which aims to assign a class from an unconstrained language-induced semantic space to an input image without needing a known vocabulary. VIC is challenging due to the vastness of the semantic space, which contains millions of concepts, including fine-grained categories. To address VIC, we propose Category Search from External Databases (CaSED), a training-free method that leverages a pre-trained vision-language model and an external database. CaSED first extracts the set of candidate categories from the most semantically similar captions in the database and then assigns the image to the best-matching candidate category according to the same vision-language model. Furthermore, we demonstrate that CaSED can be applied locally to generate a coarse segmentation mask that classifies image regions, introducing the task of Vocabulary-free Semantic Segmentation. CaSED and its variants outperform other more complex vision-language models, on classification and semantic segmentation benchmarks, while using much fewer parameters.
Recognizing Image Style
The style of an image plays a significant role in how it is viewed, but style has received little attention in computer vision research. We describe an approach to predicting style of images, and perform a thorough evaluation of different image features for these tasks. We find that features learned in a multi-layer network generally perform best -- even when trained with object class (not style) labels. Our large-scale learning methods results in the best published performance on an existing dataset of aesthetic ratings and photographic style annotations. We present two novel datasets: 80K Flickr photographs annotated with 20 curated style labels, and 85K paintings annotated with 25 style/genre labels. Our approach shows excellent classification performance on both datasets. We use the learned classifiers to extend traditional tag-based image search to consider stylistic constraints, and demonstrate cross-dataset understanding of style.
SemiOccam: A Robust Semi-Supervised Image Recognition Network Using Sparse Labels
We present SemiOccam, an image recognition network that leverages semi-supervised learning in a highly efficient manner. Existing works often rely on complex training techniques and architectures, requiring hundreds of GPU hours for training, while their generalization ability with extremely limited labeled data remains to be improved. To address these limitations, we construct a hierarchical mixture density classification mechanism by optimizing mutual information between feature representations and target classes, compressing redundant information while retaining crucial discriminative components. Experimental results demonstrate that our method achieves state-of-the-art performance on three commonly used datasets, with accuracy exceeding 95% on two of them using only 4 labeled samples per class, and its simple architecture keeps training time at the minute level. Notably, this paper reveals a long-overlooked data leakage issue in the STL-10 dataset for semi-supervised learning and removes duplicates to ensure reliable experimental results. We release the deduplicated CleanSTL-10 dataset to facilitate fair and reproducible research. Code available at https://github.com/Shu1L0n9/SemiOccam.
RAID: A Relation-Augmented Image Descriptor
As humans, we regularly interpret images based on the relations between image regions. For example, a person riding object X, or a plank bridging two objects. Current methods provide limited support to search for images based on such relations. We present RAID, a relation-augmented image descriptor that supports queries based on inter-region relations. The key idea of our descriptor is to capture the spatial distribution of simple point-to-region relationships to describe more complex relationships between two image regions. We evaluate the proposed descriptor by querying into a large subset of the Microsoft COCO database and successfully extract nontrivial images demonstrating complex inter-region relations, which are easily missed or erroneously classified by existing methods.
Multi-Modal Classifiers for Open-Vocabulary Object Detection
The goal of this paper is open-vocabulary object detection (OVOD) x2013 building a model that can detect objects beyond the set of categories seen at training, thus enabling the user to specify categories of interest at inference without the need for model retraining. We adopt a standard two-stage object detector architecture, and explore three ways for specifying novel categories: via language descriptions, via image exemplars, or via a combination of the two. We make three contributions: first, we prompt a large language model (LLM) to generate informative language descriptions for object classes, and construct powerful text-based classifiers; second, we employ a visual aggregator on image exemplars that can ingest any number of images as input, forming vision-based classifiers; and third, we provide a simple method to fuse information from language descriptions and image exemplars, yielding a multi-modal classifier. When evaluating on the challenging LVIS open-vocabulary benchmark we demonstrate that: (i) our text-based classifiers outperform all previous OVOD works; (ii) our vision-based classifiers perform as well as text-based classifiers in prior work; (iii) using multi-modal classifiers perform better than either modality alone; and finally, (iv) our text-based and multi-modal classifiers yield better performance than a fully-supervised detector.
UG^2: a Video Benchmark for Assessing the Impact of Image Restoration and Enhancement on Automatic Visual Recognition
Advances in image restoration and enhancement techniques have led to discussion about how such algorithmscan be applied as a pre-processing step to improve automatic visual recognition. In principle, techniques like deblurring and super-resolution should yield improvements by de-emphasizing noise and increasing signal in an input image. But the historically divergent goals of the computational photography and visual recognition communities have created a significant need for more work in this direction. To facilitate new research, we introduce a new benchmark dataset called UG^2, which contains three difficult real-world scenarios: uncontrolled videos taken by UAVs and manned gliders, as well as controlled videos taken on the ground. Over 160,000 annotated frames forhundreds of ImageNet classes are available, which are used for baseline experiments that assess the impact of known and unknown image artifacts and other conditions on common deep learning-based object classification approaches. Further, current image restoration and enhancement techniques are evaluated by determining whether or not theyimprove baseline classification performance. Results showthat there is plenty of room for algorithmic innovation, making this dataset a useful tool going forward.
Recollection from Pensieve: Novel View Synthesis via Learning from Uncalibrated Videos
Currently almost all state-of-the-art novel view synthesis and reconstruction models rely on calibrated cameras or additional geometric priors for training. These prerequisites significantly limit their applicability to massive uncalibrated data. To alleviate this requirement and unlock the potential for self-supervised training on large-scale uncalibrated videos, we propose a novel two-stage strategy to train a view synthesis model from only raw video frames or multi-view images, without providing camera parameters or other priors. In the first stage, we learn to reconstruct the scene implicitly in a latent space without relying on any explicit 3D representation. Specifically, we predict per-frame latent camera and scene context features, and employ a view synthesis model as a proxy for explicit rendering. This pretraining stage substantially reduces the optimization complexity and encourages the network to learn the underlying 3D consistency in a self-supervised manner. The learned latent camera and implicit scene representation have a large gap compared with the real 3D world. To reduce this gap, we introduce the second stage training by explicitly predicting 3D Gaussian primitives. We additionally apply explicit Gaussian Splatting rendering loss and depth projection loss to align the learned latent representations with physically grounded 3D geometry. In this way, Stage 1 provides a strong initialization and Stage 2 enforces 3D consistency - the two stages are complementary and mutually beneficial. Extensive experiments demonstrate the effectiveness of our approach, achieving high-quality novel view synthesis and accurate camera pose estimation, compared to methods that employ supervision with calibration, pose, or depth information. The code is available at https://github.com/Dwawayu/Pensieve.
MVP: Meta Visual Prompt Tuning for Few-Shot Remote Sensing Image Scene Classification
Vision Transformer (ViT) models have recently emerged as powerful and versatile models for various visual tasks. Recently, a work called PMF has achieved promising results in few-shot image classification by utilizing pre-trained vision transformer models. However, PMF employs full fine-tuning for learning the downstream tasks, leading to significant overfitting and storage issues, especially in the remote sensing domain. In order to tackle these issues, we turn to the recently proposed parameter-efficient tuning methods, such as VPT, which updates only the newly added prompt parameters while keeping the pre-trained backbone frozen. Inspired by VPT, we propose the Meta Visual Prompt Tuning (MVP) method. Specifically, we integrate the VPT method into the meta-learning framework and tailor it to the remote sensing domain, resulting in an efficient framework for Few-Shot Remote Sensing Scene Classification (FS-RSSC). Furthermore, we introduce a novel data augmentation strategy based on patch embedding recombination to enhance the representation and diversity of scenes for classification purposes. Experiment results on the FS-RSSC benchmark demonstrate the superior performance of the proposed MVP over existing methods in various settings, such as various-way-various-shot, various-way-one-shot, and cross-domain adaptation.
What Do Single-view 3D Reconstruction Networks Learn?
Convolutional networks for single-view object reconstruction have shown impressive performance and have become a popular subject of research. All existing techniques are united by the idea of having an encoder-decoder network that performs non-trivial reasoning about the 3D structure of the output space. In this work, we set up two alternative approaches that perform image classification and retrieval respectively. These simple baselines yield better results than state-of-the-art methods, both qualitatively and quantitatively. We show that encoder-decoder methods are statistically indistinguishable from these baselines, thus indicating that the current state of the art in single-view object reconstruction does not actually perform reconstruction but image classification. We identify aspects of popular experimental procedures that elicit this behavior and discuss ways to improve the current state of research.
Recent Advances in Zero-shot Recognition
With the recent renaissance of deep convolution neural networks, encouraging breakthroughs have been achieved on the supervised recognition tasks, where each class has sufficient training data and fully annotated training data. However, to scale the recognition to a large number of classes with few or now training samples for each class remains an unsolved problem. One approach to scaling up the recognition is to develop models capable of recognizing unseen categories without any training instances, or zero-shot recognition/ learning. This article provides a comprehensive review of existing zero-shot recognition techniques covering various aspects ranging from representations of models, and from datasets and evaluation settings. We also overview related recognition tasks including one-shot and open set recognition which can be used as natural extensions of zero-shot recognition when limited number of class samples become available or when zero-shot recognition is implemented in a real-world setting. Importantly, we highlight the limitations of existing approaches and point out future research directions in this existing new research area.
Learning to Adapt Category Consistent Meta-Feature of CLIP for Few-Shot Classification
The recent CLIP-based methods have shown promising zero-shot and few-shot performance on image classification tasks. Existing approaches such as CoOp and Tip-Adapter only focus on high-level visual features that are fully aligned with textual features representing the ``Summary" of the image. However, the goal of few-shot learning is to classify unseen images of the same category with few labeled samples. Especially, in contrast to high-level representations, local representations (LRs) at low-level are more consistent between seen and unseen samples. Based on this point, we propose the Meta-Feature Adaption method (MF-Adapter) that combines the complementary strengths of both LRs and high-level semantic representations. Specifically, we introduce the Meta-Feature Unit (MF-Unit), which is a simple yet effective local similarity metric to measure category-consistent local context in an inductive manner. Then we train an MF-Adapter to map image features to MF-Unit for adequately generalizing the intra-class knowledge between unseen images and the support set. Extensive experiments show that our proposed method is superior to the state-of-the-art CLIP downstream few-shot classification methods, even showing stronger performance on a set of challenging visual classification tasks.
Zero-Shot Learning Through Cross-Modal Transfer
This work introduces a model that can recognize objects in images even if no training data is available for the objects. The only necessary knowledge about the unseen categories comes from unsupervised large text corpora. In our zero-shot framework distributional information in language can be seen as spanning a semantic basis for understanding what objects look like. Most previous zero-shot learning models can only differentiate between unseen classes. In contrast, our model can both obtain state of the art performance on classes that have thousands of training images and obtain reasonable performance on unseen classes. This is achieved by first using outlier detection in the semantic space and then two separate recognition models. Furthermore, our model does not require any manually defined semantic features for either words or images.
Learning to Prompt for Open-Vocabulary Object Detection with Vision-Language Model
Recently, vision-language pre-training shows great potential in open-vocabulary object detection, where detectors trained on base classes are devised for detecting new classes. The class text embedding is firstly generated by feeding prompts to the text encoder of a pre-trained vision-language model. It is then used as the region classifier to supervise the training of a detector. The key element that leads to the success of this model is the proper prompt, which requires careful words tuning and ingenious design. To avoid laborious prompt engineering, there are some prompt representation learning methods being proposed for the image classification task, which however can only be sub-optimal solutions when applied to the detection task. In this paper, we introduce a novel method, detection prompt (DetPro), to learn continuous prompt representations for open-vocabulary object detection based on the pre-trained vision-language model. Different from the previous classification-oriented methods, DetPro has two highlights: 1) a background interpretation scheme to include the proposals in image background into the prompt training; 2) a context grading scheme to separate proposals in image foreground for tailored prompt training. We assemble DetPro with ViLD, a recent state-of-the-art open-world object detector, and conduct experiments on the LVIS as well as transfer learning on the Pascal VOC, COCO, Objects365 datasets. Experimental results show that our DetPro outperforms the baseline ViLD in all settings, e.g., +3.4 APbox and +3.0 APmask improvements on the novel classes of LVIS. Code and models are available at https://github.com/dyabel/detpro.
Semantic Enhanced Few-shot Object Detection
Few-shot object detection~(FSOD), which aims to detect novel objects with limited annotated instances, has made significant progress in recent years. However, existing methods still suffer from biased representations, especially for novel classes in extremely low-shot scenarios. During fine-tuning, a novel class may exploit knowledge from similar base classes to construct its own feature distribution, leading to classification confusion and performance degradation. To address these challenges, we propose a fine-tuning based FSOD framework that utilizes semantic embeddings for better detection. In our proposed method, we align the visual features with class name embeddings and replace the linear classifier with our semantic similarity classifier. Our method trains each region proposal to converge to the corresponding class embedding. Furthermore, we introduce a multimodal feature fusion to augment the vision-language communication, enabling a novel class to draw support explicitly from well-trained similar base classes. To prevent class confusion, we propose a semantic-aware max-margin loss, which adaptively applies a margin beyond similar classes. As a result, our method allows each novel class to construct a compact feature space without being confused with similar base classes. Extensive experiments on Pascal VOC and MS COCO demonstrate the superiority of our method.
Robust Scene Inference under Noise-Blur Dual Corruptions
Scene inference under low-light is a challenging problem due to severe noise in the captured images. One way to reduce noise is to use longer exposure during the capture. However, in the presence of motion (scene or camera motion), longer exposures lead to motion blur, resulting in loss of image information. This creates a trade-off between these two kinds of image degradations: motion blur (due to long exposure) vs. noise (due to short exposure), also referred as a dual image corruption pair in this paper. With the rise of cameras capable of capturing multiple exposures of the same scene simultaneously, it is possible to overcome this trade-off. Our key observation is that although the amount and nature of degradation varies for these different image captures, the semantic content remains the same across all images. To this end, we propose a method to leverage these multi exposure captures for robust inference under low-light and motion. Our method builds on a feature consistency loss to encourage similar results from these individual captures, and uses the ensemble of their final predictions for robust visual recognition. We demonstrate the effectiveness of our approach on simulated images as well as real captures with multiple exposures, and across the tasks of object detection and image classification.
SceneDiff: A Benchmark and Method for Multiview Object Change Detection
We investigate the problem of identifying objects that have been added, removed, or moved between a pair of captures (images or videos) of the same scene at different times. Detecting such changes is important for many applications, such as robotic tidying or construction progress and safety monitoring. A major challenge is that varying viewpoints can cause objects to falsely appear changed. We introduce SceneDiff Benchmark, the first multiview change detection benchmark with object instance annotations, comprising 350 diverse video pairs with thousands of changed objects. We also introduce the SceneDiff method, a new training-free approach for multiview object change detection that leverages pretrained 3D, segmentation, and image encoding models to robustly predict across multiple benchmarks. Our method aligns the captures in 3D, extracts object regions, and compares spatial and semantic region features to detect changes. Experiments on multi-view and two-view benchmarks demonstrate that our method outperforms existing approaches by large margins (94% and 37.4% relative AP improvements). The benchmark and code will be publicly released.
360 in the Wild: Dataset for Depth Prediction and View Synthesis
The large abundance of perspective camera datasets facilitated the emergence of novel learning-based strategies for various tasks, such as camera localization, single image depth estimation, or view synthesis. However, panoramic or omnidirectional image datasets, including essential information, such as pose and depth, are mostly made with synthetic scenes. In this work, we introduce a large scale 360^{circ} videos dataset in the wild. This dataset has been carefully scraped from the Internet and has been captured from various locations worldwide. Hence, this dataset exhibits very diversified environments (e.g., indoor and outdoor) and contexts (e.g., with and without moving objects). Each of the 25K images constituting our dataset is provided with its respective camera's pose and depth map. We illustrate the relevance of our dataset for two main tasks, namely, single image depth estimation and view synthesis.
MOS: Modeling Object-Scene Associations in Generalized Category Discovery
Generalized Category Discovery (GCD) is a classification task that aims to classify both base and novel classes in unlabeled images, using knowledge from a labeled dataset. In GCD, previous research overlooks scene information or treats it as noise, reducing its impact during model training. However, in this paper, we argue that scene information should be viewed as a strong prior for inferring novel classes. We attribute the misinterpretation of scene information to a key factor: the Ambiguity Challenge inherent in GCD. Specifically, novel objects in base scenes might be wrongly classified into base categories, while base objects in novel scenes might be mistakenly recognized as novel categories. Once the ambiguity challenge is addressed, scene information can reach its full potential, significantly enhancing the performance of GCD models. To more effectively leverage scene information, we propose the Modeling Object-Scene Associations (MOS) framework, which utilizes a simple MLP-based scene-awareness module to enhance GCD performance. It achieves an exceptional average accuracy improvement of 4% on the challenging fine-grained datasets compared to state-of-the-art methods, emphasizing its superior performance in fine-grained GCD. The code is publicly available at https://github.com/JethroPeng/MOS.
CoReS: Compatible Representations via Stationarity
Compatible features enable the direct comparison of old and new learned features allowing to use them interchangeably over time. In visual search systems, this eliminates the need to extract new features from the gallery-set when the representation model is upgraded with novel data. This has a big value in real applications as re-indexing the gallery-set can be computationally expensive when the gallery-set is large, or even infeasible due to privacy or other concerns of the application. In this paper, we propose CoReS, a new training procedure to learn representations that are compatible with those previously learned, grounding on the stationarity of the features as provided by fixed classifiers based on polytopes. With this solution, classes are maximally separated in the representation space and maintain their spatial configuration stationary as new classes are added, so that there is no need to learn any mappings between representations nor to impose pairwise training with the previously learned model. We demonstrate that our training procedure largely outperforms the current state of the art and is particularly effective in the case of multiple upgrades of the training-set, which is the typical case in real applications.
SpatialVID: A Large-Scale Video Dataset with Spatial Annotations
Significant progress has been made in spatial intelligence, spanning both spatial reconstruction and world exploration. However, the scalability and real-world fidelity of current models remain severely constrained by the scarcity of large-scale, high-quality training data. While several datasets provide camera pose information, they are typically limited in scale, diversity, and annotation richness, particularly for real-world dynamic scenes with ground-truth camera motion. To this end, we collect SpatialVID, a dataset consists of a large corpus of in-the-wild videos with diverse scenes, camera movements and dense 3D annotations such as per-frame camera poses, depth, and motion instructions. Specifically, we collect more than 21,000 hours of raw video, and process them into 2.7 million clips through a hierarchical filtering pipeline, totaling 7,089 hours of dynamic content. A subsequent annotation pipeline enriches these clips with detailed spatial and semantic information, including camera poses, depth maps, dynamic masks, structured captions, and serialized motion instructions. Analysis of SpatialVID's data statistics reveals a richness and diversity that directly foster improved model generalization and performance, establishing it as a key asset for the video and 3D vision research community.
Follow-Up Differential Descriptions: Language Models Resolve Ambiguities for Image Classification
A promising approach for improving the performance of vision-language models like CLIP for image classification is to extend the class descriptions (i.e., prompts) with related attributes, e.g., using brown sparrow instead of sparrow. However, current zero-shot methods select a subset of attributes regardless of commonalities between the target classes, potentially providing no useful information that would have helped to distinguish between them. For instance, they may use color instead of bill shape to distinguish between sparrows and wrens, which are both brown. We propose Follow-up Differential Descriptions (FuDD), a zero-shot approach that tailors the class descriptions to each dataset and leads to additional attributes that better differentiate the target classes. FuDD first identifies the ambiguous classes for each image, and then uses a Large Language Model (LLM) to generate new class descriptions that differentiate between them. The new class descriptions resolve the initial ambiguity and help predict the correct label. In our experiments, FuDD consistently outperforms generic description ensembles and naive LLM-generated descriptions on 12 datasets. We show that differential descriptions are an effective tool to resolve class ambiguities, which otherwise significantly degrade the performance. We also show that high quality natural language class descriptions produced by FuDD result in comparable performance to few-shot adaptation methods.
The "something something" video database for learning and evaluating visual common sense
Neural networks trained on datasets such as ImageNet have led to major advances in visual object classification. One obstacle that prevents networks from reasoning more deeply about complex scenes and situations, and from integrating visual knowledge with natural language, like humans do, is their lack of common sense knowledge about the physical world. Videos, unlike still images, contain a wealth of detailed information about the physical world. However, most labelled video datasets represent high-level concepts rather than detailed physical aspects about actions and scenes. In this work, we describe our ongoing collection of the "something-something" database of video prediction tasks whose solutions require a common sense understanding of the depicted situation. The database currently contains more than 100,000 videos across 174 classes, which are defined as caption-templates. We also describe the challenges in crowd-sourcing this data at scale.
Self-supervised learning of visual features through embedding images into text topic spaces
End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches.
Semantic Understanding of Scenes through the ADE20K Dataset
Scene parsing, or recognizing and segmenting objects and stuff in an image, is one of the key problems in computer vision. Despite the community's efforts in data collection, there are still few image datasets covering a wide range of scenes and object categories with dense and detailed annotations for scene parsing. In this paper, we introduce and analyze the ADE20K dataset, spanning diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. A generic network design called Cascade Segmentation Module is then proposed to enable the segmentation networks to parse a scene into stuff, objects, and object parts in a cascade. We evaluate the proposed module integrated within two existing semantic segmentation networks, yielding significant improvements for scene parsing. We further show that the scene parsing networks trained on ADE20K can be applied to a wide variety of scenes and objects.
Pose-Aware Self-Supervised Learning with Viewpoint Trajectory Regularization
Learning visual features from unlabeled images has proven successful for semantic categorization, often by mapping different views of the same object to the same feature to achieve recognition invariance. However, visual recognition involves not only identifying what an object is but also understanding how it is presented. For example, seeing a car from the side versus head-on is crucial for deciding whether to stay put or jump out of the way. While unsupervised feature learning for downstream viewpoint reasoning is important, it remains under-explored, partly due to the lack of a standardized evaluation method and benchmarks. We introduce a new dataset of adjacent image triplets obtained from a viewpoint trajectory, without any semantic or pose labels. We benchmark both semantic classification and pose estimation accuracies on the same visual feature. Additionally, we propose a viewpoint trajectory regularization loss for learning features from unlabeled image triplets. Our experiments demonstrate that this approach helps develop a visual representation that encodes object identity and organizes objects by their poses, retaining semantic classification accuracy while achieving emergent global pose awareness and better generalization to novel objects. Our dataset and code are available at http://pwang.pw/trajSSL/.
X3D: Expanding Architectures for Efficient Video Recognition
This paper presents X3D, a family of efficient video networks that progressively expand a tiny 2D image classification architecture along multiple network axes, in space, time, width and depth. Inspired by feature selection methods in machine learning, a simple stepwise network expansion approach is employed that expands a single axis in each step, such that good accuracy to complexity trade-off is achieved. To expand X3D to a specific target complexity, we perform progressive forward expansion followed by backward contraction. X3D achieves state-of-the-art performance while requiring 4.8x and 5.5x fewer multiply-adds and parameters for similar accuracy as previous work. Our most surprising finding is that networks with high spatiotemporal resolution can perform well, while being extremely light in terms of network width and parameters. We report competitive accuracy at unprecedented efficiency on video classification and detection benchmarks. Code will be available at: https://github.com/facebookresearch/SlowFast
Zero-Shot Learning -- A Comprehensive Evaluation of the Good, the Bad and the Ugly
Due to the importance of zero-shot learning, i.e. classifying images where there is a lack of labeled training data, the number of proposed approaches has recently increased steadily. We argue that it is time to take a step back and to analyze the status quo of the area. The purpose of this paper is three-fold. First, given the fact that there is no agreed upon zero-shot learning benchmark, we first define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets used for this task. This is an important contribution as published results are often not comparable and sometimes even flawed due to, e.g. pre-training on zero-shot test classes. Moreover, we propose a new zero-shot learning dataset, the Animals with Attributes 2 (AWA2) dataset which we make publicly available both in terms of image features and the images themselves. Second, we compare and analyze a significant number of the state-of-the-art methods in depth, both in the classic zero-shot setting but also in the more realistic generalized zero-shot setting. Finally, we discuss in detail the limitations of the current status of the area which can be taken as a basis for advancing it.
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields
Tremendous progress in deep generative models has led to photorealistic image synthesis. While achieving compelling results, most approaches operate in the two-dimensional image domain, ignoring the three-dimensional nature of our world. Several recent works therefore propose generative models which are 3D-aware, i.e., scenes are modeled in 3D and then rendered differentiably to the image plane. This leads to impressive 3D consistency, but incorporating such a bias comes at a price: the camera needs to be modeled as well. Current approaches assume fixed intrinsics and a predefined prior over camera pose ranges. As a result, parameter tuning is typically required for real-world data, and results degrade if the data distribution is not matched. Our key hypothesis is that learning a camera generator jointly with the image generator leads to a more principled approach to 3D-aware image synthesis. Further, we propose to decompose the scene into a background and foreground model, leading to more efficient and disentangled scene representations. While training from raw, unposed image collections, we learn a 3D- and camera-aware generative model which faithfully recovers not only the image but also the camera data distribution. At test time, our model generates images with explicit control over the camera as well as the shape and appearance of the scene.
Learning Transferable Visual Models From Natural Language Supervision
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
Gaze Embeddings for Zero-Shot Image Classification
Zero-shot image classification using auxiliary information, such as attributes describing discriminative object properties, requires time-consuming annotation by domain experts. We instead propose a method that relies on human gaze as auxiliary information, exploiting that even non-expert users have a natural ability to judge class membership. We present a data collection paradigm that involves a discrimination task to increase the information content obtained from gaze data. Our method extracts discriminative descriptors from the data and learns a compatibility function between image and gaze using three novel gaze embeddings: Gaze Histograms (GH), Gaze Features with Grid (GFG) and Gaze Features with Sequence (GFS). We introduce two new gaze-annotated datasets for fine-grained image classification and show that human gaze data is indeed class discriminative, provides a competitive alternative to expert-annotated attributes, and outperforms other baselines for zero-shot image classification.
Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs
We consider the problem of zero-shot recognition: learning a visual classifier for a category with zero training examples, just using the word embedding of the category and its relationship to other categories, which visual data are provided. The key to dealing with the unfamiliar or novel category is to transfer knowledge obtained from familiar classes to describe the unfamiliar class. In this paper, we build upon the recently introduced Graph Convolutional Network (GCN) and propose an approach that uses both semantic embeddings and the categorical relationships to predict the classifiers. Given a learned knowledge graph (KG), our approach takes as input semantic embeddings for each node (representing visual category). After a series of graph convolutions, we predict the visual classifier for each category. During training, the visual classifiers for a few categories are given to learn the GCN parameters. At test time, these filters are used to predict the visual classifiers of unseen categories. We show that our approach is robust to noise in the KG. More importantly, our approach provides significant improvement in performance compared to the current state-of-the-art results (from 2 ~ 3% on some metrics to whopping 20% on a few).
Prompt-CAM: Making Vision Transformers Interpretable for Fine-Grained Analysis
We present a simple approach to make pre-trained Vision Transformers (ViTs) interpretable for fine-grained analysis, aiming to identify and localize the traits that distinguish visually similar categories, such as bird species. Pre-trained ViTs, such as DINO, have demonstrated remarkable capabilities in extracting localized, discriminative features. However, saliency maps like Grad-CAM often fail to identify these traits, producing blurred, coarse heatmaps that highlight entire objects instead. We propose a novel approach, Prompt Class Attention Map (Prompt-CAM), to address this limitation. Prompt-CAM learns class-specific prompts for a pre-trained ViT and uses the corresponding outputs for classification. To correctly classify an image, the true-class prompt must attend to unique image patches not present in other classes' images (i.e., traits). As a result, the true class's multi-head attention maps reveal traits and their locations. Implementation-wise, Prompt-CAM is almost a ``free lunch,'' requiring only a modification to the prediction head of Visual Prompt Tuning (VPT). This makes Prompt-CAM easy to train and apply, in stark contrast to other interpretable methods that require designing specific models and training processes. Extensive empirical studies on a dozen datasets from various domains (e.g., birds, fishes, insects, fungi, flowers, food, and cars) validate the superior interpretation capability of Prompt-CAM. The source code and demo are available at https://github.com/Imageomics/Prompt_CAM.
Efficient Pipeline for Camera Trap Image Review
Biologists all over the world use camera traps to monitor biodiversity and wildlife population density. The computer vision community has been making strides towards automating the species classification challenge in camera traps, but it has proven difficult to to apply models trained in one region to images collected in different geographic areas. In some cases, accuracy falls off catastrophically in new region, due to both changes in background and the presence of previously-unseen species. We propose a pipeline that takes advantage of a pre-trained general animal detector and a smaller set of labeled images to train a classification model that can efficiently achieve accurate results in a new region.
STEP: Segmenting and Tracking Every Pixel
The task of assigning semantic classes and track identities to every pixel in a video is called video panoptic segmentation. Our work is the first that targets this task in a real-world setting requiring dense interpretation in both spatial and temporal domains. As the ground-truth for this task is difficult and expensive to obtain, existing datasets are either constructed synthetically or only sparsely annotated within short video clips. To overcome this, we introduce a new benchmark encompassing two datasets, KITTI-STEP, and MOTChallenge-STEP. The datasets contain long video sequences, providing challenging examples and a test-bed for studying long-term pixel-precise segmentation and tracking under real-world conditions. We further propose a novel evaluation metric Segmentation and Tracking Quality (STQ) that fairly balances semantic and tracking aspects of this task and is more appropriate for evaluating sequences of arbitrary length. Finally, we provide several baselines to evaluate the status of existing methods on this new challenging dataset. We have made our datasets, metric, benchmark servers, and baselines publicly available, and hope this will inspire future research.
Classification Matters: Improving Video Action Detection with Class-Specific Attention
Video action detection (VAD) aims to detect actors and classify their actions in a video. We figure that VAD suffers more from classification rather than localization of actors. Hence, we analyze how prevailing methods form features for classification and find that they prioritize actor regions, yet often overlooking the essential contextual information necessary for accurate classification. Accordingly, we propose to reduce the bias toward actor and encourage paying attention to the context that is relevant to each action class. By assigning a class-dedicated query to each action class, our model can dynamically determine where to focus for effective classification. The proposed model demonstrates superior performance on three challenging benchmarks with significantly fewer parameters and less computation.
Self-supervised Spatio-temporal Representation Learning for Videos by Predicting Motion and Appearance Statistics
We address the problem of video representation learning without human-annotated labels. While previous efforts address the problem by designing novel self-supervised tasks using video data, the learned features are merely on a frame-by-frame basis, which are not applicable to many video analytic tasks where spatio-temporal features are prevailing. In this paper we propose a novel self-supervised approach to learn spatio-temporal features for video representation. Inspired by the success of two-stream approaches in video classification, we propose to learn visual features by regressing both motion and appearance statistics along spatial and temporal dimensions, given only the input video data. Specifically, we extract statistical concepts (fast-motion region and the corresponding dominant direction, spatio-temporal color diversity, dominant color, etc.) from simple patterns in both spatial and temporal domains. Unlike prior puzzles that are even hard for humans to solve, the proposed approach is consistent with human inherent visual habits and therefore easy to answer. We conduct extensive experiments with C3D to validate the effectiveness of our proposed approach. The experiments show that our approach can significantly improve the performance of C3D when applied to video classification tasks. Code is available at https://github.com/laura-wang/video_repres_mas.
FewSOL: A Dataset for Few-Shot Object Learning in Robotic Environments
We introduce the Few-Shot Object Learning (FewSOL) dataset for object recognition with a few images per object. We captured 336 real-world objects with 9 RGB-D images per object from different views. Object segmentation masks, object poses and object attributes are provided. In addition, synthetic images generated using 330 3D object models are used to augment the dataset. We investigated (i) few-shot object classification and (ii) joint object segmentation and few-shot classification with the state-of-the-art methods for few-shot learning and meta-learning using our dataset. The evaluation results show that there is still a large margin to be improved for few-shot object classification in robotic environments. Our dataset can be used to study a set of few-shot object recognition problems such as classification, detection and segmentation, shape reconstruction, pose estimation, keypoint correspondences and attribute recognition. The dataset and code are available at https://irvlutd.github.io/FewSOL.
Sensor-Independent Illumination Estimation for DNN Models
While modern deep neural networks (DNNs) achieve state-of-the-art results for illuminant estimation, it is currently necessary to train a separate DNN for each type of camera sensor. This means when a camera manufacturer uses a new sensor, it is necessary to retrain an existing DNN model with training images captured by the new sensor. This paper addresses this problem by introducing a novel sensor-independent illuminant estimation framework. Our method learns a sensor-independent working space that can be used to canonicalize the RGB values of any arbitrary camera sensor. Our learned space retains the linear property of the original sensor raw-RGB space and allows unseen camera sensors to be used on a single DNN model trained on this working space. We demonstrate the effectiveness of this approach on several different camera sensors and show it provides performance on par with state-of-the-art methods that were trained per sensor.
GIST: Generating Image-Specific Text for Fine-grained Object Classification
Recent vision-language models outperform vision-only models on many image classification tasks. However, because of the absence of paired text/image descriptions, it remains difficult to fine-tune these models for fine-grained image classification. In this work, we propose a method, GIST, for generating image-specific fine-grained text descriptions from image-only datasets, and show that these text descriptions can be used to improve classification. Key parts of our method include 1. prompting a pretrained large language model with domain-specific prompts to generate diverse fine-grained text descriptions for each class and 2. using a pretrained vision-language model to match each image to label-preserving text descriptions that capture relevant visual features in the image. We demonstrate the utility of GIST by fine-tuning vision-language models on the image-and-generated-text pairs to learn an aligned vision-language representation space for improved classification. We evaluate our learned representation space in full-shot and few-shot scenarios across four diverse fine-grained classification datasets, each from a different domain. Our method achieves an average improvement of 4.1% in accuracy over CLIP linear probes and an average of 1.1% improvement in accuracy over the previous state-of-the-art image-text classification method on the full-shot datasets. Our method achieves similar improvements across few-shot regimes. Code is available at https://github.com/emu1729/GIST.
Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs
Modern smartphone camera quality heavily relies on the image signal processor (ISP) to enhance captured raw images, utilizing carefully designed modules to produce final output images encoded in a standard color space (e.g., sRGB). Neural-based end-to-end learnable ISPs offer promising advancements, potentially replacing traditional ISPs with their ability to adapt without requiring extensive tuning for each new camera model, as is often the case for nearly every module in traditional ISPs. However, the key challenge with the recent learning-based ISPs is the urge to collect large paired datasets for each distinct camera model due to the influence of intrinsic camera characteristics on the formation of input raw images. This paper tackles this challenge by introducing a novel method for unpaired learning of raw-to-raw translation across diverse cameras. Specifically, we propose Rawformer, an unsupervised Transformer-based encoder-decoder method for raw-to-raw translation. It accurately maps raw images captured by a certain camera to the target camera, facilitating the generalization of learnable ISPs to new unseen cameras. Our method demonstrates superior performance on real camera datasets, achieving higher accuracy compared to previous state-of-the-art techniques, and preserving a more robust correlation between the original and translated raw images. The codes and the pretrained models are available at https://github.com/gosha20777/rawformer.
Preserving Semantic Relations for Zero-Shot Learning
Zero-shot learning has gained popularity due to its potential to scale recognition models without requiring additional training data. This is usually achieved by associating categories with their semantic information like attributes. However, we believe that the potential offered by this paradigm is not yet fully exploited. In this work, we propose to utilize the structure of the space spanned by the attributes using a set of relations. We devise objective functions to preserve these relations in the embedding space, thereby inducing semanticity to the embedding space. Through extensive experimental evaluation on five benchmark datasets, we demonstrate that inducing semanticity to the embedding space is beneficial for zero-shot learning. The proposed approach outperforms the state-of-the-art on the standard zero-shot setting as well as the more realistic generalized zero-shot setting. We also demonstrate how the proposed approach can be useful for making approximate semantic inferences about an image belonging to a category for which attribute information is not available.
Safety Verification of Deep Neural Networks
Deep neural networks have achieved impressive experimental results in image classification, but can surprisingly be unstable with respect to adversarial perturbations, that is, minimal changes to the input image that cause the network to misclassify it. With potential applications including perception modules and end-to-end controllers for self-driving cars, this raises concerns about their safety. We develop a novel automated verification framework for feed-forward multi-layer neural networks based on Satisfiability Modulo Theory (SMT). We focus on safety of image classification decisions with respect to image manipulations, such as scratches or changes to camera angle or lighting conditions that would result in the same class being assigned by a human, and define safety for an individual decision in terms of invariance of the classification within a small neighbourhood of the original image. We enable exhaustive search of the region by employing discretisation, and propagate the analysis layer by layer. Our method works directly with the network code and, in contrast to existing methods, can guarantee that adversarial examples, if they exist, are found for the given region and family of manipulations. If found, adversarial examples can be shown to human testers and/or used to fine-tune the network. We implement the techniques using Z3 and evaluate them on state-of-the-art networks, including regularised and deep learning networks. We also compare against existing techniques to search for adversarial examples and estimate network robustness.
What Do You See? Enhancing Zero-Shot Image Classification with Multimodal Large Language Models
Large language models (LLMs) have been effectively used for many computer vision tasks, including image classification. In this paper, we present a simple yet effective approach for zero-shot image classification using multimodal LLMs. Using multimodal LLMs, we generate comprehensive textual representations from input images. These textual representations are then utilized to generate fixed-dimensional features in a cross-modal embedding space. Subsequently, these features are fused together to perform zero-shot classification using a linear classifier. Our method does not require prompt engineering for each dataset; instead, we use a single, straightforward set of prompts across all datasets. We evaluated our method on several datasets and our results demonstrate its remarkable effectiveness, surpassing benchmark accuracy on multiple datasets. On average, for ten benchmarks, our method achieved an accuracy gain of 6.2 percentage points, with an increase of 6.8 percentage points on the ImageNet dataset, compared to prior methods re-evaluated with the same setup. Our findings highlight the potential of multimodal LLMs to enhance computer vision tasks such as zero-shot image classification, offering a significant improvement over traditional methods.
Zoom is what you need: An empirical study of the power of zoom and spatial biases in image classification
Image classifiers are information-discarding machines, by design. Yet, how these models discard information remains mysterious. We hypothesize that one way for image classifiers to reach high accuracy is to first zoom to the most discriminative region in the image and then extract features from there to predict image labels. We study six popular networks ranging from AlexNet to CLIP and find that proper framing of the input image can lead to the correct classification of 98.91% of ImageNet images. Furthermore, we explore the potential and limits of zoom transforms in image classification and uncover positional biases in various datasets, especially a strong center bias in two popular datasets: ImageNet-A and ObjectNet. Finally, leveraging our insights into the potential of zoom, we propose a state-of-the-art test-time augmentation (TTA) technique that improves classification accuracy by forcing models to explicitly perform zoom-in operations before making predictions. Our method is more interpretable, accurate, and faster than MEMO, a state-of-the-art TTA method. Additionally, we propose ImageNet-Hard, a new benchmark where zooming in alone often does not help state-of-the-art models better label images.
HGCLIP: Exploring Vision-Language Models with Graph Representations for Hierarchical Understanding
Object categories are typically organized into a multi-granularity taxonomic hierarchy. When classifying categories at different hierarchy levels, traditional uni-modal approaches focus primarily on image features, revealing limitations in complex scenarios. Recent studies integrating Vision-Language Models (VLMs) with class hierarchies have shown promise, yet they fall short of fully exploiting the hierarchical relationships. These efforts are constrained by their inability to perform effectively across varied granularity of categories. To tackle this issue, we propose a novel framework (HGCLIP) that effectively combines CLIP with a deeper exploitation of the Hierarchical class structure via Graph representation learning. We explore constructing the class hierarchy into a graph, with its nodes representing the textual or image features of each category. After passing through a graph encoder, the textual features incorporate hierarchical structure information, while the image features emphasize class-aware features derived from prototypes through the attention mechanism. Our approach demonstrates significant improvements on 11 diverse visual recognition benchmarks. Our codes are fully available at https://github.com/richard-peng-xia/HGCLIP.
OvarNet: Towards Open-vocabulary Object Attribute Recognition
In this paper, we consider the problem of simultaneously detecting objects and inferring their visual attributes in an image, even for those with no manual annotations provided at the training stage, resembling an open-vocabulary scenario. To achieve this goal, we make the following contributions: (i) we start with a naive two-stage approach for open-vocabulary object detection and attribute classification, termed CLIP-Attr. The candidate objects are first proposed with an offline RPN and later classified for semantic category and attributes; (ii) we combine all available datasets and train with a federated strategy to finetune the CLIP model, aligning the visual representation with attributes, additionally, we investigate the efficacy of leveraging freely available online image-caption pairs under weakly supervised learning; (iii) in pursuit of efficiency, we train a Faster-RCNN type model end-to-end with knowledge distillation, that performs class-agnostic object proposals and classification on semantic categories and attributes with classifiers generated from a text encoder; Finally, (iv) we conduct extensive experiments on VAW, MS-COCO, LSA, and OVAD datasets, and show that recognition of semantic category and attributes is complementary for visual scene understanding, i.e., jointly training object detection and attributes prediction largely outperform existing approaches that treat the two tasks independently, demonstrating strong generalization ability to novel attributes and categories.
Leveraging the Feature Distribution in Transfer-based Few-Shot Learning
Few-shot classification is a challenging problem due to the uncertainty caused by using few labelled samples. In the past few years, many methods have been proposed to solve few-shot classification, among which transfer-based methods have proved to achieve the best performance. Following this vein, in this paper we propose a novel transfer-based method that builds on two successive steps: 1) preprocessing the feature vectors so that they become closer to Gaussian-like distributions, and 2) leveraging this preprocessing using an optimal-transport inspired algorithm (in the case of transductive settings). Using standardized vision benchmarks, we prove the ability of the proposed methodology to achieve state-of-the-art accuracy with various datasets, backbone architectures and few-shot settings.
ADen: Adaptive Density Representations for Sparse-view Camera Pose Estimation
Recovering camera poses from a set of images is a foundational task in 3D computer vision, which powers key applications such as 3D scene/object reconstructions. Classic methods often depend on feature correspondence, such as keypoints, which require the input images to have large overlap and small viewpoint changes. Such requirements present considerable challenges in scenarios with sparse views. Recent data-driven approaches aim to directly output camera poses, either through regressing the 6DoF camera poses or formulating rotation as a probability distribution. However, each approach has its limitations. On one hand, directly regressing the camera poses can be ill-posed, since it assumes a single mode, which is not true under symmetry and leads to sub-optimal solutions. On the other hand, probabilistic approaches are capable of modeling the symmetry ambiguity, yet they sample the entire space of rotation uniformly by brute-force. This leads to an inevitable trade-off between high sample density, which improves model precision, and sample efficiency that determines the runtime. In this paper, we propose ADen to unify the two frameworks by employing a generator and a discriminator: the generator is trained to output multiple hypotheses of 6DoF camera pose to represent a distribution and handle multi-mode ambiguity, and the discriminator is trained to identify the hypothesis that best explains the data. This allows ADen to combine the best of both worlds, achieving substantially higher precision as well as lower runtime than previous methods in empirical evaluations.
MUVOD: A Novel Multi-view Video Object Segmentation Dataset and A Benchmark for 3D Segmentation
The application of methods based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3D GS) have steadily gained popularity in the field of 3D object segmentation in static scenes. These approaches demonstrate efficacy in a range of 3D scene understanding and editing tasks. Nevertheless, the 4D object segmentation of dynamic scenes remains an underexplored field due to the absence of a sufficiently extensive and accurately labelled multi-view video dataset. In this paper, we present MUVOD, a new multi-view video dataset for training and evaluating object segmentation in reconstructed real-world scenarios. The 17 selected scenes, describing various indoor or outdoor activities, are collected from different sources of datasets originating from various types of camera rigs. Each scene contains a minimum of 9 views and a maximum of 46 views. We provide 7830 RGB images (30 frames per video) with their corresponding segmentation mask in 4D motion, meaning that any object of interest in the scene could be tracked across temporal frames of a given view or across different views belonging to the same camera rig. This dataset, which contains 459 instances of 73 categories, is intended as a basic benchmark for the evaluation of multi-view video segmentation methods. We also present an evaluation metric and a baseline segmentation approach to encourage and evaluate progress in this evolving field. Additionally, we propose a new benchmark for 3D object segmentation task with a subset of annotated multi-view images selected from our MUVOD dataset. This subset contains 50 objects of different conditions in different scenarios, providing a more comprehensive analysis of state-of-the-art 3D object segmentation methods. Our proposed MUVOD dataset is available at https://volumetric-repository.labs.b-com.com/#/muvod.
Automatic location detection based on deep learning
The proliferation of digital images and the advancements in deep learning have paved the way for innovative solutions in various domains, especially in the field of image classification. Our project presents an in-depth study and implementation of an image classification system specifically tailored to identify and classify images of Indian cities. Drawing from an extensive dataset, our model classifies images into five major Indian cities: Ahmedabad, Delhi, Kerala, Kolkata, and Mumbai to recognize the distinct features and characteristics of each city/state. To achieve high precision and recall rates, we adopted two approaches. The first, a vanilla Convolutional Neural Network (CNN) and then we explored the power of transfer learning by leveraging the VGG16 model. The vanilla CNN achieved commendable accuracy and the VGG16 model achieved a test accuracy of 63.6%. Evaluations highlighted the strengths and potential areas of improvement, positioning our model as not only competitive but also scalable for broader applications. With an emphasis on open-source ethos, our work aims to contribute to the community, encouraging further development and diverse applications. Our findings demonstrate the potential applications in tourism, urban planning, and even real-time location identification systems, among others.
RSMamba: Remote Sensing Image Classification with State Space Model
Remote sensing image classification forms the foundation of various understanding tasks, serving a crucial function in remote sensing image interpretation. The recent advancements of Convolutional Neural Networks (CNNs) and Transformers have markedly enhanced classification accuracy. Nonetheless, remote sensing scene classification remains a significant challenge, especially given the complexity and diversity of remote sensing scenarios and the variability of spatiotemporal resolutions. The capacity for whole-image understanding can provide more precise semantic cues for scene discrimination. In this paper, we introduce RSMamba, a novel architecture for remote sensing image classification. RSMamba is based on the State Space Model (SSM) and incorporates an efficient, hardware-aware design known as the Mamba. It integrates the advantages of both a global receptive field and linear modeling complexity. To overcome the limitation of the vanilla Mamba, which can only model causal sequences and is not adaptable to two-dimensional image data, we propose a dynamic multi-path activation mechanism to augment Mamba's capacity to model non-causal data. Notably, RSMamba maintains the inherent modeling mechanism of the vanilla Mamba, yet exhibits superior performance across multiple remote sensing image classification datasets. This indicates that RSMamba holds significant potential to function as the backbone of future visual foundation models. The code will be available at https://github.com/KyanChen/RSMamba.
Context R-CNN: Long Term Temporal Context for Per-Camera Object Detection
In static monitoring cameras, useful contextual information can stretch far beyond the few seconds typical video understanding models might see: subjects may exhibit similar behavior over multiple days, and background objects remain static. Due to power and storage constraints, sampling frequencies are low, often no faster than one frame per second, and sometimes are irregular due to the use of a motion trigger. In order to perform well in this setting, models must be robust to irregular sampling rates. In this paper we propose a method that leverages temporal context from the unlabeled frames of a novel camera to improve performance at that camera. Specifically, we propose an attention-based approach that allows our model, Context R-CNN, to index into a long term memory bank constructed on a per-camera basis and aggregate contextual features from other frames to boost object detection performance on the current frame. We apply Context R-CNN to two settings: (1) species detection using camera traps, and (2) vehicle detection in traffic cameras, showing in both settings that Context R-CNN leads to performance gains over strong baselines. Moreover, we show that increasing the contextual time horizon leads to improved results. When applied to camera trap data from the Snapshot Serengeti dataset, Context R-CNN with context from up to a month of images outperforms a single-frame baseline by 17.9% mAP, and outperforms S3D (a 3d convolution based baseline) by 11.2% mAP.
Generative Dual Adversarial Network for Generalized Zero-shot Learning
This paper studies the problem of generalized zero-shot learning which requires the model to train on image-label pairs from some seen classes and test on the task of classifying new images from both seen and unseen classes. Most previous models try to learn a fixed one-directional mapping between visual and semantic space, while some recently proposed generative methods try to generate image features for unseen classes so that the zero-shot learning problem becomes a traditional fully-supervised classification problem. In this paper, we propose a novel model that provides a unified framework for three different approaches: visual-> semantic mapping, semantic->visual mapping, and metric learning. Specifically, our proposed model consists of a feature generator that can generate various visual features given class embeddings as input, a regressor that maps each visual feature back to its corresponding class embedding, and a discriminator that learns to evaluate the closeness of an image feature and a class embedding. All three components are trained under the combination of cyclic consistency loss and dual adversarial loss. Experimental results show that our model not only preserves higher accuracy in classifying images from seen classes, but also performs better than existing state-of-the-art models in in classifying images from unseen classes.
Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion
One significant factor we expect the video representation learning to capture, especially in contrast with the image representation learning, is the object motion. However, we found that in the current mainstream video datasets, some action categories are highly related with the scene where the action happens, making the model tend to degrade to a solution where only the scene information is encoded. For example, a trained model may predict a video as playing football simply because it sees the field, neglecting that the subject is dancing as a cheerleader on the field. This is against our original intention towards the video representation learning and may bring scene bias on different dataset that can not be ignored. In order to tackle this problem, we propose to decouple the scene and the motion (DSM) with two simple operations, so that the model attention towards the motion information is better paid. Specifically, we construct a positive clip and a negative clip for each video. Compared to the original video, the positive/negative is motion-untouched/broken but scene-broken/untouched by Spatial Local Disturbance and Temporal Local Disturbance. Our objective is to pull the positive closer while pushing the negative farther to the original clip in the latent space. In this way, the impact of the scene is weakened while the temporal sensitivity of the network is further enhanced. We conduct experiments on two tasks with various backbones and different pre-training datasets, and find that our method surpass the SOTA methods with a remarkable 8.1% and 8.8% improvement towards action recognition task on the UCF101 and HMDB51 datasets respectively using the same backbone.
ApproxNet: Content and Contention-Aware Video Analytics System for Embedded Clients
Videos take a lot of time to transport over the network, hence running analytics on the live video on embedded or mobile devices has become an important system driver. Considering that such devices, e.g., surveillance cameras or AR/VR gadgets, are resource constrained, creating lightweight deep neural networks (DNNs) for embedded devices is crucial. None of the current approximation techniques for object classification DNNs can adapt to changing runtime conditions, e.g., changes in resource availability on the device, the content characteristics, or requirements from the user. In this paper, we introduce ApproxNet, a video object classification system for embedded or mobile clients. It enables novel dynamic approximation techniques to achieve desired inference latency and accuracy trade-off under changing runtime conditions. It achieves this by enabling two approximation knobs within a single DNN model, rather than creating and maintaining an ensemble of models (e.g., MCDNN [MobiSys-16]. We show that ApproxNet can adapt seamlessly at runtime to these changes, provides low and stable latency for the image and video frame classification problems, and show the improvement in accuracy and latency over ResNet [CVPR-16], MCDNN [MobiSys-16], MobileNets [Google-17], NestDNN [MobiCom-18], and MSDNet [ICLR-18].
Learning to Name Classes for Vision and Language Models
Large scale vision and language models can achieve impressive zero-shot recognition performance by mapping class specific text queries to image content. Two distinct challenges that remain however, are high sensitivity to the choice of handcrafted class names that define queries, and the difficulty of adaptation to new, smaller datasets. Towards addressing these problems, we propose to leverage available data to learn, for each class, an optimal word embedding as a function of the visual content. By learning new word embeddings on an otherwise frozen model, we are able to retain zero-shot capabilities for new classes, easily adapt models to new datasets, and adjust potentially erroneous, non-descriptive or ambiguous class names. We show that our solution can easily be integrated in image classification and object detection pipelines, yields significant performance gains in multiple scenarios and provides insights into model biases and labelling errors.
Visual Correspondence Hallucination
Given a pair of partially overlapping source and target images and a keypoint in the source image, the keypoint's correspondent in the target image can be either visible, occluded or outside the field of view. Local feature matching methods are only able to identify the correspondent's location when it is visible, while humans can also hallucinate its location when it is occluded or outside the field of view through geometric reasoning. In this paper, we bridge this gap by training a network to output a peaked probability distribution over the correspondent's location, regardless of this correspondent being visible, occluded, or outside the field of view. We experimentally demonstrate that this network is indeed able to hallucinate correspondences on pairs of images captured in scenes that were not seen at training-time. We also apply this network to an absolute camera pose estimation problem and find it is significantly more robust than state-of-the-art local feature matching-based competitors.
Panoptic Segmentation
We propose and study a task we name panoptic segmentation (PS). Panoptic segmentation unifies the typically distinct tasks of semantic segmentation (assign a class label to each pixel) and instance segmentation (detect and segment each object instance). The proposed task requires generating a coherent scene segmentation that is rich and complete, an important step toward real-world vision systems. While early work in computer vision addressed related image/scene parsing tasks, these are not currently popular, possibly due to lack of appropriate metrics or associated recognition challenges. To address this, we propose a novel panoptic quality (PQ) metric that captures performance for all classes (stuff and things) in an interpretable and unified manner. Using the proposed metric, we perform a rigorous study of both human and machine performance for PS on three existing datasets, revealing interesting insights about the task. The aim of our work is to revive the interest of the community in a more unified view of image segmentation.
Scene-Aware Feature Matching
Current feature matching methods focus on point-level matching, pursuing better representation learning of individual features, but lacking further understanding of the scene. This results in significant performance degradation when handling challenging scenes such as scenes with large viewpoint and illumination changes. To tackle this problem, we propose a novel model named SAM, which applies attentional grouping to guide Scene-Aware feature Matching. SAM handles multi-level features, i.e., image tokens and group tokens, with attention layers, and groups the image tokens with the proposed token grouping module. Our model can be trained by ground-truth matches only and produce reasonable grouping results. With the sense-aware grouping guidance, SAM is not only more accurate and robust but also more interpretable than conventional feature matching models. Sufficient experiments on various applications, including homography estimation, pose estimation, and image matching, demonstrate that our model achieves state-of-the-art performance.
More Context, Less Distraction: Visual Classification by Inferring and Conditioning on Contextual Attributes
CLIP, as a foundational vision language model, is widely used in zero-shot image classification due to its ability to understand various visual concepts and natural language descriptions. However, how to fully leverage CLIP's unprecedented human-like understanding capabilities to achieve better zero-shot classification is still an open question. This paper draws inspiration from the human visual perception process: a modern neuroscience view suggests that in classifying an object, humans first infer its class-independent attributes (e.g., background and orientation) which help separate the foreground object from the background, and then make decisions based on this information. Inspired by this, we observe that providing CLIP with contextual attributes improves zero-shot classification and mitigates reliance on spurious features. We also observe that CLIP itself can reasonably infer the attributes from an image. With these observations, we propose a training-free, two-step zero-shot classification method named PerceptionCLIP. Given an image, it first infers contextual attributes (e.g., background) and then performs object classification conditioning on them. Our experiments show that PerceptionCLIP achieves better generalization, group robustness, and better interpretability. For example, PerceptionCLIP with ViT-L/14 improves the worst group accuracy by 16.5% on the Waterbirds dataset and by 3.5% on CelebA.
COCO-Stuff: Thing and Stuff Classes in Context
Semantic classes can be either things (objects with a well-defined shape, e.g. car, person) or stuff (amorphous background regions, e.g. grass, sky). While lots of classification and detection works focus on thing classes, less attention has been given to stuff classes. Nonetheless, stuff classes are important as they allow to explain important aspects of an image, including (1) scene type; (2) which thing classes are likely to be present and their location (through contextual reasoning); (3) physical attributes, material types and geometric properties of the scene. To understand stuff and things in context we introduce COCO-Stuff, which augments all 164K images of the COCO 2017 dataset with pixel-wise annotations for 91 stuff classes. We introduce an efficient stuff annotation protocol based on superpixels, which leverages the original thing annotations. We quantify the speed versus quality trade-off of our protocol and explore the relation between annotation time and boundary complexity. Furthermore, we use COCO-Stuff to analyze: (a) the importance of stuff and thing classes in terms of their surface cover and how frequently they are mentioned in image captions; (b) the spatial relations between stuff and things, highlighting the rich contextual relations that make our dataset unique; (c) the performance of a modern semantic segmentation method on stuff and thing classes, and whether stuff is easier to segment than things.
CamCtrl3D: Single-Image Scene Exploration with Precise 3D Camera Control
We propose a method for generating fly-through videos of a scene, from a single image and a given camera trajectory. We build upon an image-to-video latent diffusion model. We condition its UNet denoiser on the camera trajectory, using four techniques. (1) We condition the UNet's temporal blocks on raw camera extrinsics, similar to MotionCtrl. (2) We use images containing camera rays and directions, similar to CameraCtrl. (3) We reproject the initial image to subsequent frames and use the resulting video as a condition. (4) We use 2D<=>3D transformers to introduce a global 3D representation, which implicitly conditions on the camera poses. We combine all conditions in a ContolNet-style architecture. We then propose a metric that evaluates overall video quality and the ability to preserve details with view changes, which we use to analyze the trade-offs of individual and combined conditions. Finally, we identify an optimal combination of conditions. We calibrate camera positions in our datasets for scale consistency across scenes, and we train our scene exploration model, CamCtrl3D, demonstrating state-of-theart results.
Per-Pixel Classification is Not All You Need for Semantic Segmentation
Modern approaches typically formulate semantic segmentation as a per-pixel classification task, while instance-level segmentation is handled with an alternative mask classification. Our key insight: mask classification is sufficiently general to solve both semantic- and instance-level segmentation tasks in a unified manner using the exact same model, loss, and training procedure. Following this observation, we propose MaskFormer, a simple mask classification model which predicts a set of binary masks, each associated with a single global class label prediction. Overall, the proposed mask classification-based method simplifies the landscape of effective approaches to semantic and panoptic segmentation tasks and shows excellent empirical results. In particular, we observe that MaskFormer outperforms per-pixel classification baselines when the number of classes is large. Our mask classification-based method outperforms both current state-of-the-art semantic (55.6 mIoU on ADE20K) and panoptic segmentation (52.7 PQ on COCO) models.
Boosting Open-Vocabulary Object Detection by Handling Background Samples
Open-vocabulary object detection is the task of accurately detecting objects from a candidate vocabulary list that includes both base and novel categories. Currently, numerous open-vocabulary detectors have achieved success by leveraging the impressive zero-shot capabilities of CLIP. However, we observe that CLIP models struggle to effectively handle background images (i.e. images without corresponding labels) due to their language-image learning methodology. This limitation results in suboptimal performance for open-vocabulary detectors that rely on CLIP when processing background samples. In this paper, we propose Background Information Representation for open-vocabulary Detector (BIRDet), a novel approach to address the limitations of CLIP in handling background samples. Specifically, we design Background Information Modeling (BIM) to replace the single, fixed background embedding in mainstream open-vocabulary detectors with dynamic scene information, and prompt it into image-related background representations. This method effectively enhances the ability to classify oversized regions as background. Besides, we introduce Partial Object Suppression (POS), an algorithm that utilizes the ratio of overlap area to address the issue of misclassifying partial regions as foreground. Experiments on OV-COCO and OV-LVIS benchmarks demonstrate that our proposed model is capable of achieving performance enhancements across various open-vocabulary detectors.
Few-shot Scene-adaptive Anomaly Detection
We address the problem of anomaly detection in videos. The goal is to identify unusual behaviours automatically by learning exclusively from normal videos. Most existing approaches are usually data-hungry and have limited generalization abilities. They usually need to be trained on a large number of videos from a target scene to achieve good results in that scene. In this paper, we propose a novel few-shot scene-adaptive anomaly detection problem to address the limitations of previous approaches. Our goal is to learn to detect anomalies in a previously unseen scene with only a few frames. A reliable solution for this new problem will have huge potential in real-world applications since it is expensive to collect a massive amount of data for each target scene. We propose a meta-learning based approach for solving this new problem; extensive experimental results demonstrate the effectiveness of our proposed method.
You Only Look Once: Unified, Real-Time Object Detection
We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is far less likely to predict false detections where nothing exists. Finally, YOLO learns very general representations of objects. It outperforms all other detection methods, including DPM and R-CNN, by a wide margin when generalizing from natural images to artwork on both the Picasso Dataset and the People-Art Dataset.
Composed Image Retrieval for Remote Sensing
This work introduces composed image retrieval to remote sensing. It allows to query a large image archive by image examples alternated by a textual description, enriching the descriptive power over unimodal queries, either visual or textual. Various attributes can be modified by the textual part, such as shape, color, or context. A novel method fusing image-to-image and text-to-image similarity is introduced. We demonstrate that a vision-language model possesses sufficient descriptive power and no further learning step or training data are necessary. We present a new evaluation benchmark focused on color, context, density, existence, quantity, and shape modifications. Our work not only sets the state-of-the-art for this task, but also serves as a foundational step in addressing a gap in the field of remote sensing image retrieval. Code at: https://github.com/billpsomas/rscir
UniVIP: A Unified Framework for Self-Supervised Visual Pre-training
Self-supervised learning (SSL) holds promise in leveraging large amounts of unlabeled data. However, the success of popular SSL methods has limited on single-centric-object images like those in ImageNet and ignores the correlation among the scene and instances, as well as the semantic difference of instances in the scene. To address the above problems, we propose a Unified Self-supervised Visual Pre-training (UniVIP), a novel self-supervised framework to learn versatile visual representations on either single-centric-object or non-iconic dataset. The framework takes into account the representation learning at three levels: 1) the similarity of scene-scene, 2) the correlation of scene-instance, 3) the discrimination of instance-instance. During the learning, we adopt the optimal transport algorithm to automatically measure the discrimination of instances. Massive experiments show that UniVIP pre-trained on non-iconic COCO achieves state-of-the-art transfer performance on a variety of downstream tasks, such as image classification, semi-supervised learning, object detection and segmentation. Furthermore, our method can also exploit single-centric-object dataset such as ImageNet and outperforms BYOL by 2.5% with the same pre-training epochs in linear probing, and surpass current self-supervised object detection methods on COCO dataset, demonstrating its universality and potential.
Unified Perception: Efficient Depth-Aware Video Panoptic Segmentation with Minimal Annotation Costs
Depth-aware video panoptic segmentation is a promising approach to camera based scene understanding. However, the current state-of-the-art methods require costly video annotations and use a complex training pipeline compared to their image-based equivalents. In this paper, we present a new approach titled Unified Perception that achieves state-of-the-art performance without requiring video-based training. Our method employs a simple two-stage cascaded tracking algorithm that (re)uses object embeddings computed in an image-based network. Experimental results on the Cityscapes-DVPS dataset demonstrate that our method achieves an overall DVPQ of 57.1, surpassing state-of-the-art methods. Furthermore, we show that our tracking strategies are effective for long-term object association on KITTI-STEP, achieving an STQ of 59.1 which exceeded the performance of state-of-the-art methods that employ the same backbone network. Code is available at: https://tue-mps.github.io/unipercept
Rectifying the Shortcut Learning of Background for Few-Shot Learning
The category gap between training and evaluation has been characterised as one of the main obstacles to the success of Few-Shot Learning (FSL). In this paper, we for the first time empirically identify image background, common in realistic images, as a shortcut knowledge helpful for in-class classification but ungeneralizable beyond training categories in FSL. A novel framework, COSOC, is designed to tackle this problem by extracting foreground objects in images at both training and evaluation without any extra supervision. Extensive experiments carried on inductive FSL tasks demonstrate the effectiveness of our approaches.
UIFormer: A Unified Transformer-based Framework for Incremental Few-Shot Object Detection and Instance Segmentation
This paper introduces a novel framework for unified incremental few-shot object detection (iFSOD) and instance segmentation (iFSIS) using the Transformer architecture. Our goal is to create an optimal solution for situations where only a few examples of novel object classes are available, with no access to training data for base or old classes, while maintaining high performance across both base and novel classes. To achieve this, We extend Mask-DINO into a two-stage incremental learning framework. Stage 1 focuses on optimizing the model using the base dataset, while Stage 2 involves fine-tuning the model on novel classes. Besides, we incorporate a classifier selection strategy that assigns appropriate classifiers to the encoder and decoder according to their distinct functions. Empirical evidence indicates that this approach effectively mitigates the over-fitting on novel classes learning. Furthermore, we implement knowledge distillation to prevent catastrophic forgetting of base classes. Comprehensive evaluations on the COCO and LVIS datasets for both iFSIS and iFSOD tasks demonstrate that our method significantly outperforms state-of-the-art approaches.
R2D2: Repeatable and Reliable Detector and Descriptor
Interest point detection and local feature description are fundamental steps in many computer vision applications. Classical methods for these tasks are based on a detect-then-describe paradigm where separate handcrafted methods are used to first identify repeatable keypoints and then represent them with a local descriptor. Neural networks trained with metric learning losses have recently caught up with these techniques, focusing on learning repeatable saliency maps for keypoint detection and learning descriptors at the detected keypoint locations. In this work, we argue that salient regions are not necessarily discriminative, and therefore can harm the performance of the description. Furthermore, we claim that descriptors should be learned only in regions for which matching can be performed with high confidence. We thus propose to jointly learn keypoint detection and description together with a predictor of the local descriptor discriminativeness. This allows us to avoid ambiguous areas and leads to reliable keypoint detections and descriptions. Our detection-and-description approach, trained with self-supervision, can simultaneously output sparse, repeatable and reliable keypoints that outperforms state-of-the-art detectors and descriptors on the HPatches dataset. It also establishes a record on the recently released Aachen Day-Night localization dataset.
Towards Open Vocabulary Learning: A Survey
In the field of visual scene understanding, deep neural networks have made impressive advancements in various core tasks like segmentation, tracking, and detection. However, most approaches operate on the close-set assumption, meaning that the model can only identify pre-defined categories that are present in the training set. Recently, open vocabulary settings were proposed due to the rapid progress of vision language pre-training. These new approaches seek to locate and recognize categories beyond the annotated label space. The open vocabulary approach is more general, practical, and effective compared to weakly supervised and zero-shot settings. This paper provides a thorough review of open vocabulary learning, summarizing and analyzing recent developments in the field. In particular, we begin by comparing it to related concepts such as zero-shot learning, open-set recognition, and out-of-distribution detection. Then, we review several closely related tasks in the case of segmentation and detection, including long-tail problems, few-shot, and zero-shot settings. For the method survey, we first present the basic knowledge of detection and segmentation in close-set as the preliminary knowledge. Next, we examine various scenarios in which open vocabulary learning is used, identifying common design elements and core ideas. Then, we compare the recent detection and segmentation approaches in commonly used datasets and benchmarks. Finally, we conclude with insights, issues, and discussions regarding future research directions. To our knowledge, this is the first comprehensive literature review of open vocabulary learning. We keep tracing related works at https://github.com/jianzongwu/Awesome-Open-Vocabulary.
Global-Local Similarity for Efficient Fine-Grained Image Recognition with Vision Transformers
Fine-grained recognition involves the classification of images from subordinate macro-categories, and it is challenging due to small inter-class differences. To overcome this, most methods perform discriminative feature selection enabled by a feature extraction backbone followed by a high-level feature refinement step. Recently, many studies have shown the potential behind vision transformers as a backbone for fine-grained recognition, but their usage of its attention mechanism to select discriminative tokens can be computationally expensive. In this work, we propose a novel and computationally inexpensive metric to identify discriminative regions in an image. We compare the similarity between the global representation of an image given by the CLS token, a learnable token used by transformers for classification, and the local representation of individual patches. We select the regions with the highest similarity to obtain crops, which are forwarded through the same transformer encoder. Finally, high-level features of the original and cropped representations are further refined together in order to make more robust predictions. Through extensive experimental evaluation we demonstrate the effectiveness of our proposed method, obtaining favorable results in terms of accuracy across a variety of datasets. Furthermore, our method achieves these results at a much lower computational cost compared to the alternatives. Code and checkpoints are available at: https://github.com/arkel23/GLSim.
Towards Open-Vocabulary Video Instance Segmentation
Video Instance Segmentation (VIS) aims at segmenting and categorizing objects in videos from a closed set of training categories, lacking the generalization ability to handle novel categories in real-world videos. To address this limitation, we make the following three contributions. First, we introduce the novel task of Open-Vocabulary Video Instance Segmentation, which aims to simultaneously segment, track, and classify objects in videos from open-set categories, including novel categories unseen during training. Second, to benchmark Open-Vocabulary VIS, we collect a Large-Vocabulary Video Instance Segmentation dataset (LV-VIS), that contains well-annotated objects from 1,196 diverse categories, significantly surpassing the category size of existing datasets by more than one order of magnitude. Third, we propose an efficient Memory-Induced Transformer architecture, OV2Seg, to first achieve Open-Vocabulary VIS in an end-to-end manner with near real-time inference speed. Extensive experiments on LV-VIS and four existing VIS datasets demonstrate the strong zero-shot generalization ability of OV2Seg on novel categories. The dataset and code are released here https://github.com/haochenheheda/LVVIS.
A Dataset for Crucial Object Recognition in Blind and Low-Vision Individuals' Navigation
This paper introduces a dataset for improving real-time object recognition systems to aid blind and low-vision (BLV) individuals in navigation tasks. The dataset comprises 21 videos of BLV individuals navigating outdoor spaces, and a taxonomy of 90 objects crucial for BLV navigation, refined through a focus group study. We also provide object labeling for the 90 objects across 31 video segments created from the 21 videos. A deeper analysis reveals that most contemporary datasets used in training computer vision models contain only a small subset of the taxonomy in our dataset. Preliminary evaluation of state-of-the-art computer vision models on our dataset highlights shortcomings in accurately detecting key objects relevant to BLV navigation, emphasizing the need for specialized datasets. We make our dataset publicly available, offering valuable resources for developing more inclusive navigation systems for BLV individuals.
Learning Sequential Descriptors for Sequence-based Visual Place Recognition
In robotics, Visual Place Recognition is a continuous process that receives as input a video stream to produce a hypothesis of the robot's current position within a map of known places. This task requires robust, scalable, and efficient techniques for real applications. This work proposes a detailed taxonomy of techniques using sequential descriptors, highlighting different mechanism to fuse the information from the individual images. This categorization is supported by a complete benchmark of experimental results that provides evidence on the strengths and weaknesses of these different architectural choices. In comparison to existing sequential descriptors methods, we further investigate the viability of Transformers instead of CNN backbones, and we propose a new ad-hoc sequence-level aggregator called SeqVLAD, which outperforms prior state of the art on different datasets. The code is available at https://github.com/vandal-vpr/vg-transformers.
