new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

Microbial Genetic Algorithm-based Black-box Attack against Interpretable Deep Learning Systems

Deep learning models are susceptible to adversarial samples in white and black-box environments. Although previous studies have shown high attack success rates, coupling DNN models with interpretation models could offer a sense of security when a human expert is involved, who can identify whether a given sample is benign or malicious. However, in white-box environments, interpretable deep learning systems (IDLSes) have been shown to be vulnerable to malicious manipulations. In black-box settings, as access to the components of IDLSes is limited, it becomes more challenging for the adversary to fool the system. In this work, we propose a Query-efficient Score-based black-box attack against IDLSes, QuScore, which requires no knowledge of the target model and its coupled interpretation model. QuScore is based on transfer-based and score-based methods by employing an effective microbial genetic algorithm. Our method is designed to reduce the number of queries necessary to carry out successful attacks, resulting in a more efficient process. By continuously refining the adversarial samples created based on feedback scores from the IDLS, our approach effectively navigates the search space to identify perturbations that can fool the system. We evaluate the attack's effectiveness on four CNN models (Inception, ResNet, VGG, DenseNet) and two interpretation models (CAM, Grad), using both ImageNet and CIFAR datasets. Our results show that the proposed approach is query-efficient with a high attack success rate that can reach between 95% and 100% and transferability with an average success rate of 69% in the ImageNet and CIFAR datasets. Our attack method generates adversarial examples with attribution maps that resemble benign samples. We have also demonstrated that our attack is resilient against various preprocessing defense techniques and can easily be transferred to different DNN models.

  • 5 authors
·
Jul 12, 2023

Stateful Defenses for Machine Learning Models Are Not Yet Secure Against Black-box Attacks

Recent work has proposed stateful defense models (SDMs) as a compelling strategy to defend against a black-box attacker who only has query access to the model, as is common for online machine learning platforms. Such stateful defenses aim to defend against black-box attacks by tracking the query history and detecting and rejecting queries that are "similar" and thus preventing black-box attacks from finding useful gradients and making progress towards finding adversarial attacks within a reasonable query budget. Recent SDMs (e.g., Blacklight and PIHA) have shown remarkable success in defending against state-of-the-art black-box attacks. In this paper, we show that SDMs are highly vulnerable to a new class of adaptive black-box attacks. We propose a novel adaptive black-box attack strategy called Oracle-guided Adaptive Rejection Sampling (OARS) that involves two stages: (1) use initial query patterns to infer key properties about an SDM's defense; and, (2) leverage those extracted properties to design subsequent query patterns to evade the SDM's defense while making progress towards finding adversarial inputs. OARS is broadly applicable as an enhancement to existing black-box attacks - we show how to apply the strategy to enhance six common black-box attacks to be more effective against current class of SDMs. For example, OARS-enhanced versions of black-box attacks improved attack success rate against recent stateful defenses from almost 0% to to almost 100% for multiple datasets within reasonable query budgets.

  • 6 authors
·
Mar 10, 2023

MakeupAttack: Feature Space Black-box Backdoor Attack on Face Recognition via Makeup Transfer

Backdoor attacks pose a significant threat to the training process of deep neural networks (DNNs). As a widely-used DNN-based application in real-world scenarios, face recognition systems once implanted into the backdoor, may cause serious consequences. Backdoor research on face recognition is still in its early stages, and the existing backdoor triggers are relatively simple and visible. Furthermore, due to the perceptibility, diversity, and similarity of facial datasets, many state-of-the-art backdoor attacks lose effectiveness on face recognition tasks. In this work, we propose a novel feature space backdoor attack against face recognition via makeup transfer, dubbed MakeupAttack. In contrast to many feature space attacks that demand full access to target models, our method only requires model queries, adhering to black-box attack principles. In our attack, we design an iterative training paradigm to learn the subtle features of the proposed makeup-style trigger. Additionally, MakeupAttack promotes trigger diversity using the adaptive selection method, dispersing the feature distribution of malicious samples to bypass existing defense methods. Extensive experiments were conducted on two widely-used facial datasets targeting multiple models. The results demonstrate that our proposed attack method can bypass existing state-of-the-art defenses while maintaining effectiveness, robustness, naturalness, and stealthiness, without compromising model performance.

  • 4 authors
·
Aug 22, 2024

Order-Disorder: Imitation Adversarial Attacks for Black-box Neural Ranking Models

Neural text ranking models have witnessed significant advancement and are increasingly being deployed in practice. Unfortunately, they also inherit adversarial vulnerabilities of general neural models, which have been detected but remain underexplored by prior studies. Moreover, the inherit adversarial vulnerabilities might be leveraged by blackhat SEO to defeat better-protected search engines. In this study, we propose an imitation adversarial attack on black-box neural passage ranking models. We first show that the target passage ranking model can be transparentized and imitated by enumerating critical queries/candidates and then train a ranking imitation model. Leveraging the ranking imitation model, we can elaborately manipulate the ranking results and transfer the manipulation attack to the target ranking model. For this purpose, we propose an innovative gradient-based attack method, empowered by the pairwise objective function, to generate adversarial triggers, which causes premeditated disorderliness with very few tokens. To equip the trigger camouflages, we add the next sentence prediction loss and the language model fluency constraint to the objective function. Experimental results on passage ranking demonstrate the effectiveness of the ranking imitation attack model and adversarial triggers against various SOTA neural ranking models. Furthermore, various mitigation analyses and human evaluation show the effectiveness of camouflages when facing potential mitigation approaches. To motivate other scholars to further investigate this novel and important problem, we make the experiment data and code publicly available.

  • 8 authors
·
Sep 14, 2022

BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models

While large language models (LLMs) exhibit remarkable capabilities across various tasks, they encounter potential security risks such as jailbreak attacks, which exploit vulnerabilities to bypass security measures and generate harmful outputs. Existing jailbreak strategies mainly focus on maximizing attack success rate (ASR), frequently neglecting other critical factors, including the relevance of the jailbreak response to the query and the level of stealthiness. This narrow focus on single objectives can result in ineffective attacks that either lack contextual relevance or are easily recognizable. In this work, we introduce BlackDAN, an innovative black-box attack framework with multi-objective optimization, aiming to generate high-quality prompts that effectively facilitate jailbreaking while maintaining contextual relevance and minimizing detectability. BlackDAN leverages Multiobjective Evolutionary Algorithms (MOEAs), specifically the NSGA-II algorithm, to optimize jailbreaks across multiple objectives including ASR, stealthiness, and semantic relevance. By integrating mechanisms like mutation, crossover, and Pareto-dominance, BlackDAN provides a transparent and interpretable process for generating jailbreaks. Furthermore, the framework allows customization based on user preferences, enabling the selection of prompts that balance harmfulness, relevance, and other factors. Experimental results demonstrate that BlackDAN outperforms traditional single-objective methods, yielding higher success rates and improved robustness across various LLMs and multimodal LLMs, while ensuring jailbreak responses are both relevant and less detectable.

  • 7 authors
·
Oct 13, 2024

Step-by-Step Reasoning Attack: Revealing 'Erased' Knowledge in Large Language Models

Knowledge erasure in large language models (LLMs) is important for ensuring compliance with data and AI regulations, safeguarding user privacy, mitigating bias, and misinformation. Existing unlearning methods aim to make the process of knowledge erasure more efficient and effective by removing specific knowledge while preserving overall model performance, especially for retained information. However, it has been observed that the unlearning techniques tend to suppress and leave the knowledge beneath the surface, thus making it retrievable with the right prompts. In this work, we demonstrate that step-by-step reasoning can serve as a backdoor to recover this hidden information. We introduce a step-by-step reasoning-based black-box attack, Sleek, that systematically exposes unlearning failures. We employ a structured attack framework with three core components: (1) an adversarial prompt generation strategy leveraging step-by-step reasoning built from LLM-generated queries, (2) an attack mechanism that successfully recalls erased content, and exposes unfair suppression of knowledge intended for retention and (3) a categorization of prompts as direct, indirect, and implied, to identify which query types most effectively exploit unlearning weaknesses. Through extensive evaluations on four state-of-the-art unlearning techniques and two widely used LLMs, we show that existing approaches fail to ensure reliable knowledge removal. Of the generated adversarial prompts, 62.5% successfully retrieved forgotten Harry Potter facts from WHP-unlearned Llama, while 50% exposed unfair suppression of retained knowledge. Our work highlights the persistent risks of information leakage, emphasizing the need for more robust unlearning strategies for erasure.

  • 5 authors
·
Jun 14, 2025

AdvWeb: Controllable Black-box Attacks on VLM-powered Web Agents

Vision Language Models (VLMs) have revolutionized the creation of generalist web agents, empowering them to autonomously complete diverse tasks on real-world websites, thereby boosting human efficiency and productivity. However, despite their remarkable capabilities, the safety and security of these agents against malicious attacks remain critically underexplored, raising significant concerns about their safe deployment. To uncover and exploit such vulnerabilities in web agents, we provide AdvWeb, a novel black-box attack framework designed against web agents. AdvWeb trains an adversarial prompter model that generates and injects adversarial prompts into web pages, misleading web agents into executing targeted adversarial actions such as inappropriate stock purchases or incorrect bank transactions, actions that could lead to severe real-world consequences. With only black-box access to the web agent, we train and optimize the adversarial prompter model using DPO, leveraging both successful and failed attack strings against the target agent. Unlike prior approaches, our adversarial string injection maintains stealth and control: (1) the appearance of the website remains unchanged before and after the attack, making it nearly impossible for users to detect tampering, and (2) attackers can modify specific substrings within the generated adversarial string to seamlessly change the attack objective (e.g., purchasing stocks from a different company), enhancing attack flexibility and efficiency. We conduct extensive evaluations, demonstrating that AdvWeb achieves high success rates in attacking SOTA GPT-4V-based VLM agent across various web tasks. Our findings expose critical vulnerabilities in current LLM/VLM-based agents, emphasizing the urgent need for developing more reliable web agents and effective defenses. Our code and data are available at https://ai-secure.github.io/AdvWeb/ .

  • 8 authors
·
Oct 22, 2024

Natural Attack for Pre-trained Models of Code

Pre-trained models of code have achieved success in many important software engineering tasks. However, these powerful models are vulnerable to adversarial attacks that slightly perturb model inputs to make a victim model produce wrong outputs. Current works mainly attack models of code with examples that preserve operational program semantics but ignore a fundamental requirement for adversarial example generation: perturbations should be natural to human judges, which we refer to as naturalness requirement. In this paper, we propose ALERT (nAturaLnEss AwaRe ATtack), a black-box attack that adversarially transforms inputs to make victim models produce wrong outputs. Different from prior works, this paper considers the natural semantic of generated examples at the same time as preserving the operational semantic of original inputs. Our user study demonstrates that human developers consistently consider that adversarial examples generated by ALERT are more natural than those generated by the state-of-the-art work by Zhang et al. that ignores the naturalness requirement. On attacking CodeBERT, our approach can achieve attack success rates of 53.62%, 27.79%, and 35.78% across three downstream tasks: vulnerability prediction, clone detection and code authorship attribution. On GraphCodeBERT, our approach can achieve average success rates of 76.95%, 7.96% and 61.47% on the three tasks. The above outperforms the baseline by 14.07% and 18.56% on the two pre-trained models on average. Finally, we investigated the value of the generated adversarial examples to harden victim models through an adversarial fine-tuning procedure and demonstrated the accuracy of CodeBERT and GraphCodeBERT against ALERT-generated adversarial examples increased by 87.59% and 92.32%, respectively.

  • 4 authors
·
Jan 21, 2022

The Impact of Scaling Training Data on Adversarial Robustness

Deep neural networks remain vulnerable to adversarial examples despite advances in architectures and training paradigms. We investigate how training data characteristics affect adversarial robustness across 36 state-of-the-art vision models spanning supervised, self-supervised, and contrastive learning approaches, trained on datasets from 1.2M to 22B images. Models were evaluated under six black-box attack categories: random perturbations, two types of geometric masks, COCO object manipulations, ImageNet-C corruptions, and ImageNet-R style shifts. Robustness follows a logarithmic scaling law with both data volume and model size: a tenfold increase in data reduces attack success rate (ASR) on average by ~3.2%, whereas a tenfold increase in model size reduces ASR on average by ~13.4%. Notably, some self-supervised models trained on curated datasets, such as DINOv2, outperform others trained on much larger but less curated datasets, challenging the assumption that scale alone drives robustness. Adversarial fine-tuning of ResNet50s improves generalization across structural variations but not across color distributions. Human evaluation reveals persistent gaps between human and machine vision. These results show that while scaling improves robustness, data quality, architecture, and training objectives play a more decisive role than raw scale in achieving broad-spectrum adversarial resilience.

  • 4 authors
·
Sep 30, 2025

Generalizable Data-free Objective for Crafting Universal Adversarial Perturbations

Machine learning models are susceptible to adversarial perturbations: small changes to input that can cause large changes in output. It is also demonstrated that there exist input-agnostic perturbations, called universal adversarial perturbations, which can change the inference of target model on most of the data samples. However, existing methods to craft universal perturbations are (i) task specific, (ii) require samples from the training data distribution, and (iii) perform complex optimizations. Additionally, because of the data dependence, fooling ability of the crafted perturbations is proportional to the available training data. In this paper, we present a novel, generalizable and data-free approaches for crafting universal adversarial perturbations. Independent of the underlying task, our objective achieves fooling via corrupting the extracted features at multiple layers. Therefore, the proposed objective is generalizable to craft image-agnostic perturbations across multiple vision tasks such as object recognition, semantic segmentation, and depth estimation. In the practical setting of black-box attack scenario (when the attacker does not have access to the target model and it's training data), we show that our objective outperforms the data dependent objectives to fool the learned models. Further, via exploiting simple priors related to the data distribution, our objective remarkably boosts the fooling ability of the crafted perturbations. Significant fooling rates achieved by our objective emphasize that the current deep learning models are now at an increased risk, since our objective generalizes across multiple tasks without the requirement of training data for crafting the perturbations. To encourage reproducible research, we have released the codes for our proposed algorithm.

  • 3 authors
·
Jan 24, 2018

GAMA: Generative Adversarial Multi-Object Scene Attacks

The majority of methods for crafting adversarial attacks have focused on scenes with a single dominant object (e.g., images from ImageNet). On the other hand, natural scenes include multiple dominant objects that are semantically related. Thus, it is crucial to explore designing attack strategies that look beyond learning on single-object scenes or attack single-object victim classifiers. Due to their inherent property of strong transferability of perturbations to unknown models, this paper presents the first approach of using generative models for adversarial attacks on multi-object scenes. In order to represent the relationships between different objects in the input scene, we leverage upon the open-sourced pre-trained vision-language model CLIP (Contrastive Language-Image Pre-training), with the motivation to exploit the encoded semantics in the language space along with the visual space. We call this attack approach Generative Adversarial Multi-object scene Attacks (GAMA). GAMA demonstrates the utility of the CLIP model as an attacker's tool to train formidable perturbation generators for multi-object scenes. Using the joint image-text features to train the generator, we show that GAMA can craft potent transferable perturbations in order to fool victim classifiers in various attack settings. For example, GAMA triggers ~16% more misclassification than state-of-the-art generative approaches in black-box settings where both the classifier architecture and data distribution of the attacker are different from the victim. Our code is available here: https://abhishekaich27.github.io/gama.html

  • 7 authors
·
Sep 20, 2022

PBI-Attack: Prior-Guided Bimodal Interactive Black-Box Jailbreak Attack for Toxicity Maximization

Understanding the vulnerabilities of Large Vision Language Models (LVLMs) to jailbreak attacks is essential for their responsible real-world deployment. Most previous work requires access to model gradients, or is based on human knowledge (prompt engineering) to complete jailbreak, and they hardly consider the interaction of images and text, resulting in inability to jailbreak in black box scenarios or poor performance. To overcome these limitations, we propose a Prior-Guided Bimodal Interactive Black-Box Jailbreak Attack for toxicity maximization, referred to as PBI-Attack. Our method begins by extracting malicious features from a harmful corpus using an alternative LVLM and embedding these features into a benign image as prior information. Subsequently, we enhance these features through bidirectional cross-modal interaction optimization, which iteratively optimizes the bimodal perturbations in an alternating manner through greedy search, aiming to maximize the toxicity of the generated response. The toxicity level is quantified using a well-trained evaluation model. Experiments demonstrate that PBI-Attack outperforms previous state-of-the-art jailbreak methods, achieving an average attack success rate of 92.5% across three open-source LVLMs and around 67.3% on three closed-source LVLMs. Disclaimer: This paper contains potentially disturbing and offensive content.

  • 8 authors
·
Dec 8, 2024

BitBypass: A New Direction in Jailbreaking Aligned Large Language Models with Bitstream Camouflage

The inherent risk of generating harmful and unsafe content by Large Language Models (LLMs), has highlighted the need for their safety alignment. Various techniques like supervised fine-tuning, reinforcement learning from human feedback, and red-teaming were developed for ensuring the safety alignment of LLMs. However, the robustness of these aligned LLMs is always challenged by adversarial attacks that exploit unexplored and underlying vulnerabilities of the safety alignment. In this paper, we develop a novel black-box jailbreak attack, called BitBypass, that leverages hyphen-separated bitstream camouflage for jailbreaking aligned LLMs. This represents a new direction in jailbreaking by exploiting fundamental information representation of data as continuous bits, rather than leveraging prompt engineering or adversarial manipulations. Our evaluation of five state-of-the-art LLMs, namely GPT-4o, Gemini 1.5, Claude 3.5, Llama 3.1, and Mixtral, in adversarial perspective, revealed the capabilities of BitBypass in bypassing their safety alignment and tricking them into generating harmful and unsafe content. Further, we observed that BitBypass outperforms several state-of-the-art jailbreak attacks in terms of stealthiness and attack success. Overall, these results highlights the effectiveness and efficiency of BitBypass in jailbreaking these state-of-the-art LLMs.

  • 2 authors
·
Jun 3, 2025

LocalStyleFool: Regional Video Style Transfer Attack Using Segment Anything Model

Previous work has shown that well-crafted adversarial perturbations can threaten the security of video recognition systems. Attackers can invade such models with a low query budget when the perturbations are semantic-invariant, such as StyleFool. Despite the query efficiency, the naturalness of the minutia areas still requires amelioration, since StyleFool leverages style transfer to all pixels in each frame. To close the gap, we propose LocalStyleFool, an improved black-box video adversarial attack that superimposes regional style-transfer-based perturbations on videos. Benefiting from the popularity and scalably usability of Segment Anything Model (SAM), we first extract different regions according to semantic information and then track them through the video stream to maintain the temporal consistency. Then, we add style-transfer-based perturbations to several regions selected based on the associative criterion of transfer-based gradient information and regional area. Perturbation fine adjustment is followed to make stylized videos adversarial. We demonstrate that LocalStyleFool can improve both intra-frame and inter-frame naturalness through a human-assessed survey, while maintaining competitive fooling rate and query efficiency. Successful experiments on the high-resolution dataset also showcase that scrupulous segmentation of SAM helps to improve the scalability of adversarial attacks under high-resolution data.

  • 8 authors
·
Mar 18, 2024

NeuroStrike: Neuron-Level Attacks on Aligned LLMs

Safety alignment is critical for the ethical deployment of large language models (LLMs), guiding them to avoid generating harmful or unethical content. Current alignment techniques, such as supervised fine-tuning and reinforcement learning from human feedback, remain fragile and can be bypassed by carefully crafted adversarial prompts. Unfortunately, such attacks rely on trial and error, lack generalizability across models, and are constrained by scalability and reliability. This paper presents NeuroStrike, a novel and generalizable attack framework that exploits a fundamental vulnerability introduced by alignment techniques: the reliance on sparse, specialized safety neurons responsible for detecting and suppressing harmful inputs. We apply NeuroStrike to both white-box and black-box settings: In the white-box setting, NeuroStrike identifies safety neurons through feedforward activation analysis and prunes them during inference to disable safety mechanisms. In the black-box setting, we propose the first LLM profiling attack, which leverages safety neuron transferability by training adversarial prompt generators on open-weight surrogate models and then deploying them against black-box and proprietary targets. We evaluate NeuroStrike on over 20 open-weight LLMs from major LLM developers. By removing less than 0.6% of neurons in targeted layers, NeuroStrike achieves an average attack success rate (ASR) of 76.9% using only vanilla malicious prompts. Moreover, Neurostrike generalizes to four multimodal LLMs with 100% ASR on unsafe image inputs. Safety neurons transfer effectively across architectures, raising ASR to 78.5% on 11 fine-tuned models and 77.7% on five distilled models. The black-box LLM profiling attack achieves an average ASR of 63.7% across five black-box models, including the Google Gemini family.

A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1

Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.

  • 5 authors
·
Mar 13, 2025 2

Topic-oriented Adversarial Attacks against Black-box Neural Ranking Models

Neural ranking models (NRMs) have attracted considerable attention in information retrieval. Unfortunately, NRMs may inherit the adversarial vulnerabilities of general neural networks, which might be leveraged by black-hat search engine optimization practitioners. Recently, adversarial attacks against NRMs have been explored in the paired attack setting, generating an adversarial perturbation to a target document for a specific query. In this paper, we focus on a more general type of perturbation and introduce the topic-oriented adversarial ranking attack task against NRMs, which aims to find an imperceptible perturbation that can promote a target document in ranking for a group of queries with the same topic. We define both static and dynamic settings for the task and focus on decision-based black-box attacks. We propose a novel framework to improve topic-oriented attack performance based on a surrogate ranking model. The attack problem is formalized as a Markov decision process (MDP) and addressed using reinforcement learning. Specifically, a topic-oriented reward function guides the policy to find a successful adversarial example that can be promoted in rankings to as many queries as possible in a group. Experimental results demonstrate that the proposed framework can significantly outperform existing attack strategies, and we conclude by re-iterating that there exist potential risks for applying NRMs in the real world.

  • 7 authors
·
Apr 28, 2023

Transferable Black-Box One-Shot Forging of Watermarks via Image Preference Models

Recent years have seen a surge in interest in digital content watermarking techniques, driven by the proliferation of generative models and increased legal pressure. With an ever-growing percentage of AI-generated content available online, watermarking plays an increasingly important role in ensuring content authenticity and attribution at scale. There have been many works assessing the robustness of watermarking to removal attacks, yet, watermark forging, the scenario when a watermark is stolen from genuine content and applied to malicious content, remains underexplored. In this work, we investigate watermark forging in the context of widely used post-hoc image watermarking. Our contributions are as follows. First, we introduce a preference model to assess whether an image is watermarked. The model is trained using a ranking loss on purely procedurally generated images without any need for real watermarks. Second, we demonstrate the model's capability to remove and forge watermarks by optimizing the input image through backpropagation. This technique requires only a single watermarked image and works without knowledge of the watermarking model, making our attack much simpler and more practical than attacks introduced in related work. Third, we evaluate our proposed method on a variety of post-hoc image watermarking models, demonstrating that our approach can effectively forge watermarks, questioning the security of current watermarking approaches. Our code and further resources are publicly available.

  • 8 authors
·
Oct 23, 2025

An Adaptive Model Ensemble Adversarial Attack for Boosting Adversarial Transferability

While the transferability property of adversarial examples allows the adversary to perform black-box attacks (i.e., the attacker has no knowledge about the target model), the transfer-based adversarial attacks have gained great attention. Previous works mostly study gradient variation or image transformations to amplify the distortion on critical parts of inputs. These methods can work on transferring across models with limited differences, i.e., from CNNs to CNNs, but always fail in transferring across models with wide differences, such as from CNNs to ViTs. Alternatively, model ensemble adversarial attacks are proposed to fuse outputs from surrogate models with diverse architectures to get an ensemble loss, making the generated adversarial example more likely to transfer to other models as it can fool multiple models concurrently. However, existing ensemble attacks simply fuse the outputs of the surrogate models evenly, thus are not efficacious to capture and amplify the intrinsic transfer information of adversarial examples. In this paper, we propose an adaptive ensemble attack, dubbed AdaEA, to adaptively control the fusion of the outputs from each model, via monitoring the discrepancy ratio of their contributions towards the adversarial objective. Furthermore, an extra disparity-reduced filter is introduced to further synchronize the update direction. As a result, we achieve considerable improvement over the existing ensemble attacks on various datasets, and the proposed AdaEA can also boost existing transfer-based attacks, which further demonstrates its efficacy and versatility.

  • 5 authors
·
Aug 5, 2023

Efficient Decision-based Black-box Patch Attacks on Video Recognition

Although Deep Neural Networks (DNNs) have demonstrated excellent performance, they are vulnerable to adversarial patches that introduce perceptible and localized perturbations to the input. Generating adversarial patches on images has received much attention, while adversarial patches on videos have not been well investigated. Further, decision-based attacks, where attackers only access the predicted hard labels by querying threat models, have not been well explored on video models either, even if they are practical in real-world video recognition scenes. The absence of such studies leads to a huge gap in the robustness assessment for video models. To bridge this gap, this work first explores decision-based patch attacks on video models. We analyze that the huge parameter space brought by videos and the minimal information returned by decision-based models both greatly increase the attack difficulty and query burden. To achieve a query-efficient attack, we propose a spatial-temporal differential evolution (STDE) framework. First, STDE introduces target videos as patch textures and only adds patches on keyframes that are adaptively selected by temporal difference. Second, STDE takes minimizing the patch area as the optimization objective and adopts spatialtemporal mutation and crossover to search for the global optimum without falling into the local optimum. Experiments show STDE has demonstrated state-of-the-art performance in terms of threat, efficiency and imperceptibility. Hence, STDE has the potential to be a powerful tool for evaluating the robustness of video recognition models.

  • 8 authors
·
Mar 21, 2023

Set-level Guidance Attack: Boosting Adversarial Transferability of Vision-Language Pre-training Models

Vision-language pre-training (VLP) models have shown vulnerability to adversarial examples in multimodal tasks. Furthermore, malicious adversaries can be deliberately transferred to attack other black-box models. However, existing work has mainly focused on investigating white-box attacks. In this paper, we present the first study to investigate the adversarial transferability of recent VLP models. We observe that existing methods exhibit much lower transferability, compared to the strong attack performance in white-box settings. The transferability degradation is partly caused by the under-utilization of cross-modal interactions. Particularly, unlike unimodal learning, VLP models rely heavily on cross-modal interactions and the multimodal alignments are many-to-many, e.g., an image can be described in various natural languages. To this end, we propose a highly transferable Set-level Guidance Attack (SGA) that thoroughly leverages modality interactions and incorporates alignment-preserving augmentation with cross-modal guidance. Experimental results demonstrate that SGA could generate adversarial examples that can strongly transfer across different VLP models on multiple downstream vision-language tasks. On image-text retrieval, SGA significantly enhances the attack success rate for transfer attacks from ALBEF to TCL by a large margin (at least 9.78% and up to 30.21%), compared to the state-of-the-art.

  • 6 authors
·
Jul 26, 2023

PETGEN: Personalized Text Generation Attack on Deep Sequence Embedding-based Classification Models

What should a malicious user write next to fool a detection model? Identifying malicious users is critical to ensure the safety and integrity of internet platforms. Several deep learning-based detection models have been created. However, malicious users can evade deep detection models by manipulating their behavior, rendering these models of little use. The vulnerability of such deep detection models against adversarial attacks is unknown. Here we create a novel adversarial attack model against deep user sequence embedding based classification models, which use the sequence of user posts to generate user embeddings and detect malicious users. In the attack, the adversary generates a new post to fool the classifier. We propose a novel end-to-end Personalized Text Generation Attack model, called PETGEN, that simultaneously reduces the efficacy of the detection model and generates posts that have several key desirable properties. Specifically, PETGEN generates posts that are personalized to the user's writing style, have knowledge about a given target context, are aware of the user's historical posts on the target context, and encapsulate the user's recent topical interests. We conduct extensive experiments on two real-world datasets (Yelp and Wikipedia, both with ground-truth of malicious users) to show that PETGEN significantly reduces the performance of popular deep user sequence embedding-based classification models. PETGEN outperforms five attack baselines in terms of text quality and attack efficacy in both white-box and black-box classifier settings. Overall, this work paves the path towards the next generation of adversary-aware sequence classification models.

  • 3 authors
·
Sep 14, 2021

Rethinking Model Ensemble in Transfer-based Adversarial Attacks

It is widely recognized that deep learning models lack robustness to adversarial examples. An intriguing property of adversarial examples is that they can transfer across different models, which enables black-box attacks without any knowledge of the victim model. An effective strategy to improve the transferability is attacking an ensemble of models. However, previous works simply average the outputs of different models, lacking an in-depth analysis on how and why model ensemble methods can strongly improve the transferability. In this paper, we rethink the ensemble in adversarial attacks and define the common weakness of model ensemble with two properties: 1) the flatness of loss landscape; and 2) the closeness to the local optimum of each model. We empirically and theoretically show that both properties are strongly correlated with the transferability and propose a Common Weakness Attack (CWA) to generate more transferable adversarial examples by promoting these two properties. Experimental results on both image classification and object detection tasks validate the effectiveness of our approach to improving the adversarial transferability, especially when attacking adversarially trained models. We also successfully apply our method to attack a black-box large vision-language model -- Google's Bard, showing the practical effectiveness. Code is available at https://github.com/huanranchen/AdversarialAttacks.

  • 6 authors
·
Mar 16, 2023

FigStep: Jailbreaking Large Vision-Language Models via Typographic Visual Prompts

Large Vision-Language Models (LVLMs) signify a groundbreaking paradigm shift within the Artificial Intelligence (AI) community, extending beyond the capabilities of Large Language Models (LLMs) by assimilating additional modalities (e.g., images). Despite this advancement, the safety of LVLMs remains adequately underexplored, with a potential overreliance on the safety assurances purported by their underlying LLMs. In this paper, we propose FigStep, a straightforward yet effective black-box jailbreak algorithm against LVLMs. Instead of feeding textual harmful instructions directly, FigStep converts the prohibited content into images through typography to bypass the safety alignment. The experimental results indicate that FigStep can achieve an average attack success rate of 82.50% on six promising open-source LVLMs. Not merely to demonstrate the efficacy of FigStep, we conduct comprehensive ablation studies and analyze the distribution of the semantic embeddings to uncover that the reason behind the success of FigStep is the deficiency of safety alignment for visual embeddings. Moreover, we compare FigStep with five text-only jailbreaks and four image-based jailbreaks to demonstrate the superiority of FigStep, i.e., negligible attack costs and better attack performance. Above all, our work reveals that current LVLMs are vulnerable to jailbreak attacks, which highlights the necessity of novel cross-modality safety alignment techniques. Our code and datasets are available at https://github.com/ThuCCSLab/FigStep .

  • 8 authors
·
Nov 9, 2023

Pandora's White-Box: Increased Training Data Leakage in Open LLMs

In this paper we undertake a systematic study of privacy attacks against open source Large Language Models (LLMs), where an adversary has access to either the model weights, gradients, or losses, and tries to exploit them to learn something about the underlying training data. Our headline results are the first membership inference attacks (MIAs) against pre-trained LLMs that are able to simultaneously achieve high TPRs and low FPRs, and a pipeline showing that over 50% (!) of the fine-tuning dataset can be extracted from a fine-tuned LLM in natural settings. We consider varying degrees of access to the underlying model, customization of the language model, and resources available to the attacker. In the pre-trained setting, we propose three new white-box MIAs: an attack based on the gradient norm, a supervised neural network classifier, and a single step loss ratio attack. All outperform existing black-box baselines, and our supervised attack closes the gap between MIA attack success against LLMs and other types of models. In fine-tuning, we find that given access to the loss of the fine-tuned and base models, a fine-tuned loss ratio attack FLoRA is able to achieve near perfect MIA peformance. We then leverage these MIAs to extract fine-tuning data from fine-tuned language models. We find that the pipeline of generating from fine-tuned models prompted with a small snippet of the prefix of each training example, followed by using FLoRa to select the most likely training sample, succeeds the majority of the fine-tuning dataset after only 3 epochs of fine-tuning. Taken together, these findings show that highly effective MIAs are available in almost all LLM training settings, and highlight that great care must be taken before LLMs are fine-tuned on highly sensitive data and then deployed.

  • 4 authors
·
Feb 26, 2024

One Model Transfer to All: On Robust Jailbreak Prompts Generation against LLMs

Safety alignment in large language models (LLMs) is increasingly compromised by jailbreak attacks, which can manipulate these models to generate harmful or unintended content. Investigating these attacks is crucial for uncovering model vulnerabilities. However, many existing jailbreak strategies fail to keep pace with the rapid development of defense mechanisms, such as defensive suffixes, rendering them ineffective against defended models. To tackle this issue, we introduce a novel attack method called ArrAttack, specifically designed to target defended LLMs. ArrAttack automatically generates robust jailbreak prompts capable of bypassing various defense measures. This capability is supported by a universal robustness judgment model that, once trained, can perform robustness evaluation for any target model with a wide variety of defenses. By leveraging this model, we can rapidly develop a robust jailbreak prompt generator that efficiently converts malicious input prompts into effective attacks. Extensive evaluations reveal that ArrAttack significantly outperforms existing attack strategies, demonstrating strong transferability across both white-box and black-box models, including GPT-4 and Claude-3. Our work bridges the gap between jailbreak attacks and defenses, providing a fresh perspective on generating robust jailbreak prompts. We make the codebase available at https://github.com/LLBao/ArrAttack.

  • 4 authors
·
May 23, 2025

CPA-RAG:Covert Poisoning Attacks on Retrieval-Augmented Generation in Large Language Models

Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by incorporating external knowledge, but its openness introduces vulnerabilities that can be exploited by poisoning attacks. Existing poisoning methods for RAG systems have limitations, such as poor generalization and lack of fluency in adversarial texts. In this paper, we propose CPA-RAG, a black-box adversarial framework that generates query-relevant texts capable of manipulating the retrieval process to induce target answers. The proposed method integrates prompt-based text generation, cross-guided optimization through multiple LLMs, and retriever-based scoring to construct high-quality adversarial samples. We conduct extensive experiments across multiple datasets and LLMs to evaluate its effectiveness. Results show that the framework achieves over 90\% attack success when the top-k retrieval setting is 5, matching white-box performance, and maintains a consistent advantage of approximately 5 percentage points across different top-k values. It also outperforms existing black-box baselines by 14.5 percentage points under various defense strategies. Furthermore, our method successfully compromises a commercial RAG system deployed on Alibaba's BaiLian platform, demonstrating its practical threat in real-world applications. These findings underscore the need for more robust and secure RAG frameworks to defend against poisoning attacks.

  • 6 authors
·
May 26, 2025

Universal Adversarial Perturbations for Vision-Language Pre-trained Models

Vision-language pre-trained (VLP) models have been the foundation of numerous vision-language tasks. Given their prevalence, it becomes imperative to assess their adversarial robustness, especially when deploying them in security-crucial real-world applications. Traditionally, adversarial perturbations generated for this assessment target specific VLP models, datasets, and/or downstream tasks. This practice suffers from low transferability and additional computation costs when transitioning to new scenarios. In this work, we thoroughly investigate whether VLP models are commonly sensitive to imperceptible perturbations of a specific pattern for the image modality. To this end, we propose a novel black-box method to generate Universal Adversarial Perturbations (UAPs), which is so called the Effective and T ransferable Universal Adversarial Attack (ETU), aiming to mislead a variety of existing VLP models in a range of downstream tasks. The ETU comprehensively takes into account the characteristics of UAPs and the intrinsic cross-modal interactions to generate effective UAPs. Under this regime, the ETU encourages both global and local utilities of UAPs. This benefits the overall utility while reducing interactions between UAP units, improving the transferability. To further enhance the effectiveness and transferability of UAPs, we also design a novel data augmentation method named ScMix. ScMix consists of self-mix and cross-mix data transformations, which can effectively increase the multi-modal data diversity while preserving the semantics of the original data. Through comprehensive experiments on various downstream tasks, VLP models, and datasets, we demonstrate that the proposed method is able to achieve effective and transferrable universal adversarial attacks.

  • 3 authors
·
May 8, 2024

3DHacker: Spectrum-based Decision Boundary Generation for Hard-label 3D Point Cloud Attack

With the maturity of depth sensors, the vulnerability of 3D point cloud models has received increasing attention in various applications such as autonomous driving and robot navigation. Previous 3D adversarial attackers either follow the white-box setting to iteratively update the coordinate perturbations based on gradients, or utilize the output model logits to estimate noisy gradients in the black-box setting. However, these attack methods are hard to be deployed in real-world scenarios since realistic 3D applications will not share any model details to users. Therefore, we explore a more challenging yet practical 3D attack setting, i.e., attacking point clouds with black-box hard labels, in which the attacker can only have access to the prediction label of the input. To tackle this setting, we propose a novel 3D attack method, termed 3D Hard-label attacker (3DHacker), based on the developed decision boundary algorithm to generate adversarial samples solely with the knowledge of class labels. Specifically, to construct the class-aware model decision boundary, 3DHacker first randomly fuses two point clouds of different classes in the spectral domain to craft their intermediate sample with high imperceptibility, then projects it onto the decision boundary via binary search. To restrict the final perturbation size, 3DHacker further introduces an iterative optimization strategy to move the intermediate sample along the decision boundary for generating adversarial point clouds with smallest trivial perturbations. Extensive evaluations show that, even in the challenging hard-label setting, 3DHacker still competitively outperforms existing 3D attacks regarding the attack performance as well as adversary quality.

  • 6 authors
·
Aug 14, 2023

AmpleGCG-Plus: A Strong Generative Model of Adversarial Suffixes to Jailbreak LLMs with Higher Success Rates in Fewer Attempts

Although large language models (LLMs) are typically aligned, they remain vulnerable to jailbreaking through either carefully crafted prompts in natural language or, interestingly, gibberish adversarial suffixes. However, gibberish tokens have received relatively less attention despite their success in attacking aligned LLMs. Recent work, AmpleGCG~liao2024amplegcg, demonstrates that a generative model can quickly produce numerous customizable gibberish adversarial suffixes for any harmful query, exposing a range of alignment gaps in out-of-distribution (OOD) language spaces. To bring more attention to this area, we introduce AmpleGCG-Plus, an enhanced version that achieves better performance in fewer attempts. Through a series of exploratory experiments, we identify several training strategies to improve the learning of gibberish suffixes. Our results, verified under a strict evaluation setting, show that it outperforms AmpleGCG on both open-weight and closed-source models, achieving increases in attack success rate (ASR) of up to 17\% in the white-box setting against Llama-2-7B-chat, and more than tripling ASR in the black-box setting against GPT-4. Notably, AmpleGCG-Plus jailbreaks the newer GPT-4o series of models at similar rates to GPT-4, and, uncovers vulnerabilities against the recently proposed circuit breakers defense. We publicly release AmpleGCG-Plus along with our collected training datasets.

  • 4 authors
·
Oct 29, 2024

The Surprising Effectiveness of Membership Inference with Simple N-Gram Coverage

Membership inference attacks serves as useful tool for fair use of language models, such as detecting potential copyright infringement and auditing data leakage. However, many current state-of-the-art attacks require access to models' hidden states or probability distribution, which prevents investigation into more widely-used, API-access only models like GPT-4. In this work, we introduce N-Gram Coverage Attack, a membership inference attack that relies solely on text outputs from the target model, enabling attacks on completely black-box models. We leverage the observation that models are more likely to memorize and subsequently generate text patterns that were commonly observed in their training data. Specifically, to make a prediction on a candidate member, N-Gram Coverage Attack first obtains multiple model generations conditioned on a prefix of the candidate. It then uses n-gram overlap metrics to compute and aggregate the similarities of these outputs with the ground truth suffix; high similarities indicate likely membership. We first demonstrate on a diverse set of existing benchmarks that N-Gram Coverage Attack outperforms other black-box methods while also impressively achieving comparable or even better performance to state-of-the-art white-box attacks - despite having access to only text outputs. Interestingly, we find that the success rate of our method scales with the attack compute budget - as we increase the number of sequences generated from the target model conditioned on the prefix, attack performance tends to improve. Having verified the accuracy of our method, we use it to investigate previously unstudied closed OpenAI models on multiple domains. We find that more recent models, such as GPT-4o, exhibit increased robustness to membership inference, suggesting an evolving trend toward improved privacy protections.

  • 10 authors
·
Aug 13, 2025 1

Seeing Isn't Believing: Context-Aware Adversarial Patch Synthesis via Conditional GAN

Adversarial patch attacks pose a severe threat to deep neural networks, yet most existing approaches rely on unrealistic white-box assumptions, untargeted objectives, or produce visually conspicuous patches that limit real-world applicability. In this work, we introduce a novel framework for fully controllable adversarial patch generation, where the attacker can freely choose both the input image x and the target class y target, thereby dictating the exact misclassification outcome. Our method combines a generative U-Net design with Grad-CAM-guided patch placement, enabling semantic-aware localization that maximizes attack effectiveness while preserving visual realism. Extensive experiments across convolutional networks (DenseNet-121, ResNet-50) and vision transformers (ViT-B/16, Swin-B/16, among others) demonstrate that our approach achieves state-of-the-art performance across all settings, with attack success rates (ASR) and target-class success (TCS) consistently exceeding 99%. Importantly, we show that our method not only outperforms prior white-box attacks and untargeted baselines, but also surpasses existing non-realistic approaches that produce detectable artifacts. By simultaneously ensuring realism, targeted control, and black-box applicability-the three most challenging dimensions of patch-based attacks-our framework establishes a new benchmark for adversarial robustness research, bridging the gap between theoretical attack strength and practical stealthiness.

  • 4 authors
·
Sep 26, 2025

Arabic Synonym BERT-based Adversarial Examples for Text Classification

Text classification systems have been proven vulnerable to adversarial text examples, modified versions of the original text examples that are often unnoticed by human eyes, yet can force text classification models to alter their classification. Often, research works quantifying the impact of adversarial text attacks have been applied only to models trained in English. In this paper, we introduce the first word-level study of adversarial attacks in Arabic. Specifically, we use a synonym (word-level) attack using a Masked Language Modeling (MLM) task with a BERT model in a black-box setting to assess the robustness of the state-of-the-art text classification models to adversarial attacks in Arabic. To evaluate the grammatical and semantic similarities of the newly produced adversarial examples using our synonym BERT-based attack, we invite four human evaluators to assess and compare the produced adversarial examples with their original examples. We also study the transferability of these newly produced Arabic adversarial examples to various models and investigate the effectiveness of defense mechanisms against these adversarial examples on the BERT models. We find that fine-tuned BERT models were more susceptible to our synonym attacks than the other Deep Neural Networks (DNN) models like WordCNN and WordLSTM we trained. We also find that fine-tuned BERT models were more susceptible to transferred attacks. We, lastly, find that fine-tuned BERT models successfully regain at least 2% in accuracy after applying adversarial training as an initial defense mechanism.

  • 4 authors
·
Feb 5, 2024

Few-shot Model Extraction Attacks against Sequential Recommender Systems

Among adversarial attacks against sequential recommender systems, model extraction attacks represent a method to attack sequential recommendation models without prior knowledge. Existing research has primarily concentrated on the adversary's execution of black-box attacks through data-free model extraction. However, a significant gap remains in the literature concerning the development of surrogate models by adversaries with access to few-shot raw data (10\% even less). That is, the challenge of how to construct a surrogate model with high functional similarity within the context of few-shot data scenarios remains an issue that requires resolution.This study addresses this gap by introducing a novel few-shot model extraction framework against sequential recommenders, which is designed to construct a superior surrogate model with the utilization of few-shot data. The proposed few-shot model extraction framework is comprised of two components: an autoregressive augmentation generation strategy and a bidirectional repair loss-facilitated model distillation procedure. Specifically, to generate synthetic data that closely approximate the distribution of raw data, autoregressive augmentation generation strategy integrates a probabilistic interaction sampler to extract inherent dependencies and a synthesis determinant signal module to characterize user behavioral patterns. Subsequently, bidirectional repair loss, which target the discrepancies between the recommendation lists, is designed as auxiliary loss to rectify erroneous predictions from surrogate models, transferring knowledge from the victim model to the surrogate model effectively. Experiments on three datasets show that the proposed few-shot model extraction framework yields superior surrogate models.

  • 2 authors
·
Nov 18, 2024

AdInject: Real-World Black-Box Attacks on Web Agents via Advertising Delivery

Vision-Language Model (VLM) based Web Agents represent a significant step towards automating complex tasks by simulating human-like interaction with websites. However, their deployment in uncontrolled web environments introduces significant security vulnerabilities. Existing research on adversarial environmental injection attacks often relies on unrealistic assumptions, such as direct HTML manipulation, knowledge of user intent, or access to agent model parameters, limiting their practical applicability. In this paper, we propose AdInject, a novel and real-world black-box attack method that leverages the internet advertising delivery to inject malicious content into the Web Agent's environment. AdInject operates under a significantly more realistic threat model than prior work, assuming a black-box agent, static malicious content constraints, and no specific knowledge of user intent. AdInject includes strategies for designing malicious ad content aimed at misleading agents into clicking, and a VLM-based ad content optimization technique that infers potential user intents from the target website's context and integrates these intents into the ad content to make it appear more relevant or critical to the agent's task, thus enhancing attack effectiveness. Experimental evaluations demonstrate the effectiveness of AdInject, attack success rates exceeding 60% in most scenarios and approaching 100% in certain cases. This strongly demonstrates that prevalent advertising delivery constitutes a potent and real-world vector for environment injection attacks against Web Agents. This work highlights a critical vulnerability in Web Agent security arising from real-world environment manipulation channels, underscoring the urgent need for developing robust defense mechanisms against such threats. Our code is available at https://github.com/NicerWang/AdInject.

  • 8 authors
·
May 27, 2025 2

I'm Afraid I Can't Do That: Predicting Prompt Refusal in Black-Box Generative Language Models

Since the release of OpenAI's ChatGPT, generative language models have attracted extensive public attention. The increased usage has highlighted generative models' broad utility, but also revealed several forms of embedded bias. Some is induced by the pre-training corpus; but additional bias specific to generative models arises from the use of subjective fine-tuning to avoid generating harmful content. Fine-tuning bias may come from individual engineers and company policies, and affects which prompts the model chooses to refuse. In this experiment, we characterize ChatGPT's refusal behavior using a black-box attack. We first query ChatGPT with a variety of offensive and benign prompts (n=1,706), then manually label each response as compliance or refusal. Manual examination of responses reveals that refusal is not cleanly binary, and lies on a continuum; as such, we map several different kinds of responses to a binary of compliance or refusal. The small manually-labeled dataset is used to train a refusal classifier, which achieves an accuracy of 96%. Second, we use this refusal classifier to bootstrap a larger (n=10,000) dataset adapted from the Quora Insincere Questions dataset. With this machine-labeled data, we train a prompt classifier to predict whether ChatGPT will refuse a given question, without seeing ChatGPT's response. This prompt classifier achieves 76% accuracy on a test set of manually labeled questions (n=985). We examine our classifiers and the prompt n-grams that are most predictive of either compliance or refusal. Our datasets and code are available at https://github.com/maxwellreuter/chatgpt-refusals.

  • 2 authors
·
Jun 6, 2023

Subject Membership Inference Attacks in Federated Learning

Privacy attacks on Machine Learning (ML) models often focus on inferring the existence of particular data points in the training data. However, what the adversary really wants to know is if a particular individual's (subject's) data was included during training. In such scenarios, the adversary is more likely to have access to the distribution of a particular subject than actual records. Furthermore, in settings like cross-silo Federated Learning (FL), a subject's data can be embodied by multiple data records that are spread across multiple organizations. Nearly all of the existing private FL literature is dedicated to studying privacy at two granularities -- item-level (individual data records), and user-level (participating user in the federation), neither of which apply to data subjects in cross-silo FL. This insight motivates us to shift our attention from the privacy of data records to the privacy of data subjects, also known as subject-level privacy. We propose two novel black-box attacks for subject membership inference, of which one assumes access to a model after each training round. Using these attacks, we estimate subject membership inference risk on real-world data for single-party models as well as FL scenarios. We find our attacks to be extremely potent, even without access to exact training records, and using the knowledge of membership for a handful of subjects. To better understand the various factors that may influence subject privacy risk in cross-silo FL settings, we systematically generate several hundred synthetic federation configurations, varying properties of the data, model design and training, and the federation itself. Finally, we investigate the effectiveness of Differential Privacy in mitigating this threat.

  • 4 authors
·
Jun 7, 2022

Analyzing Leakage of Personally Identifiable Information in Language Models

Language Models (LMs) have been shown to leak information about training data through sentence-level membership inference and reconstruction attacks. Understanding the risk of LMs leaking Personally Identifiable Information (PII) has received less attention, which can be attributed to the false assumption that dataset curation techniques such as scrubbing are sufficient to prevent PII leakage. Scrubbing techniques reduce but do not prevent the risk of PII leakage: in practice scrubbing is imperfect and must balance the trade-off between minimizing disclosure and preserving the utility of the dataset. On the other hand, it is unclear to which extent algorithmic defenses such as differential privacy, designed to guarantee sentence- or user-level privacy, prevent PII disclosure. In this work, we introduce rigorous game-based definitions for three types of PII leakage via black-box extraction, inference, and reconstruction attacks with only API access to an LM. We empirically evaluate the attacks against GPT-2 models fine-tuned with and without defenses in three domains: case law, health care, and e-mails. Our main contributions are (i) novel attacks that can extract up to 10times more PII sequences than existing attacks, (ii) showing that sentence-level differential privacy reduces the risk of PII disclosure but still leaks about 3% of PII sequences, and (iii) a subtle connection between record-level membership inference and PII reconstruction. Code to reproduce all experiments in the paper is available at https://github.com/microsoft/analysing_pii_leakage.

  • 6 authors
·
Feb 1, 2023

Black-Box Adversarial Attacks on LLM-Based Code Completion

Modern code completion engines, powered by large language models (LLMs), assist millions of developers with their strong capabilities to generate functionally correct code. Due to this popularity, it is crucial to investigate the security implications of relying on LLM-based code completion. In this work, we demonstrate that state-of-the-art black-box LLM-based code completion engines can be stealthily biased by adversaries to significantly increase their rate of insecure code generation. We present the first attack, named INSEC, that achieves this goal. INSEC works by injecting an attack string as a short comment in the completion input. The attack string is crafted through a query-based optimization procedure starting from a set of carefully designed initialization schemes. We demonstrate INSEC's broad applicability and effectiveness by evaluating it on various state-of-the-art open-source models and black-box commercial services (e.g., OpenAI API and GitHub Copilot). On a diverse set of security-critical test cases, covering 16 CWEs across 5 programming languages, INSEC increases the rate of generated insecure code by more than 50%, while maintaining the functional correctness of generated code. We consider INSEC practical -- it requires low resources and costs less than 10 US dollars to develop on commodity hardware. Moreover, we showcase the attack's real-world deployability, by developing an IDE plug-in that stealthily injects INSEC into the GitHub Copilot extension.

  • 5 authors
·
Aug 5, 2024

AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning

Deep neural networks (DNNs) are known to be vulnerable to adversarial attacks even under a black-box setting where the adversary can only query the model. Particularly, query-based black-box adversarial attacks estimate adversarial gradients based on the returned probability vectors of the target model for a sequence of queries. During this process, the queries made to the target model are intermediate adversarial examples crafted at the previous attack step, which share high similarities in the pixel space. Motivated by this observation, stateful detection methods have been proposed to detect and reject query-based attacks. While demonstrating promising results, these methods either have been evaded by more advanced attacks or suffer from low efficiency in terms of the number of shots (queries) required to detect different attacks. Arguably, the key challenge here is to assign high similarity scores for any two intermediate adversarial examples perturbed from the same clean image. To address this challenge, we propose a novel Adversarial Contrastive Prompt Tuning (ACPT) method to robustly fine-tune the CLIP image encoder to extract similar embeddings for any two intermediate adversarial queries. With ACPT, we further introduce a detection framework AdvQDet that can detect 7 state-of-the-art query-based attacks with >99% detection rate within 5 shots. We also show that ACPT is robust to 3 types of adaptive attacks. Code is available at https://github.com/xinwong/AdvQDet.

  • 6 authors
·
Aug 4, 2024

Label-Only Model Inversion Attacks via Knowledge Transfer

In a model inversion (MI) attack, an adversary abuses access to a machine learning (ML) model to infer and reconstruct private training data. Remarkable progress has been made in the white-box and black-box setups, where the adversary has access to the complete model or the model's soft output respectively. However, there is very limited study in the most challenging but practically important setup: Label-only MI attacks, where the adversary only has access to the model's predicted label (hard label) without confidence scores nor any other model information. In this work, we propose LOKT, a novel approach for label-only MI attacks. Our idea is based on transfer of knowledge from the opaque target model to surrogate models. Subsequently, using these surrogate models, our approach can harness advanced white-box attacks. We propose knowledge transfer based on generative modelling, and introduce a new model, Target model-assisted ACGAN (T-ACGAN), for effective knowledge transfer. Our method casts the challenging label-only MI into the more tractable white-box setup. We provide analysis to support that surrogate models based on our approach serve as effective proxies for the target model for MI. Our experiments show that our method significantly outperforms existing SOTA Label-only MI attack by more than 15% across all MI benchmarks. Furthermore, our method compares favorably in terms of query budget. Our study highlights rising privacy threats for ML models even when minimal information (i.e., hard labels) is exposed. Our study highlights rising privacy threats for ML models even when minimal information (i.e., hard labels) is exposed. Our code, demo, models and reconstructed data are available at our project page: https://ngoc-nguyen-0.github.io/lokt/

  • 4 authors
·
Oct 30, 2023

BlackMarks: Blackbox Multibit Watermarking for Deep Neural Networks

Deep Neural Networks have created a paradigm shift in our ability to comprehend raw data in various important fields ranging from computer vision and natural language processing to intelligence warfare and healthcare. While DNNs are increasingly deployed either in a white-box setting where the model internal is publicly known, or a black-box setting where only the model outputs are known, a practical concern is protecting the models against Intellectual Property (IP) infringement. We propose BlackMarks, the first end-to-end multi-bit watermarking framework that is applicable in the black-box scenario. BlackMarks takes the pre-trained unmarked model and the owner's binary signature as inputs and outputs the corresponding marked model with a set of watermark keys. To do so, BlackMarks first designs a model-dependent encoding scheme that maps all possible classes in the task to bit '0' and bit '1' by clustering the output activations into two groups. Given the owner's watermark signature (a binary string), a set of key image and label pairs are designed using targeted adversarial attacks. The watermark (WM) is then embedded in the prediction behavior of the target DNN by fine-tuning the model with generated WM key set. To extract the WM, the remote model is queried by the WM key images and the owner's signature is decoded from the corresponding predictions according to the designed encoding scheme. We perform a comprehensive evaluation of BlackMarks's performance on MNIST, CIFAR10, ImageNet datasets and corroborate its effectiveness and robustness. BlackMarks preserves the functionality of the original DNN and incurs negligible WM embedding runtime overhead as low as 2.054%.

  • 3 authors
·
Mar 31, 2019

How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

The lack of adversarial robustness has been recognized as an important issue for state-of-the-art machine learning (ML) models, e.g., deep neural networks (DNNs). Thereby, robustifying ML models against adversarial attacks is now a major focus of research. However, nearly all existing defense methods, particularly for robust training, made the white-box assumption that the defender has the access to the details of an ML model (or its surrogate alternatives if available), e.g., its architectures and parameters. Beyond existing works, in this paper we aim to address the problem of black-box defense: How to robustify a black-box model using just input queries and output feedback? Such a problem arises in practical scenarios, where the owner of the predictive model is reluctant to share model information in order to preserve privacy. To this end, we propose a general notion of defensive operation that can be applied to black-box models, and design it through the lens of denoised smoothing (DS), a first-order (FO) certified defense technique. To allow the design of merely using model queries, we further integrate DS with the zeroth-order (gradient-free) optimization. However, a direct implementation of zeroth-order (ZO) optimization suffers a high variance of gradient estimates, and thus leads to ineffective defense. To tackle this problem, we next propose to prepend an autoencoder (AE) to a given (black-box) model so that DS can be trained using variance-reduced ZO optimization. We term the eventual defense as ZO-AE-DS. In practice, we empirically show that ZO-AE- DS can achieve improved accuracy, certified robustness, and query complexity over existing baselines. And the effectiveness of our approach is justified under both image classification and image reconstruction tasks. Codes are available at https://github.com/damon-demon/Black-Box-Defense.

  • 7 authors
·
Mar 26, 2022

Watermarking Text Generated by Black-Box Language Models

LLMs now exhibit human-like skills in various fields, leading to worries about misuse. Thus, detecting generated text is crucial. However, passive detection methods are stuck in domain specificity and limited adversarial robustness. To achieve reliable detection, a watermark-based method was proposed for white-box LLMs, allowing them to embed watermarks during text generation. The method involves randomly dividing the model vocabulary to obtain a special list and adjusting the probability distribution to promote the selection of words in the list. A detection algorithm aware of the list can identify the watermarked text. However, this method is not applicable in many real-world scenarios where only black-box language models are available. For instance, third-parties that develop API-based vertical applications cannot watermark text themselves because API providers only supply generated text and withhold probability distributions to shield their commercial interests. To allow third-parties to autonomously inject watermarks into generated text, we develop a watermarking framework for black-box language model usage scenarios. Specifically, we first define a binary encoding function to compute a random binary encoding corresponding to a word. The encodings computed for non-watermarked text conform to a Bernoulli distribution, wherein the probability of a word representing bit-1 being approximately 0.5. To inject a watermark, we alter the distribution by selectively replacing words representing bit-0 with context-based synonyms that represent bit-1. A statistical test is then used to identify the watermark. Experiments demonstrate the effectiveness of our method on both Chinese and English datasets. Furthermore, results under re-translation, polishing, word deletion, and synonym substitution attacks reveal that it is arduous to remove the watermark without compromising the original semantics.

  • 8 authors
·
May 14, 2023

AutoDAN: Interpretable Gradient-Based Adversarial Attacks on Large Language Models

Safety alignment of Large Language Models (LLMs) can be compromised with manual jailbreak attacks and (automatic) adversarial attacks. Recent studies suggest that defending against these attacks is possible: adversarial attacks generate unlimited but unreadable gibberish prompts, detectable by perplexity-based filters; manual jailbreak attacks craft readable prompts, but their limited number due to the necessity of human creativity allows for easy blocking. In this paper, we show that these solutions may be too optimistic. We introduce AutoDAN, an interpretable, gradient-based adversarial attack that merges the strengths of both attack types. Guided by the dual goals of jailbreak and readability, AutoDAN optimizes and generates tokens one by one from left to right, resulting in readable prompts that bypass perplexity filters while maintaining high attack success rates. Notably, these prompts, generated from scratch using gradients, are interpretable and diverse, with emerging strategies commonly seen in manual jailbreak attacks. They also generalize to unforeseen harmful behaviors and transfer to black-box LLMs better than their unreadable counterparts when using limited training data or a single proxy model. Furthermore, we show the versatility of AutoDAN by automatically leaking system prompts using a customized objective. Our work offers a new way to red-team LLMs and understand jailbreak mechanisms via interpretability.

  • 9 authors
·
Oct 23, 2023

Universal and Transferable Adversarial Attacks on Aligned Language Models

Because "out-of-the-box" large language models are capable of generating a great deal of objectionable content, recent work has focused on aligning these models in an attempt to prevent undesirable generation. While there has been some success at circumventing these measures -- so-called "jailbreaks" against LLMs -- these attacks have required significant human ingenuity and are brittle in practice. In this paper, we propose a simple and effective attack method that causes aligned language models to generate objectionable behaviors. Specifically, our approach finds a suffix that, when attached to a wide range of queries for an LLM to produce objectionable content, aims to maximize the probability that the model produces an affirmative response (rather than refusing to answer). However, instead of relying on manual engineering, our approach automatically produces these adversarial suffixes by a combination of greedy and gradient-based search techniques, and also improves over past automatic prompt generation methods. Surprisingly, we find that the adversarial prompts generated by our approach are quite transferable, including to black-box, publicly released LLMs. Specifically, we train an adversarial attack suffix on multiple prompts (i.e., queries asking for many different types of objectionable content), as well as multiple models (in our case, Vicuna-7B and 13B). When doing so, the resulting attack suffix is able to induce objectionable content in the public interfaces to ChatGPT, Bard, and Claude, as well as open source LLMs such as LLaMA-2-Chat, Pythia, Falcon, and others. In total, this work significantly advances the state-of-the-art in adversarial attacks against aligned language models, raising important questions about how such systems can be prevented from producing objectionable information. Code is available at github.com/llm-attacks/llm-attacks.

  • 4 authors
·
Jul 27, 2023 1

When Alignment Fails: Multimodal Adversarial Attacks on Vision-Language-Action Models

Vision-Language-Action models (VLAs) have recently demonstrated remarkable progress in embodied environments, enabling robots to perceive, reason, and act through unified multimodal understanding. Despite their impressive capabilities, the adversarial robustness of these systems remains largely unexplored, especially under realistic multimodal and black-box conditions. Existing studies mainly focus on single-modality perturbations and overlook the cross-modal misalignment that fundamentally affects embodied reasoning and decision-making. In this paper, we introduce VLA-Fool, a comprehensive study of multimodal adversarial robustness in embodied VLA models under both white-box and black-box settings. VLA-Fool unifies three levels of multimodal adversarial attacks: (1) textual perturbations through gradient-based and prompt-based manipulations, (2) visual perturbations via patch and noise distortions, and (3) cross-modal misalignment attacks that intentionally disrupt the semantic correspondence between perception and instruction. We further incorporate a VLA-aware semantic space into linguistic prompts, developing the first automatically crafted and semantically guided prompting framework. Experiments on the LIBERO benchmark using a fine-tuned OpenVLA model reveal that even minor multimodal perturbations can cause significant behavioral deviations, demonstrating the fragility of embodied multimodal alignment.

  • 6 authors
·
Nov 20, 2025

Bob's Confetti: Phonetic Memorization Attacks in Music and Video Generation

Memorization in generative models extends far beyond verbatim text reproduction--it manifests through non-literal patterns, semantic associations, and surprisingly, across modalities in transcript-conditioned generation tasks such as Lyrics-to-Song (L2S) and Text-to-Video (T2V) models. We reveal a new class of cross-modality memorization where models trained on these tasks leak copyrighted content through indirect, phonetic pathways invisible to traditional text-based analysis. In this work, we introduce Adversarial PhoneTic Prompting (APT), an attack that replaces iconic phrases with homophonic alternatives--e.g., "mom's spaghetti" becomes "Bob's confetti"--preserving the acoustic form while largely changing semantic content. We demonstrate that models can be prompted to regurgitate memorized songs using phonetically similar but semantically unrelated lyrics. Despite the semantic drift, black-box models like SUNO and open-source models like YuE generate outputs that are strikingly similar to the original songs--melodically, rhythmically, and vocally--achieving high scores on AudioJudge, CLAP, and CoverID. These effects persist across genres and languages. More surprisingly, we find that phonetic prompts alone can trigger visual memorization in text-to-video models: when given altered lyrics from Lose Yourself, Veo 3 generates scenes that mirror the original music video--complete with a hooded rapper and dim urban settings--despite no explicit visual cues in the prompt. This cross-modality leakage represents an unprecedented threat: models memorize deep, structural patterns that transcend their training modality, making traditional safety measures like copyright filters ineffective. Our findings reveal a fundamental vulnerability in transcript-conditioned generative models and raise urgent concerns around copyright, provenance, and secure deployment of multimodal generation systems.

  • 6 authors
·
Jul 23, 2025

AIRTBench: Measuring Autonomous AI Red Teaming Capabilities in Language Models

We introduce AIRTBench, an AI red teaming benchmark for evaluating language models' ability to autonomously discover and exploit Artificial Intelligence and Machine Learning (AI/ML) security vulnerabilities. The benchmark consists of 70 realistic black-box capture-the-flag (CTF) challenges from the Crucible challenge environment on the Dreadnode platform, requiring models to write python code to interact with and compromise AI systems. Claude-3.7-Sonnet emerged as the clear leader, solving 43 challenges (61% of the total suite, 46.9% overall success rate), with Gemini-2.5-Pro following at 39 challenges (56%, 34.3% overall), GPT-4.5-Preview at 34 challenges (49%, 36.9% overall), and DeepSeek R1 at 29 challenges (41%, 26.9% overall). Our evaluations show frontier models excel at prompt injection attacks (averaging 49% success rates) but struggle with system exploitation and model inversion challenges (below 26%, even for the best performers). Frontier models are far outpacing open-source alternatives, with the best truly open-source model (Llama-4-17B) solving 7 challenges (10%, 1.0% overall), though demonstrating specialized capabilities on certain hard challenges. Compared to human security researchers, large language models (LLMs) solve challenges with remarkable efficiency completing in minutes what typically takes humans hours or days-with efficiency advantages of over 5,000x on hard challenges. Our contribution fills a critical gap in the evaluation landscape, providing the first comprehensive benchmark specifically designed to measure and track progress in autonomous AI red teaming capabilities.

  • 4 authors
·
Jun 17, 2025

Towards Cross-Domain Multi-Targeted Adversarial Attacks

Multi-targeted adversarial attacks aim to mislead classifiers toward specific target classes using a single perturbation generator with a conditional input specifying the desired target class. Existing methods face two key limitations: (1) a single generator supports only a limited number of predefined target classes, and (2) it requires access to the victim model's training data to learn target class semantics. This dependency raises data leakage concerns in practical black-box scenarios where the training data is typically private. To address these limitations, we propose a novel Cross-Domain Multi-Targeted Attack (CD-MTA) that can generate perturbations toward arbitrary target classes, even those that do not exist in the attacker's training data. CD-MTA is trained on a single public dataset but can perform targeted attacks on black-box models trained on different datasets with disjoint and unknown class sets. Our method requires only a single example image that visually represents the desired target class, without relying its label, class distribution or pretrained embeddings. We achieve this through a Feature Injection Module (FIM) and class-agnostic objectives which guide the generator to extract transferable, fine-grained features from the target image without inferring class semantics. Experiments on ImageNet and seven additional datasets show that CD-MTA outperforms existing multi-targeted attack methods on unseen target classes in black-box and cross-domain scenarios. The code is available at https://github.com/tgoncalv/CD-MTA.

  • 3 authors
·
May 27, 2025

PubDef: Defending Against Transfer Attacks From Public Models

Adversarial attacks have been a looming and unaddressed threat in the industry. However, through a decade-long history of the robustness evaluation literature, we have learned that mounting a strong or optimal attack is challenging. It requires both machine learning and domain expertise. In other words, the white-box threat model, religiously assumed by a large majority of the past literature, is unrealistic. In this paper, we propose a new practical threat model where the adversary relies on transfer attacks through publicly available surrogate models. We argue that this setting will become the most prevalent for security-sensitive applications in the future. We evaluate the transfer attacks in this setting and propose a specialized defense method based on a game-theoretic perspective. The defenses are evaluated under 24 public models and 11 attack algorithms across three datasets (CIFAR-10, CIFAR-100, and ImageNet). Under this threat model, our defense, PubDef, outperforms the state-of-the-art white-box adversarial training by a large margin with almost no loss in the normal accuracy. For instance, on ImageNet, our defense achieves 62% accuracy under the strongest transfer attack vs only 36% of the best adversarially trained model. Its accuracy when not under attack is only 2% lower than that of an undefended model (78% vs 80%). We release our code at https://github.com/wagner-group/pubdef.

  • 5 authors
·
Oct 26, 2023

Hard No-Box Adversarial Attack on Skeleton-Based Human Action Recognition with Skeleton-Motion-Informed Gradient

Recently, methods for skeleton-based human activity recognition have been shown to be vulnerable to adversarial attacks. However, these attack methods require either the full knowledge of the victim (i.e. white-box attacks), access to training data (i.e. transfer-based attacks) or frequent model queries (i.e. black-box attacks). All their requirements are highly restrictive, raising the question of how detrimental the vulnerability is. In this paper, we show that the vulnerability indeed exists. To this end, we consider a new attack task: the attacker has no access to the victim model or the training data or labels, where we coin the term hard no-box attack. Specifically, we first learn a motion manifold where we define an adversarial loss to compute a new gradient for the attack, named skeleton-motion-informed (SMI) gradient. Our gradient contains information of the motion dynamics, which is different from existing gradient-based attack methods that compute the loss gradient assuming each dimension in the data is independent. The SMI gradient can augment many gradient-based attack methods, leading to a new family of no-box attack methods. Extensive evaluation and comparison show that our method imposes a real threat to existing classifiers. They also show that the SMI gradient improves the transferability and imperceptibility of adversarial samples in both no-box and transfer-based black-box settings.

  • 5 authors
·
Aug 10, 2023

Architectural Backdoors for Within-Batch Data Stealing and Model Inference Manipulation

For nearly a decade the academic community has investigated backdoors in neural networks, primarily focusing on classification tasks where adversaries manipulate the model prediction. While demonstrably malicious, the immediate real-world impact of such prediction-altering attacks has remained unclear. In this paper we introduce a novel and significantly more potent class of backdoors that builds upon recent advancements in architectural backdoors. We demonstrate how these backdoors can be specifically engineered to exploit batched inference, a common technique for hardware utilization, enabling large-scale user data manipulation and theft. By targeting the batching process, these architectural backdoors facilitate information leakage between concurrent user requests and allow attackers to fully control model responses directed at other users within the same batch. In other words, an attacker who can change the model architecture can set and steal model inputs and outputs of other users within the same batch. We show that such attacks are not only feasible but also alarmingly effective, can be readily injected into prevalent model architectures, and represent a truly malicious threat to user privacy and system integrity. Critically, to counteract this new class of vulnerabilities, we propose a deterministic mitigation strategy that provides formal guarantees against this new attack vector, unlike prior work that relied on Large Language Models to find the backdoors. Our mitigation strategy employs a novel Information Flow Control mechanism that analyzes the model graph and proves non-interference between different user inputs within the same batch. Using our mitigation strategy we perform a large scale analysis of models hosted through Hugging Face and find over 200 models that introduce (unintended) information leakage between batch entries due to the use of dynamic quantization.

  • 4 authors
·
May 23, 2025 2

Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

One major goal of the AI security community is to securely and reliably produce and deploy deep learning models for real-world applications. To this end, data poisoning based backdoor attacks on deep neural networks (DNNs) in the production stage (or training stage) and corresponding defenses are extensively explored in recent years. Ironically, backdoor attacks in the deployment stage, which can often happen in unprofessional users' devices and are thus arguably far more threatening in real-world scenarios, draw much less attention of the community. We attribute this imbalance of vigilance to the weak practicality of existing deployment-stage backdoor attack algorithms and the insufficiency of real-world attack demonstrations. To fill the blank, in this work, we study the realistic threat of deployment-stage backdoor attacks on DNNs. We base our study on a commonly used deployment-stage attack paradigm -- adversarial weight attack, where adversaries selectively modify model weights to embed backdoor into deployed DNNs. To approach realistic practicality, we propose the first gray-box and physically realizable weights attack algorithm for backdoor injection, namely subnet replacement attack (SRA), which only requires architecture information of the victim model and can support physical triggers in the real world. Extensive experimental simulations and system-level real-world attack demonstrations are conducted. Our results not only suggest the effectiveness and practicality of the proposed attack algorithm, but also reveal the practical risk of a novel type of computer virus that may widely spread and stealthily inject backdoor into DNN models in user devices. By our study, we call for more attention to the vulnerability of DNNs in the deployment stage.

  • 6 authors
·
Nov 25, 2021

CaBaGe: Data-Free Model Extraction using ClAss BAlanced Generator Ensemble

Machine Learning as a Service (MLaaS) is often provided as a pay-per-query, black-box system to clients. Such a black-box approach not only hinders open replication, validation, and interpretation of model results, but also makes it harder for white-hat researchers to identify vulnerabilities in the MLaaS systems. Model extraction is a promising technique to address these challenges by reverse-engineering black-box models. Since training data is typically unavailable for MLaaS models, this paper focuses on the realistic version of it: data-free model extraction. We propose a data-free model extraction approach, CaBaGe, to achieve higher model extraction accuracy with a small number of queries. Our innovations include (1) a novel experience replay for focusing on difficult training samples; (2) an ensemble of generators for steadily producing diverse synthetic data; and (3) a selective filtering process for querying the victim model with harder, more balanced samples. In addition, we create a more realistic setting, for the first time, where the attacker has no knowledge of the number of classes in the victim training data, and create a solution to learn the number of classes on the fly. Our evaluation shows that CaBaGe outperforms existing techniques on seven datasets -- MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100, ImageNet-subset, and Tiny ImageNet -- with an accuracy improvement of the extracted models by up to 43.13%. Furthermore, the number of queries required to extract a clone model matching the final accuracy of prior work is reduced by up to 75.7%.

  • 4 authors
·
Sep 16, 2024

Goal-Oriented Prompt Attack and Safety Evaluation for LLMs

Large Language Models (LLMs) presents significant priority in text understanding and generation. However, LLMs suffer from the risk of generating harmful contents especially while being employed to applications. There are several black-box attack methods, such as Prompt Attack, which can change the behaviour of LLMs and induce LLMs to generate unexpected answers with harmful contents. Researchers are interested in Prompt Attack and Defense with LLMs, while there is no publicly available dataset with high successful attacking rate to evaluate the abilities of defending prompt attack. In this paper, we introduce a pipeline to construct high-quality prompt attack samples, along with a Chinese prompt attack dataset called CPAD. Our prompts aim to induce LLMs to generate unexpected outputs with several carefully designed prompt attack templates and widely concerned attacking contents. Different from previous datasets involving safety estimation, we construct the prompts considering three dimensions: contents, attacking methods and goals. Especially, the attacking goals indicate the behaviour expected after successfully attacking the LLMs, thus the responses can be easily evaluated and analysed. We run several popular Chinese LLMs on our dataset, and the results show that our prompts are significantly harmful to LLMs, with around 70% attack success rate to GPT-3.5. CPAD is publicly available at https://github.com/liuchengyuan123/CPAD.

  • 7 authors
·
Sep 21, 2023

Intriguing Properties of Adversarial Examples

It is becoming increasingly clear that many machine learning classifiers are vulnerable to adversarial examples. In attempting to explain the origin of adversarial examples, previous studies have typically focused on the fact that neural networks operate on high dimensional data, they overfit, or they are too linear. Here we argue that the origin of adversarial examples is primarily due to an inherent uncertainty that neural networks have about their predictions. We show that the functional form of this uncertainty is independent of architecture, dataset, and training protocol; and depends only on the statistics of the logit differences of the network, which do not change significantly during training. This leads to adversarial error having a universal scaling, as a power-law, with respect to the size of the adversarial perturbation. We show that this universality holds for a broad range of datasets (MNIST, CIFAR10, ImageNet, and random data), models (including state-of-the-art deep networks, linear models, adversarially trained networks, and networks trained on randomly shuffled labels), and attacks (FGSM, step l.l., PGD). Motivated by these results, we study the effects of reducing prediction entropy on adversarial robustness. Finally, we study the effect of network architectures on adversarial sensitivity. To do this, we use neural architecture search with reinforcement learning to find adversarially robust architectures on CIFAR10. Our resulting architecture is more robust to white and black box attacks compared to previous attempts.

  • 4 authors
·
Nov 8, 2017

Stealth edits for provably fixing or attacking large language models

We reveal new methods and the theoretical foundations of techniques for editing large language models. We also show how the new theory can be used to assess the editability of models and to expose their susceptibility to previously unknown malicious attacks. Our theoretical approach shows that a single metric (a specific measure of the intrinsic dimensionality of the model's features) is fundamental to predicting the success of popular editing approaches, and reveals new bridges between disparate families of editing methods. We collectively refer to these approaches as stealth editing methods, because they aim to directly and inexpensively update a model's weights to correct the model's responses to known hallucinating prompts without otherwise affecting the model's behaviour, without requiring retraining. By carefully applying the insight gleaned from our theoretical investigation, we are able to introduce a new network block -- named a jet-pack block -- which is optimised for highly selective model editing, uses only standard network operations, and can be inserted into existing networks. The intrinsic dimensionality metric also determines the vulnerability of a language model to a stealth attack: a small change to a model's weights which changes its response to a single attacker-chosen prompt. Stealth attacks do not require access to or knowledge of the model's training data, therefore representing a potent yet previously unrecognised threat to redistributed foundation models. They are computationally simple enough to be implemented in malware in many cases. Extensive experimental results illustrate and support the method and its theoretical underpinnings. Demos and source code for editing language models are available at https://github.com/qinghua-zhou/stealth-edits.

  • 7 authors
·
Jun 18, 2024

AutoBackdoor: Automating Backdoor Attacks via LLM Agents

Backdoor attacks pose a serious threat to the secure deployment of large language models (LLMs), enabling adversaries to implant hidden behaviors triggered by specific inputs. However, existing methods often rely on manually crafted triggers and static data pipelines, which are rigid, labor-intensive, and inadequate for systematically evaluating modern defense robustness. As AI agents become increasingly capable, there is a growing need for more rigorous, diverse, and scalable red-teaming frameworks that can realistically simulate backdoor threats and assess model resilience under adversarial conditions. In this work, we introduce AutoBackdoor, a general framework for automating backdoor injection, encompassing trigger generation, poisoned data construction, and model fine-tuning via an autonomous agent-driven pipeline. Unlike prior approaches, AutoBackdoor uses a powerful language model agent to generate semantically coherent, context-aware trigger phrases, enabling scalable poisoning across arbitrary topics with minimal human effort. We evaluate AutoBackdoor under three realistic threat scenarios, including Bias Recommendation, Hallucination Injection, and Peer Review Manipulation, to simulate a broad range of attacks. Experiments on both open-source and commercial models, including LLaMA-3, Mistral, Qwen, and GPT-4o, demonstrate that our method achieves over 90\% attack success with only a small number of poisoned samples. More importantly, we find that existing defenses often fail to mitigate these attacks, underscoring the need for more rigorous and adaptive evaluation techniques against agent-driven threats as explored in this work. All code, datasets, and experimental configurations will be merged into our primary repository at https://github.com/bboylyg/BackdoorLLM.

  • 7 authors
·
Nov 19, 2025

Clone What You Can't Steal: Black-Box LLM Replication via Logit Leakage and Distillation

Large Language Models (LLMs) are increasingly deployed in mission-critical systems, facilitating tasks such as satellite operations, command-and-control, military decision support, and cyber defense. Many of these systems are accessed through application programming interfaces (APIs). When such APIs lack robust access controls, they can expose full or top-k logits, creating a significant and often overlooked attack surface. Prior art has mainly focused on reconstructing the output projection layer or distilling surface-level behaviors. However, regenerating a black-box model under tight query constraints remains underexplored. We address that gap by introducing a constrained replication pipeline that transforms partial logit leakage into a functional deployable substitute model clone. Our two-stage approach (i) reconstructs the output projection matrix by collecting top-k logits from under 10k black-box queries via singular value decomposition (SVD) over the logits, then (ii) distills the remaining architecture into compact student models with varying transformer depths, trained on an open source dataset. A 6-layer student recreates 97.6% of the 6-layer teacher model's hidden-state geometry, with only a 7.31% perplexity increase, and a 7.58 Negative Log-Likelihood (NLL). A 4-layer variant achieves 17.1% faster inference and 18.1% parameter reduction with comparable performance. The entire attack completes in under 24 graphics processing unit (GPU) hours and avoids triggering API rate-limit defenses. These results demonstrate how quickly a cost-limited adversary can clone an LLM, underscoring the urgent need for hardened inference APIs and secure on-premise defense deployments.

  • 4 authors
·
Aug 31, 2025

Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs

The proliferation of Large Language Models (LLMs) accessed via black-box APIs introduces a significant trust challenge: users pay for services based on advertised model capabilities (e.g., size, performance), but providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs. This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking. Detecting such substitutions is difficult due to the black-box nature, typically limiting interaction to input-output queries. This paper formalizes the problem of model substitution detection in LLM APIs. We systematically evaluate existing verification techniques, including output-based statistical tests, benchmark evaluations, and log probability analysis, under various realistic attack scenarios like model quantization, randomized substitution, and benchmark evasion. Our findings reveal the limitations of methods relying solely on text outputs, especially against subtle or adaptive attacks. While log probability analysis offers stronger guarantees when available, its accessibility is often limited. We conclude by discussing the potential of hardware-based solutions like Trusted Execution Environments (TEEs) as a pathway towards provable model integrity, highlighting the trade-offs between security, performance, and provider adoption. Code is available at https://github.com/sunblaze-ucb/llm-api-audit

  • 4 authors
·
Apr 6, 2025 2

Online Adversarial Attacks

Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied k-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result shows Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for k<5 -- extending the previous analysis of the k-secretary problem. We also introduce the stochastic k-secretary -- effectively reducing online blackbox transfer attacks to a k-secretary problem under noise -- and prove theoretical bounds on the performance of Virtual+ adapted to this setting. Finally, we complement our theoretical results by conducting experiments on MNIST, CIFAR-10, and Imagenet classifiers, revealing the necessity of online algorithms in achieving near-optimal performance and also the rich interplay between attack strategies and online attack selection, enabling simple strategies like FGSM to outperform stronger adversaries.

  • 7 authors
·
Mar 2, 2021