1 A geometric framework for asymptotic inference of principal subspaces in PCA In this article, we develop an asymptotic method for constructing confidence regions for the set of all linear subspaces arising from PCA, from which we derive hypothesis tests on this set. Our method is based on the geometry of Riemannian manifolds with which some sets of linear subspaces are endowed. 2 authors · Sep 5, 2022
- HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics Advanced applied mathematics problems are underrepresented in existing Large Language Model (LLM) benchmark datasets. To address this, we introduce HARDMath, a dataset inspired by a graduate course on asymptotic methods, featuring challenging applied mathematics problems that require analytical approximation techniques. These problems demand a combination of mathematical reasoning, computational tools, and subjective judgment, making them difficult for LLMs. Our framework auto-generates a large number of problems with solutions validated against numerical ground truths. We evaluate both open- and closed-source LLMs on HARDMath-mini, a sub-sampled test set of 366 problems, as well as on 40 word problems formulated in applied science contexts. Even leading closed-source models like GPT-4 achieve only 43.8% overall accuracy with few-shot Chain-of-Thought prompting, and all models demonstrate significantly lower performance compared to results on existing mathematics benchmark datasets. We additionally conduct a detailed error analysis to gain insights into the failure cases of LLMs. These results demonstrate limitations of current LLM performance on advanced graduate-level applied math problems and underscore the importance of datasets like HARDMath to advance mathematical abilities of LLMs. 9 authors · Oct 13, 2024
- Asymptotic Analysis of Stochastic Splitting Methods for Multivariate Monotone Inclusions We propose an abstract framework to establish the convergence of the iterates of stochastic versions of a broad range of monotone operator splitting methods in Hilbert spaces. This framework allows for the introduction of stochasticity at several levels: approximation of operators, selection of coordinates and operators in block-iterative implementations, and relaxation parameters. The proposed analysis involves a reduced inclusion model with two operators. At each iteration, stochastic approximations to points in the graphs of these two operators are used to form the update. The results are applied to derive the almost sure and L^2 convergence of stochastic versions of the proximal point algorithm, as well as of randomized block-iterative projective splitting methods for solving systems of coupled inclusions involving a mix of set-valued, cocoercive, and Lipschitzian monotone operators combined via various monotonicity-preserving operations. 2 authors · Dec 2, 2025
- Averaged Method of Multipliers for Bi-Level Optimization without Lower-Level Strong Convexity Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in learning fields. The validity of existing works heavily rely on either a restrictive Lower- Level Strong Convexity (LLSC) condition or on solving a series of approximation subproblems with high accuracy or both. In this work, by averaging the upper and lower level objectives, we propose a single loop Bi-level Averaged Method of Multipliers (sl-BAMM) for BLO that is simple yet efficient for large-scale BLO and gets rid of the limited LLSC restriction. We further provide non-asymptotic convergence analysis of sl-BAMM towards KKT stationary points, and the comparative advantage of our analysis lies in the absence of strong gradient boundedness assumption, which is always required by others. Thus our theory safely captures a wider variety of applications in deep learning, especially where the upper-level objective is quadratic w.r.t. the lower-level variable. Experimental results demonstrate the superiority of our method. 5 authors · Feb 7, 2023
- An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon. 3 authors · Nov 20, 2024
- The SIML method without microstructure noise The SIML (abbreviation of Separating Information Maximal Likelihood) method, has been introduced by N. Kunitomo and S. Sato and their collaborators to estimate the integrated volatility of high-frequency data that is assumed to be an It\^o process but with so-called microstructure noise. The SIML estimator turned out to share many properties with the estimator introduced by P. Malliavin and M.E. Mancino. The present paper establishes the consistency and the asymptotic normality under a general sampling scheme but without microstructure noise. Specifically, a fast convergence shown for Malliavin--Mancino estimator by E. Clement and A. Gloter is also established for the SIML estimator. 3 authors · Oct 3, 2023
- A Policy Gradient Method for Confounded POMDPs In this paper, we propose a policy gradient method for confounded partially observable Markov decision processes (POMDPs) with continuous state and observation spaces in the offline setting. We first establish a novel identification result to non-parametrically estimate any history-dependent policy gradient under POMDPs using the offline data. The identification enables us to solve a sequence of conditional moment restrictions and adopt the min-max learning procedure with general function approximation for estimating the policy gradient. We then provide a finite-sample non-asymptotic bound for estimating the gradient uniformly over a pre-specified policy class in terms of the sample size, length of horizon, concentratability coefficient and the measure of ill-posedness in solving the conditional moment restrictions. Lastly, by deploying the proposed gradient estimation in the gradient ascent algorithm, we show the global convergence of the proposed algorithm in finding the history-dependent optimal policy under some technical conditions. To the best of our knowledge, this is the first work studying the policy gradient method for POMDPs under the offline setting. 3 authors · May 26, 2023
1 Accelerated Convergence of Stochastic Heavy Ball Method under Anisotropic Gradient Noise Heavy-ball momentum with decaying learning rates is widely used with SGD for optimizing deep learning models. In contrast to its empirical popularity, the understanding of its theoretical property is still quite limited, especially under the standard anisotropic gradient noise condition for quadratic regression problems. Although it is widely conjectured that heavy-ball momentum method can provide accelerated convergence and should work well in large batch settings, there is no rigorous theoretical analysis. In this paper, we fill this theoretical gap by establishing a non-asymptotic convergence bound for stochastic heavy-ball methods with step decay scheduler on quadratic objectives, under the anisotropic gradient noise condition. As a direct implication, we show that heavy-ball momentum can provide mathcal{O}(kappa) accelerated convergence of the bias term of SGD while still achieving near-optimal convergence rate with respect to the stochastic variance term. The combined effect implies an overall convergence rate within log factors from the statistical minimax rate. This means SGD with heavy-ball momentum is useful in the large-batch settings such as distributed machine learning or federated learning, where a smaller number of iterations can significantly reduce the number of communication rounds, leading to acceleration in practice. 4 authors · Dec 22, 2023
- High-order finite element method for atomic structure calculations We introduce featom, an open source code that implements a high-order finite element solver for the radial Schr\"odinger, Dirac, and Kohn-Sham equations. The formulation accommodates various mesh types, such as uniform or exponential, and the convergence can be systematically controlled by increasing the number and/or polynomial order of the finite element basis functions. The Dirac equation is solved using a squared Hamiltonian approach to eliminate spurious states. To address the slow convergence of the kappa=pm1 states due to divergent derivatives at the origin, we incorporate known asymptotic forms into the solutions. We achieve a high level of accuracy (10^{-8} Hartree) for total energies and eigenvalues of heavy atoms such as uranium in both Schr\"odinger and Dirac Kohn-Sham solutions. We provide detailed convergence studies and computational parameters required to attain commonly required accuracies. Finally, we compare our results with known analytic results as well as the results of other methods. In particular, we calculate benchmark results for atomic numbers (Z) from 1 to 92, verifying current benchmarks. We demonstrate significant speedup compared to the state-of-the-art shooting solver dftatom. An efficient, modular Fortran 2008 implementation, is provided under an open source, permissive license, including examples and tests, wherein particular emphasis is placed on the independence (no global variables), reusability, and generality of the individual routines. 8 authors · Jul 11, 2023
- A Fully First-Order Method for Stochastic Bilevel Optimization We consider stochastic unconstrained bilevel optimization problems when only the first-order gradient oracles are available. While numerous optimization methods have been proposed for tackling bilevel problems, existing methods either tend to require possibly expensive calculations regarding Hessians of lower-level objectives, or lack rigorous finite-time performance guarantees. In this work, we propose a Fully First-order Stochastic Approximation (F2SA) method, and study its non-asymptotic convergence properties. Specifically, we show that F2SA converges to an epsilon-stationary solution of the bilevel problem after epsilon^{-7/2}, epsilon^{-5/2}, and epsilon^{-3/2} iterations (each iteration using O(1) samples) when stochastic noises are in both level objectives, only in the upper-level objective, and not present (deterministic settings), respectively. We further show that if we employ momentum-assisted gradient estimators, the iteration complexities can be improved to epsilon^{-5/2}, epsilon^{-4/2}, and epsilon^{-3/2}, respectively. We demonstrate even superior practical performance of the proposed method over existing second-order based approaches on MNIST data-hypercleaning experiments. 4 authors · Jan 26, 2023
- Divide and Conquer Dynamic Programming: An Almost Linear Time Change Point Detection Methodology in High Dimensions We develop a novel, general and computationally efficient framework, called Divide and Conquer Dynamic Programming (DCDP), for localizing change points in time series data with high-dimensional features. DCDP deploys a class of greedy algorithms that are applicable to a broad variety of high-dimensional statistical models and can enjoy almost linear computational complexity. We investigate the performance of DCDP in three commonly studied change point settings in high dimensions: the mean model, the Gaussian graphical model, and the linear regression model. In all three cases, we derive non-asymptotic bounds for the accuracy of the DCDP change point estimators. We demonstrate that the DCDP procedures consistently estimate the change points with sharp, and in some cases, optimal rates while incurring significantly smaller computational costs than the best available algorithms. Our findings are supported by extensive numerical experiments on both synthetic and real data. 3 authors · Jan 26, 2023
- Multiple outlier detection tests for parametric models We propose a simple multiple outlier identification method for parametric location-scale and shape-scale models when the number of possible outliers is not specified. The method is based on a result giving asymptotic properties of extreme z-scores. Robust estimators of model parameters are used defining z-scores. An extensive simulation study was done for comparing of the proposed method with existing methods. For the normal family, the method is compared with the well known Davies-Gather, Rosner's, Hawking's and Bolshev's multiple outlier identification methods. The choice of an upper limit for the number of possible outliers in case of Rosner's test application is discussed. For other families, the proposed method is compared with a method generalizing Gather-Davies method. In most situations, the new method has the highest outlier identification power in terms of masking and swamping values. We also created R package outliersTests for proposed test. 2 authors · Oct 23, 2019
- Homogenization framework for rigid and non-rigid foldable origami metamaterials Origami metamaterials typically consist of folded sheets with periodic patterns, conferring them with remarkable mechanical properties. In the context of Continuum Mechanics, the majority of existing predictive methods are mechanism analogs which favor rigid folding and panel bending. While effective in predicting primary deformation modes, existing methods fall short in capturing the full spectrum of deformation of non-rigid foldable origami, such as the emergence of curvature along straight creases, local strain at vertices and warpage in panels. To fully capture the entire deformation spectrum and enhance the accuracy of existing methods, this paper introduces a homogenization framework for origami metamaterials where the faces are modeled as plate elements. Both asymptotic and energy-based homogenization methods are formulated and implemented. As a representative crease pattern, we examine the Miura origami sheet homogenized as an equivalent Kirchhoff-Love plate. The results reveal that certain effective elastic properties are nonlinearly related to both the initial fold angle and the crease stiffness. When benchmarked with results from fully resolved simulations, our framework yields errors up to 12.9\%, while existing models, including the bar-and-hinge model and the rigid-panel model, show up to 161\% error. The differences in errors are associated with the complex modes of crease and panel deformation in non-rigid origami, unexplored by the existing models. This work demonstrates a precise and efficient continuum framework for origami metamaterials as an effective strategy for predicting their elastic properties, understanding their mechanics, and designing their functionalities. 4 authors · Aug 22, 2025
- Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t.~a Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We prove a faster linear convergence result when a Polyak-{\L}ojasiewicz (P{\L}) condition holds. To our knowledge, this work is the first to provide non-asymptotic convergence guarantees -- variance-reduced or not -- for a cyclic block coordinate method in general composite (smooth + nonsmooth) nonconvex settings. Our experimental results demonstrate the efficacy of the proposed cyclic scheme in training deep neural nets. 4 authors · Dec 9, 2022
3 Temporal Difference Learning for Model Predictive Control Data-driven model predictive control has two key advantages over model-free methods: a potential for improved sample efficiency through model learning, and better performance as computational budget for planning increases. However, it is both costly to plan over long horizons and challenging to obtain an accurate model of the environment. In this work, we combine the strengths of model-free and model-based methods. We use a learned task-oriented latent dynamics model for local trajectory optimization over a short horizon, and use a learned terminal value function to estimate long-term return, both of which are learned jointly by temporal difference learning. Our method, TD-MPC, achieves superior sample efficiency and asymptotic performance over prior work on both state and image-based continuous control tasks from DMControl and Meta-World. Code and video results are available at https://nicklashansen.github.io/td-mpc. 3 authors · Mar 9, 2022 1
- Causal Discovery with Latent Confounders Based on Higher-Order Cumulants Causal discovery with latent confounders is an important but challenging task in many scientific areas. Despite the success of some overcomplete independent component analysis (OICA) based methods in certain domains, they are computationally expensive and can easily get stuck into local optima. We notice that interestingly, by making use of higher-order cumulants, there exists a closed-form solution to OICA in specific cases, e.g., when the mixing procedure follows the One-Latent-Component structure. In light of the power of the closed-form solution to OICA corresponding to the One-Latent-Component structure, we formulate a way to estimate the mixing matrix using the higher-order cumulants, and further propose the testable One-Latent-Component condition to identify the latent variables and determine causal orders. By iteratively removing the share identified latent components, we successfully extend the results on the One-Latent-Component structure to the Multi-Latent-Component structure and finally provide a practical and asymptotically correct algorithm to learn the causal structure with latent variables. Experimental results illustrate the asymptotic correctness and effectiveness of the proposed method. 5 authors · May 31, 2023
- Off-Policy Average Reward Actor-Critic with Deterministic Policy Search The average reward criterion is relatively less studied as most existing works in the Reinforcement Learning literature consider the discounted reward criterion. There are few recent works that present on-policy average reward actor-critic algorithms, but average reward off-policy actor-critic is relatively less explored. In this work, we present both on-policy and off-policy deterministic policy gradient theorems for the average reward performance criterion. Using these theorems, we also present an Average Reward Off-Policy Deep Deterministic Policy Gradient (ARO-DDPG) Algorithm. We first show asymptotic convergence analysis using the ODE-based method. Subsequently, we provide a finite time analysis of the resulting stochastic approximation scheme with linear function approximator and obtain an epsilon-optimal stationary policy with a sample complexity of Omega(epsilon^{-2.5}). We compare the average reward performance of our proposed ARO-DDPG algorithm and observe better empirical performance compared to state-of-the-art on-policy average reward actor-critic algorithms over MuJoCo-based environments. 4 authors · May 20, 2023
- Mitigating the Effects of Non-Identifiability on Inference for Bayesian Neural Networks with Latent Variables Bayesian Neural Networks with Latent Variables (BNN+LVs) capture predictive uncertainty by explicitly modeling model uncertainty (via priors on network weights) and environmental stochasticity (via a latent input noise variable). In this work, we first show that BNN+LV suffers from a serious form of non-identifiability: explanatory power can be transferred between the model parameters and latent variables while fitting the data equally well. We demonstrate that as a result, in the limit of infinite data, the posterior mode over the network weights and latent variables is asymptotically biased away from the ground-truth. Due to this asymptotic bias, traditional inference methods may in practice yield parameters that generalize poorly and misestimate uncertainty. Next, we develop a novel inference procedure that explicitly mitigates the effects of likelihood non-identifiability during training and yields high-quality predictions as well as uncertainty estimates. We demonstrate that our inference method improves upon benchmark methods across a range of synthetic and real data-sets. 3 authors · Nov 1, 2019
- Off-Policy Primal-Dual Safe Reinforcement Learning Primal-dual safe RL methods commonly perform iterations between the primal update of the policy and the dual update of the Lagrange Multiplier. Such a training paradigm is highly susceptible to the error in cumulative cost estimation since this estimation serves as the key bond connecting the primal and dual update processes. We show that this problem causes significant underestimation of cost when using off-policy methods, leading to the failure to satisfy the safety constraint. To address this issue, we propose conservative policy optimization, which learns a policy in a constraint-satisfying area by considering the uncertainty in cost estimation. This improves constraint satisfaction but also potentially hinders reward maximization. We then introduce local policy convexification to help eliminate such suboptimality by gradually reducing the estimation uncertainty. We provide theoretical interpretations of the joint coupling effect of these two ingredients and further verify them by extensive experiments. Results on benchmark tasks show that our method not only achieves an asymptotic performance comparable to state-of-the-art on-policy methods while using much fewer samples, but also significantly reduces constraint violation during training. Our code is available at https://github.com/ZifanWu/CAL. 8 authors · Jan 26, 2024
- A Confidence Interval for the $\ell_2$ Expected Calibration Error Recent advances in machine learning have significantly improved prediction accuracy in various applications. However, ensuring the calibration of probabilistic predictions remains a significant challenge. Despite efforts to enhance model calibration, the rigorous statistical evaluation of model calibration remains less explored. In this work, we develop confidence intervals the ell_2 Expected Calibration Error (ECE). We consider top-1-to-k calibration, which includes both the popular notion of confidence calibration as well as full calibration. For a debiased estimator of the ECE, we show asymptotic normality, but with different convergence rates and asymptotic variances for calibrated and miscalibrated models. We develop methods to construct asymptotically valid confidence intervals for the ECE, accounting for this behavior as well as non-negativity. Our theoretical findings are supported through extensive experiments, showing that our methods produce valid confidence intervals with shorter lengths compared to those obtained by resampling-based methods. 4 authors · Aug 16, 2024
- Discrete approach to machine learning The article explores an encoding and structural information processing approach using sparse bit vectors and fixed-length linear vectors. The following are presented: a discrete method of speculative stochastic dimensionality reduction of multidimensional code and linear spaces with linear asymptotic complexity; a geometric method for obtaining discrete embeddings of an organised code space that reflect the internal structure of a given modality. The structure and properties of a code space are investigated using three modalities as examples: morphology of Russian and English languages, and immunohistochemical markers. Parallels are drawn between the resulting map of the code space layout and so-called pinwheels appearing on the mammalian neocortex. A cautious assumption is made about similarities between neocortex organisation and processes happening in our models. 2 authors · Jul 19, 2025
- Sqrt(d) Dimension Dependence of Langevin Monte Carlo This article considers the popular MCMC method of unadjusted Langevin Monte Carlo (LMC) and provides a non-asymptotic analysis of its sampling error in 2-Wasserstein distance. The proof is based on a refinement of mean-square analysis in Li et al. (2019), and this refined framework automates the analysis of a large class of sampling algorithms based on discretizations of contractive SDEs. Using this framework, we establish an O(d/epsilon) mixing time bound for LMC, without warm start, under the common log-smooth and log-strongly-convex conditions, plus a growth condition on the 3rd-order derivative of the potential of target measures. This bound improves the best previously known O(d/epsilon) result and is optimal (in terms of order) in both dimension d and accuracy tolerance epsilon for target measures satisfying the aforementioned assumptions. Our theoretical analysis is further validated by numerical experiments. 3 authors · Sep 8, 2021
- Weakly Supervised Disentangled Generative Causal Representation Learning This paper proposes a Disentangled gEnerative cAusal Representation (DEAR) learning method under appropriate supervised information. Unlike existing disentanglement methods that enforce independence of the latent variables, we consider the general case where the underlying factors of interests can be causally related. We show that previous methods with independent priors fail to disentangle causally related factors even under supervision. Motivated by this finding, we propose a new disentangled learning method called DEAR that enables causal controllable generation and causal representation learning. The key ingredient of this new formulation is to use a structural causal model (SCM) as the prior distribution for a bidirectional generative model. The prior is then trained jointly with a generator and an encoder using a suitable GAN algorithm incorporated with supervised information on the ground-truth factors and their underlying causal structure. We provide theoretical justification on the identifiability and asymptotic convergence of the proposed method. We conduct extensive experiments on both synthesized and real data sets to demonstrate the effectiveness of DEAR in causal controllable generation, and the benefits of the learned representations for downstream tasks in terms of sample efficiency and distributional robustness. 6 authors · Oct 6, 2020
3 DrM: Mastering Visual Reinforcement Learning through Dormant Ratio Minimization Visual reinforcement learning (RL) has shown promise in continuous control tasks. Despite its progress, current algorithms are still unsatisfactory in virtually every aspect of the performance such as sample efficiency, asymptotic performance, and their robustness to the choice of random seeds. In this paper, we identify a major shortcoming in existing visual RL methods that is the agents often exhibit sustained inactivity during early training, thereby limiting their ability to explore effectively. Expanding upon this crucial observation, we additionally unveil a significant correlation between the agents' inclination towards motorically inactive exploration and the absence of neuronal activity within their policy networks. To quantify this inactivity, we adopt dormant ratio as a metric to measure inactivity in the RL agent's network. Empirically, we also recognize that the dormant ratio can act as a standalone indicator of an agent's activity level, regardless of the received reward signals. Leveraging the aforementioned insights, we introduce DrM, a method that uses three core mechanisms to guide agents' exploration-exploitation trade-offs by actively minimizing the dormant ratio. Experiments demonstrate that DrM achieves significant improvements in sample efficiency and asymptotic performance with no broken seeds (76 seeds in total) across three continuous control benchmark environments, including DeepMind Control Suite, MetaWorld, and Adroit. Most importantly, DrM is the first model-free algorithm that consistently solves tasks in both the Dog and Manipulator domains from the DeepMind Control Suite as well as three dexterous hand manipulation tasks without demonstrations in Adroit, all based on pixel observations. 15 authors · Oct 30, 2023
- RLIF: Interactive Imitation Learning as Reinforcement Learning Although reinforcement learning methods offer a powerful framework for automatic skill acquisition, for practical learning-based control problems in domains such as robotics, imitation learning often provides a more convenient and accessible alternative. In particular, an interactive imitation learning method such as DAgger, which queries a near-optimal expert to intervene online to collect correction data for addressing the distributional shift challenges that afflict na\"ive behavioral cloning, can enjoy good performance both in theory and practice without requiring manually specified reward functions and other components of full reinforcement learning methods. In this paper, we explore how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning. Our proposed method uses reinforcement learning with user intervention signals themselves as rewards. This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert. We also provide a unified framework to analyze our RL method and DAgger; for which we present the asymptotic analysis of the suboptimal gap for both methods as well as the non-asymptotic sample complexity bound of our method. We then evaluate our method on challenging high-dimensional continuous control simulation benchmarks as well as real-world robotic vision-based manipulation tasks. The results show that it strongly outperforms DAgger-like approaches across the different tasks, especially when the intervening experts are suboptimal. Code and videos can be found on the project website: rlif-page.github.io 5 authors · Nov 21, 2023
- Out-Of-Domain Unlabeled Data Improves Generalization We propose a novel framework for incorporating unlabeled data into semi-supervised classification problems, where scenarios involving the minimization of either i) adversarially robust or ii) non-robust loss functions have been considered. Notably, we allow the unlabeled samples to deviate slightly (in total variation sense) from the in-domain distribution. The core idea behind our framework is to combine Distributionally Robust Optimization (DRO) with self-supervised training. As a result, we also leverage efficient polynomial-time algorithms for the training stage. From a theoretical standpoint, we apply our framework on the classification problem of a mixture of two Gaussians in R^d, where in addition to the m independent and labeled samples from the true distribution, a set of n (usually with ngg m) out of domain and unlabeled samples are given as well. Using only the labeled data, it is known that the generalization error can be bounded by proptoleft(d/mright)^{1/2}. However, using our method on both isotropic and non-isotropic Gaussian mixture models, one can derive a new set of analytically explicit and non-asymptotic bounds which show substantial improvement on the generalization error compared to ERM. Our results underscore two significant insights: 1) out-of-domain samples, even when unlabeled, can be harnessed to narrow the generalization gap, provided that the true data distribution adheres to a form of the ``cluster assumption", and 2) the semi-supervised learning paradigm can be regarded as a special case of our framework when there are no distributional shifts. We validate our claims through experiments conducted on a variety of synthetic and real-world datasets. 6 authors · Sep 28, 2023
- Is Model Ensemble Necessary? Model-based RL via a Single Model with Lipschitz Regularized Value Function Probabilistic dynamics model ensemble is widely used in existing model-based reinforcement learning methods as it outperforms a single dynamics model in both asymptotic performance and sample efficiency. In this paper, we provide both practical and theoretical insights on the empirical success of the probabilistic dynamics model ensemble through the lens of Lipschitz continuity. We find that, for a value function, the stronger the Lipschitz condition is, the smaller the gap between the true dynamics- and learned dynamics-induced Bellman operators is, thus enabling the converged value function to be closer to the optimal value function. Hence, we hypothesize that the key functionality of the probabilistic dynamics model ensemble is to regularize the Lipschitz condition of the value function using generated samples. To test this hypothesis, we devise two practical robust training mechanisms through computing the adversarial noise and regularizing the value network's spectral norm to directly regularize the Lipschitz condition of the value functions. Empirical results show that combined with our mechanisms, model-based RL algorithms with a single dynamics model outperform those with an ensemble of probabilistic dynamics models. These findings not only support the theoretical insight, but also provide a practical solution for developing computationally efficient model-based RL algorithms. 4 authors · Feb 2, 2023
- KyFrog: A High-Security LWE-Based KEM Inspired by ML-KEM KyFrog is a conservative Learning-with-Errors (LWE) key-encapsulation mechanism designed to explore an alternative operating point compared to schemes with relatively small public keys and ciphertexts. KyFrog uses a larger dimension (n = 1024) and a small prime modulus q = 1103, together with narrow error distributions with standard deviations σ_s = σ_e = 1.4, to target approximately 2^{325} classical and quantum security against state-of-the-art lattice attacks under standard cost models, as estimated using the Lattice Estimator. The price paid for this security margin is an extremely large KEM ciphertext (about 0.5 MiB), while public and secret keys remain in the same ballpark as ML-KEM. We describe the design rationale, parameter search methodology, and implementation details of KyFrog, and we compare its asymptotic security and concrete parameter sizes with the ML-KEM standard. All code and data for this work are released as free and open-source software, with the full C++23 implementation and experimental scripts available at: https://github.com/victormeloasm/kyfrog 2 authors · Dec 6, 2025
1 COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically for Model-Based RL Dyna-style model-based reinforcement learning contains two phases: model rollouts to generate sample for policy learning and real environment exploration using current policy for dynamics model learning. However, due to the complex real-world environment, it is inevitable to learn an imperfect dynamics model with model prediction error, which can further mislead policy learning and result in sub-optimal solutions. In this paper, we propose COPlanner, a planning-driven framework for model-based methods to address the inaccurately learned dynamics model problem with conservative model rollouts and optimistic environment exploration. COPlanner leverages an uncertainty-aware policy-guided model predictive control (UP-MPC) component to plan for multi-step uncertainty estimation. This estimated uncertainty then serves as a penalty during model rollouts and as a bonus during real environment exploration respectively, to choose actions. Consequently, COPlanner can avoid model uncertain regions through conservative model rollouts, thereby alleviating the influence of model error. Simultaneously, it explores high-reward model uncertain regions to reduce model error actively through optimistic real environment exploration. COPlanner is a plug-and-play framework that can be applied to any dyna-style model-based methods. Experimental results on a series of proprioceptive and visual continuous control tasks demonstrate that both sample efficiency and asymptotic performance of strong model-based methods are significantly improved combined with COPlanner. 7 authors · Oct 11, 2023
1 Simplex Random Features We present Simplex Random Features (SimRFs), a new random feature (RF) mechanism for unbiased approximation of the softmax and Gaussian kernels by geometrical correlation of random projection vectors. We prove that SimRFs provide the smallest possible mean square error (MSE) on unbiased estimates of these kernels among the class of weight-independent geometrically-coupled positive random feature (PRF) mechanisms, substantially outperforming the previously most accurate Orthogonal Random Features at no observable extra cost. We present a more computationally expensive SimRFs+ variant, which we prove is asymptotically optimal in the broader family of weight-dependent geometrical coupling schemes (which permit correlations between random vector directions and norms). In extensive empirical studies, we show consistent gains provided by SimRFs in settings including pointwise kernel estimation, nonparametric classification and scalable Transformers. 4 authors · Jan 31, 2023
- Dynamic Attention Analysis for Backdoor Detection in Text-to-Image Diffusion Models Recent studies have revealed that text-to-image diffusion models are vulnerable to backdoor attacks, where attackers implant stealthy textual triggers to manipulate model outputs. Previous backdoor detection methods primarily focus on the static features of backdoor samples. However, a vital property of diffusion models is their inherent dynamism. This study introduces a novel backdoor detection perspective named Dynamic Attention Analysis (DAA), showing that these dynamic characteristics serve as better indicators for backdoor detection. Specifically, by examining the dynamic evolution of cross-attention maps, we observe that backdoor samples exhibit distinct feature evolution patterns at the <EOS> token compared to benign samples. To quantify these dynamic anomalies, we first introduce DAA-I, which treats the tokens' attention maps as spatially independent and measures dynamic feature using the Frobenius norm. Furthermore, to better capture the interactions between attention maps and refine the feature, we propose a dynamical system-based approach, referred to as DAA-S. This model formulates the spatial correlations among attention maps using a graph-based state equation and we theoretically analyze the global asymptotic stability of this method. Extensive experiments across six representative backdoor attack scenarios demonstrate that our approach significantly surpasses existing detection methods, achieving an average F1 Score of 79.27% and an AUC of 86.27%. The code is available at https://github.com/Robin-WZQ/DAA. 4 authors · Apr 29, 2025
- Live in the Moment: Learning Dynamics Model Adapted to Evolving Policy Model-based reinforcement learning (RL) often achieves higher sample efficiency in practice than model-free RL by learning a dynamics model to generate samples for policy learning. Previous works learn a dynamics model that fits under the empirical state-action visitation distribution for all historical policies, i.e., the sample replay buffer. However, in this paper, we observe that fitting the dynamics model under the distribution for all historical policies does not necessarily benefit model prediction for the current policy since the policy in use is constantly evolving over time. The evolving policy during training will cause state-action visitation distribution shifts. We theoretically analyze how this distribution shift over historical policies affects the model learning and model rollouts. We then propose a novel dynamics model learning method, named Policy-adapted Dynamics Model Learning (PDML). PDML dynamically adjusts the historical policy mixture distribution to ensure the learned model can continually adapt to the state-action visitation distribution of the evolving policy. Experiments on a range of continuous control environments in MuJoCo show that PDML achieves significant improvement in sample efficiency and higher asymptotic performance combined with the state-of-the-art model-based RL methods. 3 authors · Jul 25, 2022
1 Asymptotics of Language Model Alignment Let p denote a generative language model. Let r denote a reward model that returns a scalar that captures the degree at which a draw from p is preferred. The goal of language model alignment is to alter p to a new distribution phi that results in a higher expected reward while keeping phi close to p. A popular alignment method is the KL-constrained reinforcement learning (RL), which chooses a distribution phi_Delta that maximizes E_{phi_{Delta}} r(y) subject to a relative entropy constraint KL(phi_Delta || p) leq Delta. Another simple alignment method is best-of-N, where N samples are drawn from p and one with highest reward is selected. In this paper, we offer a closed-form characterization of the optimal KL-constrained RL solution. We demonstrate that any alignment method that achieves a comparable trade-off between KL divergence and reward must approximate the optimal KL-constrained RL solution in terms of relative entropy. To further analyze the properties of alignment methods, we introduce two simplifying assumptions: we let the language model be memoryless, and the reward model be linear. Although these assumptions may not reflect complex real-world scenarios, they enable a precise characterization of the asymptotic behavior of both the best-of-N alignment, and the KL-constrained RL method, in terms of information-theoretic quantities. We prove that the reward of the optimal KL-constrained RL solution satisfies a large deviation principle, and we fully characterize its rate function. We also show that the rate of growth of the scaled cumulants of the reward is characterized by a proper Renyi cross entropy. Finally, we show that best-of-N is asymptotically equivalent to KL-constrained RL solution by proving that their expected rewards are asymptotically equal, and concluding that the two distributions must be close in KL divergence. 5 authors · Apr 2, 2024
- Variable Selection in High Dimensional Linear Regressions with Parameter Instability This paper considers the problem of variable selection allowing for parameter instability. It distinguishes between signal and pseudo-signal variables that are correlated with the target variable, and noise variables that are not, and investigate the asymptotic properties of the One Covariate at a Time Multiple Testing (OCMT) method proposed by Chudik et al. (2018) under parameter insatiability. It is established that OCMT continues to asymptotically select an approximating model that includes all the signals and none of the noise variables. Properties of post selection regressions are also investigated, and in-sample fit of the selected regression is shown to have the oracle property. The theoretical results support the use of unweighted observations at the selection stage of OCMT, whilst applying down-weighting of observations only at the forecasting stage. Monte Carlo and empirical applications show that OCMT without down-weighting at the selection stage yields smaller mean squared forecast errors compared to Lasso, Adaptive Lasso, and boosting. 3 authors · Dec 24, 2023
- Soft Actor-Critic Algorithms and Applications Model-free deep reinforcement learning (RL) algorithms have been successfully applied to a range of challenging sequential decision making and control tasks. However, these methods typically suffer from two major challenges: high sample complexity and brittleness to hyperparameters. Both of these challenges limit the applicability of such methods to real-world domains. In this paper, we describe Soft Actor-Critic (SAC), our recently introduced off-policy actor-critic algorithm based on the maximum entropy RL framework. In this framework, the actor aims to simultaneously maximize expected return and entropy. That is, to succeed at the task while acting as randomly as possible. We extend SAC to incorporate a number of modifications that accelerate training and improve stability with respect to the hyperparameters, including a constrained formulation that automatically tunes the temperature hyperparameter. We systematically evaluate SAC on a range of benchmark tasks, as well as real-world challenging tasks such as locomotion for a quadrupedal robot and robotic manipulation with a dexterous hand. With these improvements, SAC achieves state-of-the-art performance, outperforming prior on-policy and off-policy methods in sample-efficiency and asymptotic performance. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving similar performance across different random seeds. These results suggest that SAC is a promising candidate for learning in real-world robotics tasks. 11 authors · Dec 12, 2018
- Schrödinger-Poisson systems with a general critical nonlinearity We consider a Schr\"odinger-Poisson system involving a general nonlinearity at critical growth and we prove the existence of positive solutions. The Ambrosetti-Rabinowitz condition is not required. We also study the asymptotics of solutions with respect to a parameter. 3 authors · Jan 6, 2015
- Optimally truncated WKB approximation for the highly oscillatory stationary 1D Schrödinger equation We discuss the numerical solution of initial value problems for varepsilon^2,varphi''+a(x),varphi=0 in the highly oscillatory regime, i.e., with a(x)>0 and 0<varepsilonll 1. We analyze and implement an approximate solution based on the well-known WKB-ansatz. The resulting approximation error is of magnitude O(varepsilon^{N}) where N refers to the truncation order of the underlying asymptotic series. When the optimal truncation order N_{opt} is chosen, the error behaves like O(varepsilon^{-2}exp(-cvarepsilon^{-1})) with some c>0. 4 authors · Oct 2, 2023
- Uniform approximation in classical weak convergence theory A common statistical task lies in showing asymptotic normality of certain statistics. In many of these situations, classical textbook results on weak convergence theory suffice for the problem at hand. However, there are quite some scenarios where stronger results are needed in order to establish an asymptotic normal approximation uniformly over a family of probability measures. In this note we collect some results in this direction. We restrict ourselves to weak convergence in mathbb R^d with continuous limit measures. 2 authors · Mar 23, 2019
- Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize This paper provides a non-asymptotic analysis of linear stochastic approximation (LSA) algorithms with fixed stepsize. This family of methods arises in many machine learning tasks and is used to obtain approximate solutions of a linear system Atheta = b for which A and b can only be accessed through random estimates {({bf A}_n, {bf b}_n): n in N^*}. Our analysis is based on new results regarding moments and high probability bounds for products of matrices which are shown to be tight. We derive high probability bounds on the performance of LSA under weaker conditions on the sequence {({bf A}_n, {bf b}_n): n in N^*} than previous works. However, in contrast, we establish polynomial concentration bounds with order depending on the stepsize. We show that our conclusions cannot be improved without additional assumptions on the sequence of random matrices {{bf A}_n: n in N^*}, and in particular that no Gaussian or exponential high probability bounds can hold. Finally, we pay a particular attention to establishing bounds with sharp order with respect to the number of iterations and the stepsize and whose leading terms contain the covariance matrices appearing in the central limit theorems. 6 authors · Jun 2, 2021
- A Riemann-Hilbert Approach to Asymptotic Analysis of Toeplitz+Hankel Determinants II In this article, we continue the development of the Riemann-Hilbert formalism for studying the asymptotics of Toeplitz+Hankel determinants with non-identical symbols, which we initiated in GI. In GI, we showed that the Riemann-Hilbert problem we formulated admits the Deift-Zhou nonlinear steepest descent analysis, but with a special restriction on the winding numbers of the associated symbols. In particular, the most natural case, namely zero winding numbers, is not allowed. A principal goal of this paper is to develop a framework that extends the asymptotic analysis of Toeplitz+Hankel determinants to a broader range of winding-number configurations. As an application, we consider the case in which the winding numbers of the Szego-type Toeplitz and Hankel symbols are zero and one, respectively, and compute the asymptotics of the norms of the corresponding system of orthogonal polynomials. 2 authors · Sep 15, 2025
- Generalization error of spectral algorithms The asymptotically precise estimation of the generalization of kernel methods has recently received attention due to the parallels between neural networks and their associated kernels. However, prior works derive such estimates for training by kernel ridge regression (KRR), whereas neural networks are typically trained with gradient descent (GD). In the present work, we consider the training of kernels with a family of spectral algorithms specified by profile h(lambda), and including KRR and GD as special cases. Then, we derive the generalization error as a functional of learning profile h(lambda) for two data models: high-dimensional Gaussian and low-dimensional translation-invariant model. Under power-law assumptions on the spectrum of the kernel and target, we use our framework to (i) give full loss asymptotics for both noisy and noiseless observations (ii) show that the loss localizes on certain spectral scales, giving a new perspective on the KRR saturation phenomenon (iii) conjecture, and demonstrate for the considered data models, the universality of the loss w.r.t. non-spectral details of the problem, but only in case of noisy observation. 3 authors · Mar 18, 2024
- Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation We prove new convergence rates for a generalized version of stochastic Nesterov acceleration under interpolation conditions. Unlike previous analyses, our approach accelerates any stochastic gradient method which makes sufficient progress in expectation. The proof, which proceeds using the estimating sequences framework, applies to both convex and strongly convex functions and is easily specialized to accelerated SGD under the strong growth condition. In this special case, our analysis reduces the dependence on the strong growth constant from rho to rho as compared to prior work. This improvement is comparable to a square-root of the condition number in the worst case and address criticism that guarantees for stochastic acceleration could be worse than those for SGD. 3 authors · Apr 2, 2024
- Parabolic-elliptic and indirect-direct simplifications in chemotaxis systems driven by indirect signalling Singular limits for the following indirect signalling chemotaxis system align* \left\{ array{lllllll} \partial_t n = \Delta n - \nabla \cdot (n \nabla c ) & in \Omega\times(0,\infty) , \varepsilon \partial_t c = \Delta c - c + w & in \Omega\times(0,\infty), \varepsilon \partial_t w = \tau \Delta w - w + n & in \Omega\times (0,\infty), \partial_\nu n = \partial_\nu c = \partial_\nu w = 0, &on \partial\Omega\times (0,\infty) %(n,c,w)_{t=0} = (n_0,c_0,w_0) & on \Omega, array \right. align* are investigated. More precisely, we study parabolic-elliptic simplification, or PES, varepsilonto 0^+ with fixed tau>0 up to the critical dimension N=4, and indirect-direct simplification, or IDS, (varepsilon,tau)to (0^+,0^+) up to the critical dimension N=2. These are relevant in biological situations where the signalling process is on a much faster time scale compared to the species diffusion and all interactions. Showing singular limits in critical dimensions is challenging. To deal with the PES, we carefully combine the entropy function, an Adam-type inequality, the regularisation of slow evolution, and an energy equation method to obtain strong convergence in representative spaces. For the IDS, a bootstrap argument concerning the L^p-energy function is devised, which allows us to obtain suitable uniform bounds for the singular limits. Moreover, in both scenarios, we also present the convergence rates, where the effect of the initial layer and the convergence to the critical manifold are also revealed. 4 authors · Aug 2, 2025
- Towards a statistical theory of data selection under weak supervision Given a sample of size N, it is often useful to select a subsample of smaller size n<N to be used for statistical estimation or learning. Such a data selection step is useful to reduce the requirements of data labeling and the computational complexity of learning. We assume to be given N unlabeled samples {{boldsymbol x}_i}_{ile N}, and to be given access to a `surrogate model' that can predict labels y_i better than random guessing. Our goal is to select a subset of the samples, to be denoted by {{boldsymbol x}_i}_{iin G}, of size |G|=n<N. We then acquire labels for this set and we use them to train a model via regularized empirical risk minimization. By using a mixture of numerical experiments on real and synthetic data, and mathematical derivations under low- and high- dimensional asymptotics, we show that: (i)~Data selection can be very effective, in particular beating training on the full sample in some cases; (ii)~Certain popular choices in data selection methods (e.g. unbiased reweighted subsampling, or influence function-based subsampling) can be substantially suboptimal. 3 authors · Sep 25, 2023
- Asymptotic behaviour of the heat equation in an exterior domain with general boundary conditions II. The case of bounded and of L^{p} data In this work, we study the asymptotic behaviour of solutions to the heat equation in exterior domains, i.e., domains which are the complement of a smooth compact set in R^N. Different homogeneous boundary conditions are considered, including Dirichlet, Robin, and Neumann ones. In this second part of our work, we consider the case of bounded initial data and prove that, after some correction term, the solutions become close to the solutions in the whole space and show how complex behaviours appear. We also analyse the case of initial data in L^p with 1<p<infty where all solutions essentially decay to 0 and the convergence rate could be arbitrarily slow. 2 authors · Oct 17, 2024
- Generative Principal Component Analysis In this paper, we study the problem of principal component analysis with generative modeling assumptions, adopting a general model for the observed matrix that encompasses notable special cases, including spiked matrix recovery and phase retrieval. The key assumption is that the underlying signal lies near the range of an L-Lipschitz continuous generative model with bounded k-dimensional inputs. We propose a quadratic estimator, and show that it enjoys a statistical rate of order frac{klog L{m}}, where m is the number of samples. We also provide a near-matching algorithm-independent lower bound. Moreover, we provide a variant of the classic power method, which projects the calculated data onto the range of the generative model during each iteration. We show that under suitable conditions, this method converges exponentially fast to a point achieving the above-mentioned statistical rate. We perform experiments on various image datasets for spiked matrix and phase retrieval models, and illustrate performance gains of our method to the classic power method and the truncated power method devised for sparse principal component analysis. 5 authors · Mar 17, 2022
- A Milstein-type method for highly non-linear non-autonomous time-changed stochastic differential equations A Milstein-type method is proposed for some highly non-linear non-autonomous time-changed stochastic differential equations (SDEs). The spatial variables in the coefficients of the time-changed SDEs satisfy the super-linear growth condition and the temporal variables obey some H\"older's continuity condition. The strong convergence in the finite time is studied and the convergence order is obtained. 3 authors · Aug 27, 2023
2 AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions Computers calculate transcendental functions by approximating them through the composition of a few limited-precision instructions. For example, an exponential can be calculated with a Taylor series. These approximation methods were developed over the centuries by mathematicians, who emphasized the attainability of arbitrary precision. Computers, however, operate on few limited precision types, such as the popular float32. In this study, we show that when aiming for limited precision, existing approximation methods can be outperformed by programs automatically discovered from scratch by a simple evolutionary algorithm. In particular, over real numbers, our method can approximate the exponential function reaching orders of magnitude more precision for a given number of operations when compared to previous approaches. More practically, over float32 numbers and constrained to less than 1 ULP of error, the same method attains a speedup over baselines by generating code that triggers better XLA/LLVM compilation paths. In other words, in both cases, evolution searched a vast space of possible programs, without knowledge of mathematics, to discover previously unknown optimized approximations to high precision, for the first time. We also give evidence that these results extend beyond the exponential. The ubiquity of transcendental functions suggests that our method has the potential to reduce the cost of scientific computing applications. 10 authors · Dec 13, 2023
- Nonintrusive approximation of parametrized limits of matrix power algorithms -- application to matrix inverses and log-determinants We consider in this work quantities that can be obtained as limits of powers of parametrized matrices, for instance the inverse matrix or the logarithm of the determinant. Under the assumption of affine dependence in the parameters, we use the Empirical Interpolation Method (EIM) to derive an approximation for powers of these matrices, from which we derive a nonintrusive approximation for the aforementioned limits. We derive upper bounds of the error made by the obtained formula. Finally, numerical comparisons with classical intrusive and nonintrusive approximation techniques are provided: in the considered test-cases, our algorithm performs well compared to the nonintrusive ones. 4 authors · Oct 6, 2017
1 Chinchilla Scaling: A replication attempt Hoffmann et al. (2022) propose three methods for estimating a compute-optimal scaling law. We attempt to replicate their third estimation procedure, which involves fitting a parametric loss function to a reconstruction of data from their plots. We find that the reported estimates are inconsistent with their first two estimation methods, fail at fitting the extracted data, and report implausibly narrow confidence intervals--intervals this narrow would require over 600,000 experiments, while they likely only ran fewer than 500. In contrast, our rederivation of the scaling law using the third approach yields results that are compatible with the findings from the first two estimation procedures described by Hoffmann et al. 4 authors · Apr 15, 2024
- Sharp Deviations Bounds for Dirichlet Weighted Sums with Application to analysis of Bayesian algorithms In this work, we derive sharp non-asymptotic deviation bounds for weighted sums of Dirichlet random variables. These bounds are based on a novel integral representation of the density of a weighted Dirichlet sum. This representation allows us to obtain a Gaussian-like approximation for the sum distribution using geometry and complex analysis methods. Our results generalize similar bounds for the Beta distribution obtained in the seminal paper Alfers and Dinges [1984]. Additionally, our results can be considered a sharp non-asymptotic version of the inverse of Sanov's theorem studied by Ganesh and O'Connell [1999] in the Bayesian setting. Based on these results, we derive new deviation bounds for the Dirichlet process posterior means with application to Bayesian bootstrap. Finally, we apply our estimates to the analysis of the Multinomial Thompson Sampling (TS) algorithm in multi-armed bandits and significantly sharpen the existing regret bounds by making them independent of the size of the arms distribution support. 5 authors · Apr 6, 2023
- Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic Analysis For DDIM-Type Samplers We develop a framework for non-asymptotic analysis of deterministic samplers used for diffusion generative modeling. Several recent works have analyzed stochastic samplers using tools like Girsanov's theorem and a chain rule variant of the interpolation argument. Unfortunately, these techniques give vacuous bounds when applied to deterministic samplers. We give a new operational interpretation for deterministic sampling by showing that one step along the probability flow ODE can be expressed as two steps: 1) a restoration step that runs gradient ascent on the conditional log-likelihood at some infinitesimally previous time, and 2) a degradation step that runs the forward process using noise pointing back towards the current iterate. This perspective allows us to extend denoising diffusion implicit models to general, non-linear forward processes. We then develop the first polynomial convergence bounds for these samplers under mild conditions on the data distribution. 3 authors · Mar 6, 2023
- High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance During recent years the interest of optimization and machine learning communities in high-probability convergence of stochastic optimization methods has been growing. One of the main reasons for this is that high-probability complexity bounds are more accurate and less studied than in-expectation ones. However, SOTA high-probability non-asymptotic convergence results are derived under strong assumptions such as the boundedness of the gradient noise variance or of the objective's gradient itself. In this paper, we propose several algorithms with high-probability convergence results under less restrictive assumptions. In particular, we derive new high-probability convergence results under the assumption that the gradient/operator noise has bounded central alpha-th moment for alpha in (1,2] in the following setups: (i) smooth non-convex / Polyak-Lojasiewicz / convex / strongly convex / quasi-strongly convex minimization problems, (ii) Lipschitz / star-cocoercive and monotone / quasi-strongly monotone variational inequalities. These results justify the usage of the considered methods for solving problems that do not fit standard functional classes studied in stochastic optimization. 8 authors · Feb 2, 2023
- High-dimensional Location Estimation via Norm Concentration for Subgamma Vectors In location estimation, we are given n samples from a known distribution f shifted by an unknown translation lambda, and want to estimate lambda as precisely as possible. Asymptotically, the maximum likelihood estimate achieves the Cram\'er-Rao bound of error mathcal N(0, 1{nmathcal I}), where mathcal I is the Fisher information of f. However, the n required for convergence depends on f, and may be arbitrarily large. We build on the theory using smoothed estimators to bound the error for finite n in terms of mathcal I_r, the Fisher information of the r-smoothed distribution. As n to infty, r to 0 at an explicit rate and this converges to the Cram\'er-Rao bound. We (1) improve the prior work for 1-dimensional f to converge for constant failure probability in addition to high probability, and (2) extend the theory to high-dimensional distributions. In the process, we prove a new bound on the norm of a high-dimensional random variable whose 1-dimensional projections are subgamma, which may be of independent interest. 3 authors · Feb 5, 2023
- Convergence Analysis for General Probability Flow ODEs of Diffusion Models in Wasserstein Distances Score-based generative modeling with probability flow ordinary differential equations (ODEs) has achieved remarkable success in a variety of applications. While various fast ODE-based samplers have been proposed in the literature and employed in practice, the theoretical understandings about convergence properties of the probability flow ODE are still quite limited. In this paper, we provide the first non-asymptotic convergence analysis for a general class of probability flow ODE samplers in 2-Wasserstein distance, assuming accurate score estimates. We then consider various examples and establish results on the iteration complexity of the corresponding ODE-based samplers. 2 authors · Jan 31, 2024
- Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization We consider the optimization problem of the form min_{x in R^d} f(x) triangleq E_{xi} [F(x; xi)], where the component F(x;xi) is L-mean-squared Lipschitz but possibly nonconvex and nonsmooth. The recently proposed gradient-free method requires at most O( L^4 d^{3/2} epsilon^{-4} + Delta L^3 d^{3/2} delta^{-1} epsilon^{-4}) stochastic zeroth-order oracle complexity to find a (delta,epsilon)-Goldstein stationary point of objective function, where Delta = f(x_0) - inf_{x in R^d} f(x) and x_0 is the initial point of the algorithm. This paper proposes a more efficient algorithm using stochastic recursive gradient estimators, which improves the complexity to O(L^3 d^{3/2} epsilon^{-3}+ Delta L^2 d^{3/2} delta^{-1} epsilon^{-3}). 3 authors · Jan 16, 2023
- Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic Bounds and Applications Motivated by a wide variety of applications, ranging from stochastic optimization to dimension reduction through variable selection, the problem of estimating gradients accurately is of crucial importance in statistics and learning theory. We consider here the classic regression setup, where a real valued square integrable r.v. Y is to be predicted upon observing a (possibly high dimensional) random vector X by means of a predictive function f(X) as accurately as possible in the mean-squared sense and study a nearest-neighbour-based pointwise estimate of the gradient of the optimal predictive function, the regression function m(x)=E[Ymid X=x]. Under classic smoothness conditions combined with the assumption that the tails of Y-m(X) are sub-Gaussian, we prove nonasymptotic bounds improving upon those obtained for alternative estimation methods. Beyond the novel theoretical results established, several illustrative numerical experiments have been carried out. The latter provide strong empirical evidence that the estimation method proposed works very well for various statistical problems involving gradient estimation, namely dimensionality reduction, stochastic gradient descent optimization and quantifying disentanglement. 3 authors · Jun 26, 2020
- A New Bound on the Cumulant Generating Function of Dirichlet Processes In this paper, we introduce a novel approach for bounding the cumulant generating function (CGF) of a Dirichlet process (DP) X sim DP(αν_0), using superadditivity. In particular, our key technical contribution is the demonstration of the superadditivity of αmapsto log E_{X sim DP(αν_0)}[exp( E_X[αf])], where E_X[f] = int f dX. This result, combined with Fekete's lemma and Varadhan's integral lemma, converts the known asymptotic large deviation principle into a practical upper bound on the CGF logE_{Xsim DP(αν_0)}{exp(E_{X}{[f]})} for any α> 0. The bound is given by the convex conjugate of the scaled reversed Kullback-Leibler divergence αKL(ν_0Vert cdot). This new bound provides particularly effective confidence regions for sums of independent DPs, making it applicable across various fields. 7 authors · Sep 27, 2024
- Asymptotic Plateau Problem in H^2xR: Tall Curves We study the asymptotic Plateau problem in BHH for area minimizing surfaces, and give a fairly complete solution for finite curves. 1 authors · May 31, 2020
- The Rayleigh-Boltzmann equation with shear deformations in the hyperbolic-dominated regime In this paper we consider a particular class of solutions of the Rayleigh-Boltzmann equation, known in the nonlinear setting as homoenergetic solutions, which have the form gleft( x,v,t right) =fleft( v-Lleft( tright)x,tright) where the matrix L(t) describes a shear flow deformation. We began this analysis in [22] where we rigorously proved the existence of a stationary non-equilibrium solution and established the different behaviour of the solutions for small and large values of the shear parameter, for cut-off collision kernels with homogeneity parameter 0leq gamma <1, including Maxwell molecules and hard potentials. In this paper, we concentrate in the case where the deformation term dominates the collision term for large times (hyperbolic-dominated regime). This occurs for collision kernels with gamma < 0 and in particular we focus on gamma in (-1,0). In such a hyperbolic-dominated regime, it appears challenging to provide a clear description of the long-term asymptotics of the solutions. Here we present a formal analysis of the long-time asymptotics for the distribution of velocities and provide the explicit form for the asymptotic profile. Additionally, we discuss the different asymptotic behaviour expected in the case of homogeneity gamma < -1. Furthermore, we provide a probabilistic interpretation describing a stochastic process consisting in a combination of collisions and shear flows. The tagged particle velocity {v(t)}_{tgeq 0} is a Markov process that arises from the combination of free flights in a shear flow along with random jumps caused by collisions. 3 authors · Jun 18, 2025
- Optimistic optimization of a Brownian We address the problem of optimizing a Brownian motion. We consider a (random) realization W of a Brownian motion with input space in [0,1]. Given W, our goal is to return an ε-approximation of its maximum using the smallest possible number of function evaluations, the sample complexity of the algorithm. We provide an algorithm with sample complexity of order log^2(1/ε). This improves over previous results of Al-Mharmah and Calvin (1996) and Calvin et al. (2017) which provided only polynomial rates. Our algorithm is adaptive---each query depends on previous values---and is an instance of the optimism-in-the-face-of-uncertainty principle. 3 authors · Jan 15, 2019
- A Deep Conjugate Direction Method for Iteratively Solving Linear Systems We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training. 6 authors · May 22, 2022
1 Segmentation and Smoothing Affect Explanation Quality More Than the Choice of Perturbation-based XAI Method for Image Explanations Perturbation-based post-hoc image explanation methods are commonly used to explain image prediction models. These methods perturb parts of the input to measure how those parts affect the output. Since the methods only require the input and output, they can be applied to any model, making them a popular choice to explain black-box models. While many different methods exist and have been compared with one another, it remains poorly understood which parameters of the different methods are responsible for their varying performance. This work uses the Randomized Input Sampling for Explanations (RISE) method as a baseline to evaluate many combinations of mask sampling, segmentation techniques, smoothing, attribution calculation, and per-segment or per-pixel attribution, using a proxy metric. The results show that attribution calculation, which is frequently the focus of other works, has little impact on the results. Conversely, segmentation and per-pixel attribution, rarely examined parameters, have a significant impact. The implementation of and data gathered in this work are available online: https://github.com/guspih/post-hoc-image-perturbation and https://bit.ly/smooth-mask-perturbation. 2 authors · Sep 6, 2024
- How Powerful are Shallow Neural Networks with Bandlimited Random Weights? We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function. 5 authors · Aug 19, 2020
- Some Properties of Large Excursions of a Stationary Gaussian Process The present work investigates two properties of level crossings of a stationary Gaussian process X(t) with autocorrelation function R_X(tau). We show firstly that if R_X(tau) admits finite second and fourth derivatives at the origin, the length of up-excursions above a large negative level -gamma is asymptotically exponential as -gamma to -infty. Secondly, assuming that R_X(tau) admits a finite second derivative at the origin and some defined properties, we derive the mean number of crossings as well as the length of successive excursions above two subsequent large levels. The asymptotic results are shown to be effective even for moderate values of crossing level. An application of the developed results is proposed to derive the probability of successive excursions above adjacent levels during a time window. 1 authors · May 18, 2012
- Comparative Analysis of Numerical Methods for Parameter Determination We made a comparative analysis of numerical methods for multidimensional optimization. The main parameter is a number of computations of the test function to reach necessary accuracy, as it is computationally "slow". For complex functions, analytic differentiation by many parameters can cause problems associated with a significant complication of the program and thus slowing its operation. For comparison, we used the methods: "brute force" (or minimization on a regular grid), Monte Carlo, steepest descent, conjugate gradients, Brent's method (golden section search), parabolic interpolation etc. The Monte-Carlo method was applied to the eclipsing binary system AM Leo. 2 authors · Oct 7, 2013
- Bootstrability in Line-Defect CFT with Improved Truncation Methods We study the conformal bootstrap of 1D CFTs on the straight Maldacena-Wilson line in 4D {cal N}=4 super-Yang-Mills theory. We introduce an improved truncation scheme with an 'OPE tail' approximation and use it to reproduce the 'bootstrability' results of Cavagli\`a et al. for the OPE-coefficients squared of the first three unprotected operators. For example, for the first OPE-coefficient squared at 't Hooft coupling (4pi)^2, linear-functional methods with two sum rules from integrated correlators give the rigorous result 0.294014873 pm 4.88 cdot 10^{-8}, whereas our methods give with machine-precision computations 0.294014228 pm 6.77 cdot 10^{-7}. For our numerical searches, we benchmark the Reinforcement Learning Soft Actor-Critic algorithm against an Interior Point Method algorithm (IPOPT) and comment on the merits of each algorithm. 5 authors · Jun 27, 2023
- Fluctuations of the connectivity threshold and largest nearest-neighbour link Consider a random uniform sample of n points in a compact region A of Euclidean d-space, d geq 2, with a smooth or (when d=2) polygonal boundary. Fix k bf N. Let T_{n,k} be the threshold r at which the geometric graph on these n vertices with distance parameter r becomes k-connected. We show that if d=2 then n (pi/|A|) T_{n,1}^2 - log n is asymptotically standard Gumbel. For (d,k) neq (2,1), it is n (theta_d/|A|) T_{n,k}^d - (2-2/d) log n - (4-2k-2/d) log log n that converges in distribution to a nondegenerate limit, where theta_d is the volume of the unit ball. The limit is Gumbel with scale parameter 2 except when (d,k)=(2,2) where the limit is two component extreme value distributed. The different cases reflect the fact that boundary effects are more more important in some cases than others. We also give similar results for the largest k-nearest neighbour link U_{n,k} in the sample, and show T_{n,k}=U_{n,k} with high probability. We provide estimates on rates of convergence and give similar results for Poisson samples in A. Finally, we give similar results even for non-uniform samples, with a less explicit sequence of centring constants. 2 authors · Jun 2, 2024
- The Fyodorov-Hiary-Keating Conjecture. I By analogy with conjectures for random matrices, Fyodorov-Hiary-Keating and Fyodorov-Keating proposed precise asymptotics for the maximum of the Riemann zeta function in a typical short interval on the critical line. In this paper, we settle the upper bound part of their conjecture in a strong form. More precisely, we show that the measure of those T leq t leq 2T for which $ max_{|h| leq 1} |zeta(1/2 + i t + i h)| > e^y log T {(loglog T)^{3/4}} is bounded by Cy e^{-2y} uniformly in y \geq 1. This is expected to be optimal for y= O(\log\log T). This upper bound is sharper than what is known in the context of random matrices, since it gives (uniform) decay rates in y$. In a subsequent paper we will obtain matching lower bounds. 3 authors · Jul 2, 2020
- Asymptotic behavior of bifurcation curves of nonlocal logistic equation of population dynamics We study the one-dimensional nonlocal Kirchhoff type bifurcation problem related to logistic equation of population dynamics. We establish the precise asymptotic formulas for bifurcation curve lambda = lambda(alpha) as alpha to infty in L^2-framework, where alpha:= Vert u_lambda Vert_2. 1 authors · Aug 3, 2025
- Modified Singly-Runge-Kutta-TASE methods for the numerical solution of stiff differential equations Singly-TASE operators for the numerical solution of stiff differential equations were proposed by Calvo et al. in J.Sci. Comput. 2023 to reduce the computational cost of Runge-Kutta-TASE (RKTASE) methods when the involved linear systems are solved by some LU factorization. In this paper we propose a modification of these methods to improve the efficiency by considering different TASE operators for each stage of the Runge-Kutta. We prove that the resulting RKTASE methods are equivalent to W-methods (Steihaug and Wolfbrandt, Mathematics of Computation,1979) and this allows us to obtain the order conditions of the proposed Modified Singly-RKTASE methods (MSRKTASE) through the theory developed for the W-methods. We construct new MSRKTASE methods of order two and three and demonstrate their effectiveness through numerical experiments on both linear and nonlinear stiff systems. The results show that the MSRKTASE schemes significantly enhance efficiency and accuracy compared to previous Singly-RKTASE schemes. 3 authors · Jul 1, 2024
8 Diffusion Sampling with Momentum for Mitigating Divergence Artifacts Despite the remarkable success of diffusion models in image generation, slow sampling remains a persistent issue. To accelerate the sampling process, prior studies have reformulated diffusion sampling as an ODE/SDE and introduced higher-order numerical methods. However, these methods often produce divergence artifacts, especially with a low number of sampling steps, which limits the achievable acceleration. In this paper, we investigate the potential causes of these artifacts and suggest that the small stability regions of these methods could be the principal cause. To address this issue, we propose two novel techniques. The first technique involves the incorporation of Heavy Ball (HB) momentum, a well-known technique for improving optimization, into existing diffusion numerical methods to expand their stability regions. We also prove that the resulting methods have first-order convergence. The second technique, called Generalized Heavy Ball (GHVB), constructs a new high-order method that offers a variable trade-off between accuracy and artifact suppression. Experimental results show that our techniques are highly effective in reducing artifacts and improving image quality, surpassing state-of-the-art diffusion solvers on both pixel-based and latent-based diffusion models for low-step sampling. Our research provides novel insights into the design of numerical methods for future diffusion work. 5 authors · Jul 20, 2023
- A Simple Introduction to the SiMPL Method for Density-Based Topology Optimization We introduce a novel method for solving density-based topology optimization problems: Sigmoidal Mirror descent with a Projected Latent variable (SiMPL). The SiMPL method (pronounced as ``the simple method'') optimizes a design using only first-order derivative information of the objective function. The bound constraints on the density field are enforced with the help of the (negative) Fermi--Dirac entropy, which is also used to define a non-symmetric distance function called a Bregman divergence on the set of admissible designs. This Bregman divergence leads to a simple update rule that is further simplified with the help of a so-called latent variable. Because the SiMPL method involves discretizing the latent variable, it produces a sequence of pointwise-feasible iterates, even when high-order finite elements are used in the discretization. Numerical experiments demonstrate that the method outperforms other popular first-order optimization algorithms. To outline the general applicability of the technique, we include examples with (self-load) compliance minimization and compliant mechanism optimization problems. 4 authors · Nov 28, 2024
- Accelerating Feedforward Computation via Parallel Nonlinear Equation Solving Feedforward computation, such as evaluating a neural network or sampling from an autoregressive model, is ubiquitous in machine learning. The sequential nature of feedforward computation, however, requires a strict order of execution and cannot be easily accelerated with parallel computing. To enable parallelization, we frame the task of feedforward computation as solving a system of nonlinear equations. We then propose to find the solution using a Jacobi or Gauss-Seidel fixed-point iteration method, as well as hybrid methods of both. Crucially, Jacobi updates operate independently on each equation and can be executed in parallel. Our method is guaranteed to give exactly the same values as the original feedforward computation with a reduced (or equal) number of parallelizable iterations, and hence reduced time given sufficient parallel computing power. Experimentally, we demonstrate the effectiveness of our approach in accelerating (i) backpropagation of RNNs, (ii) evaluation of DenseNets, and (iii) autoregressive sampling of MADE and PixelCNN++, with speedup factors between 2.1 and 26 under various settings. 4 authors · Feb 10, 2020
- Convergence of (generalized) power series solutions of functional equations Solutions of nonlinear functional equations are generally not expressed as a finite number of combinations and compositions of elementary and known special functions. One of the approaches to study them is, firstly, to find formal solutions (that is, series whose terms are described and ordered in some way but which do not converge apriori) and, secondly, to study the convergence or summability of these formal solutions (the existence and uniqueness of actual solutions with the given asymptotic expansion in a certain domain). In this paper we deal only with the convergence of formal functional series having the form of an infinite sum of power functions with (complex, in general) power exponents and satisfying analytical functional equations of the following three types: a differential, q-difference or Mahler equation. 2 authors · Dec 1, 2024
- Spacetime Neural Network for High Dimensional Quantum Dynamics We develop a spacetime neural network method with second order optimization for solving quantum dynamics from the high dimensional Schr\"{o}dinger equation. In contrast to the standard iterative first order optimization and the time-dependent variational principle, our approach utilizes the implicit mid-point method and generates the solution for all spatial and temporal values simultaneously after optimization. We demonstrate the method in the Schr\"{o}dinger equation with a self-normalized autoregressive spacetime neural network construction. Future explorations for solving different high dimensional differential equations are discussed. 6 authors · Aug 4, 2021
- Neural Spectral Methods: Self-supervised learning in the spectral domain We present Neural Spectral Methods, a technique to solve parametric Partial Differential Equations (PDEs), grounded in classical spectral methods. Our method uses orthogonal bases to learn PDE solutions as mappings between spectral coefficients. In contrast to current machine learning approaches which enforce PDE constraints by minimizing the numerical quadrature of the residuals in the spatiotemporal domain, we leverage Parseval's identity and introduce a new training strategy through a spectral loss. Our spectral loss enables more efficient differentiation through the neural network, and substantially reduces training complexity. At inference time, the computational cost of our method remains constant, regardless of the spatiotemporal resolution of the domain. Our experimental results demonstrate that our method significantly outperforms previous machine learning approaches in terms of speed and accuracy by one to two orders of magnitude on multiple different problems. When compared to numerical solvers of the same accuracy, our method demonstrates a 10times increase in performance speed. 3 authors · Dec 8, 2023
- Analytical And Numerical Approximation of Effective Diffusivities in The Cytoplasm of Biological Cells The simulation of the metabolism in mammalian cells becomes a severe problem if spatial distributions must be taken into account. Especially the cytoplasm has a very complex geometric structure which cannot be handled by standard discretization techniques. In the present paper we propose a homogenization technique for computing effective diffusion constants. This is accomplished by using a two-step strategy. The first step consists of an analytic homogenization from the smallest to an intermediate scale. The homogenization error is estimated by comparing the analytic diffusion constant with a numerical estimate obtained by using real cell geometries. The second step consists of a random homogenization. Since no analytical solution is known to this homogenization problem, a numerical approximation algorithm is proposed. Although rather expensive this algorithm provides a reasonable estimate of the homogenized diffusion constant. 2 authors · Feb 26, 2010
- Escaping saddle points in zeroth-order optimization: the power of two-point estimators Two-point zeroth order methods are important in many applications of zeroth-order optimization, such as robotics, wind farms, power systems, online optimization, and adversarial robustness to black-box attacks in deep neural networks, where the problem may be high-dimensional and/or time-varying. Most problems in these applications are nonconvex and contain saddle points. While existing works have shown that zeroth-order methods utilizing Omega(d) function valuations per iteration (with d denoting the problem dimension) can escape saddle points efficiently, it remains an open question if zeroth-order methods based on two-point estimators can escape saddle points. In this paper, we show that by adding an appropriate isotropic perturbation at each iteration, a zeroth-order algorithm based on 2m (for any 1 leq m leq d) function evaluations per iteration can not only find epsilon-second order stationary points polynomially fast, but do so using only Oleft(d{mepsilon^{2}psi}right) function evaluations, where psi geq Omegaleft(epsilonright) is a parameter capturing the extent to which the function of interest exhibits the strict saddle property. 3 authors · Sep 27, 2022
- Variants of the Empirical Interpolation Method: symmetric formulation, choice of norms and rectangular extension The Empirical Interpolation Method (EIM) is a greedy procedure that constructs approximate representations of two-variable functions in separated form. In its classical presentation, the two variables play a non-symmetric role. In this work, we give an equivalent definition of the EIM approximation, in which the two variables play symmetric roles. Then, we give a proof for the existence of this approximation, and extend it up to the convergence of the EIM, and for any norm chosen to compute the error in the greedy step. Finally, we introduce a way to compute a separated representation in the case where the number of selected values is different for each variable. In the case of a physical field measured by sensors, this is useful to discard a broken sensor while keeping the information provided by the associated selected field. 3 authors · Aug 21, 2015
- Existence and uniqueness of solutions in the Lipschitz space of a functional equation and its application to the behavior of the paradise fish In this paper, we examine the solvability of a functional equation in a Lipschitz space. As an application, we use our result to determine the existence and uniqueness of solutions to an equation describing a specific type of choice behavior model for the learning process of the paradise fish. Finally, we present some concrete examples where, using numerical techniques, we obtain approximations to the solution of the functional equation. As the straightforward Picard's iteration can be very expensive, we show that an analytical suboptimal least-squares approximation can be chosen in practice, resulting in very good accuracy. 3 authors · May 20, 2024
- Ito Diffusion Approximation of Universal Ito Chains for Sampling, Optimization and Boosting In this work, we consider rather general and broad class of Markov chains, Ito chains, that look like Euler-Maryama discretization of some Stochastic Differential Equation. The chain we study is a unified framework for theoretical analysis. It comes with almost arbitrary isotropic and state-dependent noise instead of normal and state-independent one as in most related papers. Moreover, in our chain the drift and diffusion coefficient can be inexact in order to cover wide range of applications as Stochastic Gradient Langevin Dynamics, sampling, Stochastic Gradient Descent or Stochastic Gradient Boosting. We prove the bound in W_{2}-distance between the laws of our Ito chain and corresponding differential equation. These results improve or cover most of the known estimates. And for some particular cases, our analysis is the first. 2 authors · Oct 9, 2023
- Determination of Characteristics of Eclipsing Binaries with Spots: Phenomenological vs Physical Models We discuss methods for modeling eclipsing binary stars using the "physical", "simplified" and "phenomenological" models. There are few realizations of the "physical" Wilson-Devinney (1971) code and its improvements, e.g. Binary Maker, Phoebe. A parameter search using the Monte-Carlo method was realized by Zola et al. (2010), which is efficient in expense of too many evaluations of the test function. We compare existing algorithms of minimization of multi-parametric functions and propose to use a "combined" algorithm, depending on if the Hessian matrix is positively determined. To study methods, a simply fast-computed function resembling the "complete" test function for the physical model. Also we adopt a simplified model of an eclipsing binary at a circular orbit assuming spherical components with an uniform brightness distribution. This model resembles more advanced models in a sense of correlated parameter estimates due to a similar topology of the test function. Such a model may be applied to detached Algol-type systems, where the tidal distortion of components is negligible. 2 authors · Sep 27, 2014
- Langevin Monte Carlo for strongly log-concave distributions: Randomized midpoint revisited We revisit the problem of sampling from a target distribution that has a smooth strongly log-concave density everywhere in mathbb R^p. In this context, if no additional density information is available, the randomized midpoint discretization for the kinetic Langevin diffusion is known to be the most scalable method in high dimensions with large condition numbers. Our main result is a nonasymptotic and easy to compute upper bound on the Wasserstein-2 error of this method. To provide a more thorough explanation of our method for establishing the computable upper bound, we conduct an analysis of the midpoint discretization for the vanilla Langevin process. This analysis helps to clarify the underlying principles and provides valuable insights that we use to establish an improved upper bound for the kinetic Langevin process with the midpoint discretization. Furthermore, by applying these techniques we establish new guarantees for the kinetic Langevin process with Euler discretization, which have a better dependence on the condition number than existing upper bounds. 3 authors · Jun 14, 2023
- Principled Acceleration of Iterative Numerical Methods Using Machine Learning Iterative methods are ubiquitous in large-scale scientific computing applications, and a number of approaches based on meta-learning have been recently proposed to accelerate them. However, a systematic study of these approaches and how they differ from meta-learning is lacking. In this paper, we propose a framework to analyze such learning-based acceleration approaches, where one can immediately identify a departure from classical meta-learning. We show that this departure may lead to arbitrary deterioration of model performance. Based on our analysis, we introduce a novel training method for learning-based acceleration of iterative methods. Furthermore, we theoretically prove that the proposed method improves upon the existing methods, and demonstrate its significant advantage and versatility through various numerical applications. 2 authors · Jun 17, 2022
- Bolstering Stochastic Gradient Descent with Model Building Stochastic gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these algorithms are fine-tuned for the application at hand. Although this tuning process can require large computational costs, recent work has shown that these costs can be reduced by line search methods that iteratively adjust the stepsize. We propose an alternative approach to stochastic line search by using a new algorithm based on forward step model building. This model building step incorporates second-order information that allows adjusting not only the stepsize but also the search direction. Noting that deep learning model parameters come in groups (layers of tensors), our method builds its model and calculates a new step for each parameter group. This novel diagonalization approach makes the selected step lengths adaptive. We provide convergence rate analysis, and experimentally show that the proposed algorithm achieves faster convergence and better generalization in well-known test problems. More precisely, SMB requires less tuning, and shows comparable performance to other adaptive methods. 4 authors · Nov 13, 2021
- A projection based Variational Multiscale Method for Atmosphere-Ocean Interaction The proposed method aims to approximate a solution of a fluid-fluid interaction problem in case of low viscosities. The nonlinear interface condition on the joint boundary allows for this problem to be viewed as a simplified version of the atmosphere-ocean coupling. Thus, the proposed method should be viewed as potentially applicable to air-sea coupled flows in turbulent regime. The method consists of two key ingredients. The geometric averaging approach is used for efficient and stable decoupling of the problem, which would allow for the usage of preexisting codes for the air and sea domain separately, as "black boxes". This is combined with the variational multiscale stabilization technique for treating flows at high Reynolds numbers. We prove the stability and accuracy of the method and provide several numerical tests to assess both the quantitative and qualitative features of the computed solution. 4 authors · Oct 23, 2019
- Learning Feynman integrals from differential equations with neural networks We present a new approach for evaluating Feynman integrals numerically. We apply the recently-proposed framework of physics-informed deep learning to train neural networks to approximate the solution to the differential equations satisfied by the Feynman integrals. This approach relies neither on a canonical form of the differential equations, which is often a bottleneck for the analytical techniques, nor on the availability of a large dataset, and after training yields essentially instantaneous evaluation times. We provide a proof-of-concept implementation within the PyTorch framework, and apply it to a number of one- and two-loop examples, achieving a mean magnitude of relative difference of around 1% at two loops in the physical phase space with network training times on the order of an hour on a laptop GPU. 3 authors · Dec 4, 2023
1 State and parameter learning with PaRIS particle Gibbs Non-linear state-space models, also known as general hidden Markov models, are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences in general. The particle-based, rapid incremental smoother PaRIS is a sequential Monte Carlo (SMC) technique allowing for efficient online approximation of expectations of additive functionals under the smoothing distribution in these models. Such expectations appear naturally in several learning contexts, such as likelihood estimation (MLE) and Markov score climbing (MSC). PARIS has linear computational complexity, limited memory requirements and comes with non-asymptotic bounds, convergence results and stability guarantees. Still, being based on self-normalised importance sampling, the PaRIS estimator is biased. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs PPG sampler, which can be viewed as a PaRIS algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. Our second contribution is to apply PPG in a learning framework, covering MLE and MSC as special examples. In this context, we establish, under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao--Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims. 5 authors · Jan 2, 2023
- Local convergence of the Levenberg-Marquardt method under Hölder metric subregularity We describe and analyse Levenberg-Marquardt methods for solving systems of nonlinear equations. More specifically, we propose an adaptive formula for the Levenberg-Marquardt parameter and analyse the local convergence of the method under Hölder metric subregularity of the function defining the equation and Hölder continuity of its gradient mapping. Further, we analyse the local convergence of the method under the additional assumption that the Łojasiewicz gradient inequality holds. We finally report encouraging numerical results confirming the theoretical findings for the problem of computing moiety conserved steady states in biochemical reaction networks. This problem can be cast as finding a solution of a system of nonlinear equations, where the associated mapping satisfies the Łojasiewicz gradient inequality assumption. 4 authors · Mar 21, 2017
1 Fast Convex Pruning of Deep Neural Networks We develop a fast, tractable technique called Net-Trim for simplifying a trained neural network. The method is a convex post-processing module, which prunes (sparsifies) a trained network layer by layer, while preserving the internal responses. We present a comprehensive analysis of Net-Trim from both the algorithmic and sample complexity standpoints, centered on a fast, scalable convex optimization program. Our analysis includes consistency results between the initial and retrained models before and after Net-Trim application and guarantees on the number of training samples needed to discover a network that can be expressed using a certain number of nonzero terms. Specifically, if there is a set of weights that uses at most s terms that can re-create the layer outputs from the layer inputs, we can find these weights from O(slog N/s) samples, where N is the input size. These theoretical results are similar to those for sparse regression using the Lasso, and our analysis uses some of the same recently-developed tools (namely recent results on the concentration of measure and convex analysis). Finally, we propose an algorithmic framework based on the alternating direction method of multipliers (ADMM), which allows a fast and simple implementation of Net-Trim for network pruning and compression. 3 authors · Jun 17, 2018
- Mathematical modelling of flow and adsorption in a gas chromatograph In this paper, a mathematical model is developed to describe the evolution of the concentration of compounds through a gas chromatography column. The model couples mass balances and kinetic equations for all components. Both single and multiple-component cases are considered with constant or variable velocity. Non-dimensionalisation indicates the small effect of diffusion. The system where diffusion is neglected is analysed using Laplace transforms. In the multiple-component case, it is demonstrated that the competition between the compounds is negligible and the equations may be decoupled. This reduces the problem to solving a single integral equation to determine the concentration profile for all components (since they are scaled versions of each other). For a given analyte, we then only two parameters need to be fitted to the data. To verify this approach, the full governing equations are also solved numerically using the finite difference method and a global adaptive quadrature method to integrate the Laplace transformation. Comparison with the Laplace solution verifies the high degree of accuracy of the simpler Laplace form. The Laplace solution is then verified against experimental data from BTEX chromatography. This novel method, which involves solving a single equation and fitting parameters in pairs for individual components, is highly efficient. It is significantly faster and simpler than the full numerical solution and avoids the computationally expensive methods that would normally be used to fit all curves at the same time. 5 authors · Oct 7, 2024
- Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances Solving a linear system Ax=b is a fundamental scientific computing primitive for which numerous solvers and preconditioners have been developed. These come with parameters whose optimal values depend on the system being solved and are often impossible or too expensive to identify; thus in practice sub-optimal heuristics are used. We consider the common setting in which many related linear systems need to be solved, e.g. during a single numerical simulation. In this scenario, can we sequentially choose parameters that attain a near-optimal overall number of iterations, without extra matrix computations? We answer in the affirmative for Successive Over-Relaxation (SOR), a standard solver whose parameter omega has a strong impact on its runtime. For this method, we prove that a bandit online learning algorithm--using only the number of iterations as feedback--can select parameters for a sequence of instances such that the overall cost approaches that of the best fixed omega as the sequence length increases. Furthermore, when given additional structural information, we show that a contextual bandit method asymptotically achieves the performance of the instance-optimal policy, which selects the best omega for each instance. Our work provides the first learning-theoretic treatment of high-precision linear system solvers and the first end-to-end guarantees for data-driven scientific computing, demonstrating theoretically the potential to speed up numerical methods using well-understood learning algorithms. 4 authors · Oct 3, 2023
- Asymptotic Schwarzschild solutions in f(R) gravity and their observable effects on the photon sphere of black holes We investigate asymptotic Schwarzschild exterior solutions in the context of modified gravity theories, specifically within the framework of f(R) gravity, where the asymptotic behavior recovers the standard Schwarzschild solution of General Relativity. Unlike previous studies that rely mainly on analytical approximations, our approach combines asymptotic analysis with numerical integration of the underlying differential equations. Using these solutions, we analyze strong lensing effects to obtain the photon sphere radius and the corresponding capture parameter. Considering rings produced by total reflection, we define the photon sphere width as the difference between the first total reflection and the capture parameter; and study how it is modified in the f(R) scenario. Our results show that the photon sphere width increases in the presence of f(R)-type modifications, indicating deviations from GR that could be observable in the strong-field regime. 1 authors · Oct 1, 2025
2 Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons We provide a theoretical framework for Reinforcement Learning with Human Feedback (RLHF). Our analysis shows that when the true reward function is linear, the widely used maximum likelihood estimator (MLE) converges under both the Bradley-Terry-Luce (BTL) model and the Plackett-Luce (PL) model. However, we show that when training a policy based on the learned reward model, MLE fails while a pessimistic MLE provides policies with improved performance under certain coverage assumptions. Additionally, we demonstrate that under the PL model, the true MLE and an alternative MLE that splits the K-wise comparison into pairwise comparisons both converge. Moreover, the true MLE is asymptotically more efficient. Our results validate the empirical success of existing RLHF algorithms in InstructGPT and provide new insights for algorithm design. Furthermore, our results unify the problem of RLHF and max-entropy Inverse Reinforcement Learning (IRL), and provide the first sample complexity bound for max-entropy IRL. 3 authors · Jan 26, 2023
- Optimal piecewise linear data compression for solutions of parametrized partial differential equations Model order reduction has been extensively studied over the last two decades. Projection-based methods such as the Proper Orthogonal Decomposition and the Reduced Basis Method enjoy the important advantages of Galerkin methods in the derivation of the reduced problem, but are limited to linear data compression for which the reduced solution is sought as a linear combination of spatial modes. Nonlinear data compression must be used when the solution manifold is not embedded in a low-dimensional subspace. Early methods involve piecewise linear data compression, by constructing a dictionary of reduced-order models tailored to a partition of the solution manifold. In this work, we introduce the concept of optimal partition of the solution manifold in terms of normalized Kolmogorov widths, and prove that the optimal partitions can be found by means of a representative-based clustering algorithm using the sine dissimilarity measure on the solution manifold. 4 authors · Aug 27, 2021
- SGD with AdaGrad Stepsizes: Full Adaptivity with High Probability to Unknown Parameters, Unbounded Gradients and Affine Variance We study Stochastic Gradient Descent with AdaGrad stepsizes: a popular adaptive (self-tuning) method for first-order stochastic optimization. Despite being well studied, existing analyses of this method suffer from various shortcomings: they either assume some knowledge of the problem parameters, impose strong global Lipschitz conditions, or fail to give bounds that hold with high probability. We provide a comprehensive analysis of this basic method without any of these limitations, in both the convex and non-convex (smooth) cases, that additionally supports a general ``affine variance'' noise model and provides sharp rates of convergence in both the low-noise and high-noise~regimes. 2 authors · Feb 17, 2023
- A nonintrusive method to approximate linear systems with nonlinear parameter dependence We consider a family of linear systems A_mu alpha=C with system matrix A_mu depending on a parameter mu and for simplicity parameter-independent right-hand side C. These linear systems typically result from the finite-dimensional approximation of a parameter-dependent boundary-value problem. We derive a procedure based on the Empirical Interpolation Method to obtain a separated representation of the system matrix in the form A_muapproxsum_{m}beta_m(mu)A_{mu_m} for some selected values of the parameter. Such a separated representation is in particular useful in the Reduced Basis Method. The procedure is called nonintrusive since it only requires to access the matrices A_{mu_m}. As such, it offers a crucial advantage over existing approaches that instead derive separated representations requiring to enter the code at the level of assembly. Numerical examples illustrate the performance of our new procedure on a simple one-dimensional boundary-value problem and on three-dimensional acoustic scattering problems solved by a boundary element method. 4 authors · Jul 16, 2013
- An Iterative Direct Sampling Method for Reconstructing Moving Inhomogeneities in Parabolic Problems We propose in this work a novel iterative direct sampling method for imaging moving inhomogeneities in parabolic problems using boundary measurements. It can efficiently identify the locations and shapes of moving inhomogeneities when very limited data are available, even with only one pair of lateral Cauchy data, and enjoys remarkable numerical stability for noisy data and over an extended time horizon. The method is formulated in an abstract framework, and is applicable to linear and nonlinear parabolic problems, including linear, nonlinear, and mixed-type inhomogeneities. Numerical experiments across diverse scenarios show its effectiveness and robustness against the data noise. 3 authors · Nov 11, 2025
- Weighted least-squares approximation with determinantal point processes and generalized volume sampling We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies. 2 authors · Dec 21, 2023
- Concentrating solutions of the fractional (p,q)-Choquard equation with exponential growth This article deals with the following fractional (p,q)-Choquard equation with exponential growth of the form: $varepsilon^{ps}(-Delta)_{p}^{s}u+varepsilon^{qs}(-Delta)_q^su+ Z(x)(|u|^{p-2}u+|u|^{q-2}u)=varepsilon^{mu-N}[|x|^{-mu}*F(u)]f(u) in R^N, where s\in (0,1), \varepsilon>0 is a parameter, 2\leq p=N{s}<q, and 0<\mu<N. The nonlinear function f has an exponential growth at infinity and the continuous potential function Z satisfies suitable natural conditions. With the help of the Ljusternik-Schnirelmann category theory and variational methods, the multiplicity and concentration of positive solutions are obtained for \varepsilon>0$ small enough. In a certain sense, we generalize some previously known results. 3 authors · May 31, 2025
- MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version-- For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied. 1 authors · May 19, 2021
- Accelerating Distributed Stochastic Optimization via Self-Repellent Random Walks We study a family of distributed stochastic optimization algorithms where gradients are sampled by a token traversing a network of agents in random-walk fashion. Typically, these random-walks are chosen to be Markov chains that asymptotically sample from a desired target distribution, and play a critical role in the convergence of the optimization iterates. In this paper, we take a novel approach by replacing the standard linear Markovian token by one which follows a nonlinear Markov chain - namely the Self-Repellent Radom Walk (SRRW). Defined for any given 'base' Markov chain, the SRRW, parameterized by a positive scalar {\alpha}, is less likely to transition to states that were highly visited in the past, thus the name. In the context of MCMC sampling on a graph, a recent breakthrough in Doshi et al. (2023) shows that the SRRW achieves O(1/{\alpha}) decrease in the asymptotic variance for sampling. We propose the use of a 'generalized' version of the SRRW to drive token algorithms for distributed stochastic optimization in the form of stochastic approximation, termed SA-SRRW. We prove that the optimization iterate errors of the resulting SA-SRRW converge to zero almost surely and prove a central limit theorem, deriving the explicit form of the resulting asymptotic covariance matrix corresponding to iterate errors. This asymptotic covariance is always smaller than that of an algorithm driven by the base Markov chain and decreases at rate O(1/{\alpha}^2) - the performance benefit of using SRRW thereby amplified in the stochastic optimization context. Empirical results support our theoretical findings. 3 authors · Jan 17, 2024
- Introduction to Machine Learning This book introduces the mathematical foundations and techniques that lead to the development and analysis of many of the algorithms that are used in machine learning. It starts with an introductory chapter that describes notation used throughout the book and serve at a reminder of basic concepts in calculus, linear algebra and probability and also introduces some measure theoretic terminology, which can be used as a reading guide for the sections that use these tools. The introductory chapters also provide background material on matrix analysis and optimization. The latter chapter provides theoretical support to many algorithms that are used in the book, including stochastic gradient descent, proximal methods, etc. After discussing basic concepts for statistical prediction, the book includes an introduction to reproducing kernel theory and Hilbert space techniques, which are used in many places, before addressing the description of various algorithms for supervised statistical learning, including linear methods, support vector machines, decision trees, boosting, or neural networks. The subject then switches to generative methods, starting with a chapter that presents sampling methods and an introduction to the theory of Markov chains. The following chapter describe the theory of graphical models, an introduction to variational methods for models with latent variables, and to deep-learning based generative models. The next chapters focus on unsupervised learning methods, for clustering, factor analysis and manifold learning. The final chapter of the book is theory-oriented and discusses concentration inequalities and generalization bounds. 1 authors · Sep 4, 2024
- Neural Operator: Is data all you need to model the world? An insight into the impact of Physics Informed Machine Learning Numerical approximations of partial differential equations (PDEs) are routinely employed to formulate the solution of physics, engineering and mathematical problems involving functions of several variables, such as the propagation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, and more. While this has led to solving many complex phenomena, there are some limitations. Conventional approaches such as Finite Element Methods (FEMs) and Finite Differential Methods (FDMs) require considerable time and are computationally expensive. In contrast, data driven machine learning-based methods such as neural networks provide a faster, fairly accurate alternative, and have certain advantages such as discretization invariance and resolution invariance. This article aims to provide a comprehensive insight into how data-driven approaches can complement conventional techniques to solve engineering and physics problems, while also noting some of the major pitfalls of machine learning-based approaches. Furthermore, we highlight, a novel and fast machine learning-based approach (~1000x) to learning the solution operator of a PDE operator learning. We will note how these new computational approaches can bring immense advantages in tackling many problems in fundamental and applied physics. 8 authors · Jan 30, 2023
- Enhancing Score-Based Sampling Methods with Ensembles We introduce ensembles within score-based sampling methods to develop gradient-free approximate sampling techniques that leverage the collective dynamics of particle ensembles to compute approximate reverse diffusion drifts. We introduce the underlying methodology, emphasizing its relationship with generative diffusion models and the previously introduced F\"ollmer sampler. We demonstrate the efficacy of ensemble strategies through various examples, ranging from low- to medium-dimensionality sampling problems, including multi-modal and highly non-Gaussian probability distributions, and provide comparisons to traditional methods like NUTS. Our findings highlight the potential of ensemble strategies for modeling complex probability distributions in situations where gradients are unavailable. Finally, we showcase its application in the context of Bayesian inversion problems within the geophysical sciences. 2 authors · Jan 30, 2024
- Accurate and efficient evaluation of the a posteriori error estimator in the reduced basis method The reduced basis method is a model reduction technique yielding substantial savings of computational time when a solution to a parametrized equation has to be computed for many values of the parameter. Certification of the approximation is possible by means of an a posteriori error bound. Under appropriate assumptions, this error bound is computed with an algorithm of complexity independent of the size of the full problem. In practice, the evaluation of the error bound can become very sensitive to round-off errors. We propose herein an explanation of this fact. A first remedy has been proposed in [F. Casenave, Accurate a posteriori error evaluation in the reduced basis method. C. R. Math. Acad. Sci. Paris 350 (2012) 539--542.]. Herein, we improve this remedy by proposing a new approximation of the error bound using the Empirical Interpolation Method (EIM). This method achieves higher levels of accuracy and requires potentially less precomputations than the usual formula. A version of the EIM stabilized with respect to round-off errors is also derived. The method is illustrated on a simple one-dimensional diffusion problem and a three-dimensional acoustic scattering problem solved by a boundary element method. 3 authors · Dec 5, 2012
- Message Passing Neural PDE Solvers The numerical solution of partial differential equations (PDEs) is difficult, having led to a century of research so far. Recently, there have been pushes to build neural--numerical hybrid solvers, which piggy-backs the modern trend towards fully end-to-end learned systems. Most works so far can only generalize over a subset of properties to which a generic solver would be faced, including: resolution, topology, geometry, boundary conditions, domain discretization regularity, dimensionality, etc. In this work, we build a solver, satisfying these properties, where all the components are based on neural message passing, replacing all heuristically designed components in the computation graph with backprop-optimized neural function approximators. We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes. In order to encourage stability in training autoregressive models, we put forward a method that is based on the principle of zero-stability, posing stability as a domain adaptation problem. We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D. 3 authors · Feb 7, 2022
6 Implicit Diffusion: Efficient Optimization through Stochastic Sampling We present a new algorithm to optimize distributions defined implicitly by parameterized stochastic diffusions. Doing so allows us to modify the outcome distribution of sampling processes by optimizing over their parameters. We introduce a general framework for first-order optimization of these processes, that performs jointly, in a single loop, optimization and sampling steps. This approach is inspired by recent advances in bilevel optimization and automatic implicit differentiation, leveraging the point of view of sampling as optimization over the space of probability distributions. We provide theoretical guarantees on the performance of our method, as well as experimental results demonstrating its effectiveness in real-world settings. 9 authors · Feb 8, 2024 1
- How Over-Parameterization Slows Down Gradient Descent in Matrix Sensing: The Curses of Symmetry and Initialization This paper rigorously shows how over-parameterization changes the convergence behaviors of gradient descent (GD) for the matrix sensing problem, where the goal is to recover an unknown low-rank ground-truth matrix from near-isotropic linear measurements. First, we consider the symmetric setting with the symmetric parameterization where M^* in R^{n times n} is a positive semi-definite unknown matrix of rank r ll n, and one uses a symmetric parameterization XX^top to learn M^*. Here X in R^{n times k} with k > r is the factor matrix. We give a novel Omega (1/T^2) lower bound of randomly initialized GD for the over-parameterized case (k >r) where T is the number of iterations. This is in stark contrast to the exact-parameterization scenario (k=r) where the convergence rate is exp (-Omega (T)). Next, we study asymmetric setting where M^* in R^{n_1 times n_2} is the unknown matrix of rank r ll min{n_1,n_2}, and one uses an asymmetric parameterization FG^top to learn M^* where F in R^{n_1 times k} and G in R^{n_2 times k}. Building on prior work, we give a global exact convergence result of randomly initialized GD for the exact-parameterization case (k=r) with an exp (-Omega(T)) rate. Furthermore, we give the first global exact convergence result for the over-parameterization case (k>r) with an exp(-Omega(alpha^2 T)) rate where alpha is the initialization scale. This linear convergence result in the over-parameterization case is especially significant because one can apply the asymmetric parameterization to the symmetric setting to speed up from Omega (1/T^2) to linear convergence. On the other hand, we propose a novel method that only modifies one step of GD and obtains a convergence rate independent of alpha, recovering the rate in the exact-parameterization case. 3 authors · Oct 2, 2023
- Stochastic representation of solutions for the parabolic Cauchy problem with variable exponent coefficients In this work, we prove existence and uniqueness of a bounded viscosity solution for the Cauchy problem of degenerate parabolic equations with variable exponent coefficients. We construct the solution directly using the stochastic representation, then verify it satisfies the Cauchy problem. The corresponding SDE, on the other hand, allows the drift and diffusion coefficients to respond nonlinearly to the current state through the state-dependent variable exponents, and thus, extends the expressive power of classical SDEs to better capture complex dynamics. To validate our theoretical framework, we conduct comprehensive numerical experiments comparing finite difference solutions (Crank-Nicolson on logarithmic grids) with Monte Carlo simulations of the SDE. 1 authors · Nov 1, 2025
1 Rectified Flow: A Marginal Preserving Approach to Optimal Transport We present a flow-based approach to the optimal transport (OT) problem between two continuous distributions pi_0,pi_1 on R^d, of minimizing a transport cost E[c(X_1-X_0)] in the set of couplings (X_0,X_1) whose marginal distributions on X_0,X_1 equals pi_0,pi_1, respectively, where c is a cost function. Our method iteratively constructs a sequence of neural ordinary differentiable equations (ODE), each learned by solving a simple unconstrained regression problem, which monotonically reduce the transport cost while automatically preserving the marginal constraints. This yields a monotonic interior approach that traverses inside the set of valid couplings to decrease the transport cost, which distinguishes itself from most existing approaches that enforce the coupling constraints from the outside. The main idea of the method draws from rectified flow, a recent approach that simultaneously decreases the whole family of transport costs induced by convex functions c (and is hence multi-objective in nature), but is not tailored to minimize a specific transport cost. Our method is a single-object variant of rectified flow that guarantees to solve the OT problem for a fixed, user-specified convex cost function c. 1 authors · Sep 29, 2022
- Hybrid two-level MCMC for Bayesian Inverse Problems We introduced a novel method to solve Bayesian inverse problems governed by PDE equations with a hybrid two-level MCMC where we took advantage of the AI surrogate model speed and the accuracy of numerical models. We show theoretically the potential to solve Bayesian inverse problems accurately with only a small number of numerical samples when the AI surrogate model error is small. Several numerical experiment results are included which demonstrates the advantage of the hybrid method. 1 authors · Jul 3, 2023
1 Grokking as the Transition from Lazy to Rich Training Dynamics We propose that the grokking phenomenon, where the train loss of a neural network decreases much earlier than its test loss, can arise due to a neural network transitioning from lazy training dynamics to a rich, feature learning regime. To illustrate this mechanism, we study the simple setting of vanilla gradient descent on a polynomial regression problem with a two layer neural network which exhibits grokking without regularization in a way that cannot be explained by existing theories. We identify sufficient statistics for the test loss of such a network, and tracking these over training reveals that grokking arises in this setting when the network first attempts to fit a kernel regression solution with its initial features, followed by late-time feature learning where a generalizing solution is identified after train loss is already low. We provide an asymptotic theoretical description of the grokking dynamics in this model using dynamical mean field theory (DMFT) for high dimensional data. We find that the key determinants of grokking are the rate of feature learning -- which can be controlled precisely by parameters that scale the network output -- and the alignment of the initial features with the target function y(x). We argue this delayed generalization arises when (1) the top eigenvectors of the initial neural tangent kernel and the task labels y(x) are misaligned, but (2) the dataset size is large enough so that it is possible for the network to generalize eventually, but not so large that train loss perfectly tracks test loss at all epochs, and (3) the network begins training in the lazy regime so does not learn features immediately. We conclude with evidence that this transition from lazy (linear model) to rich training (feature learning) can control grokking in more general settings, like on MNIST, one-layer Transformers, and student-teacher networks. 4 authors · Oct 9, 2023
- Estimation Beyond Data Reweighting: Kernel Method of Moments Moment restrictions and their conditional counterparts emerge in many areas of machine learning and statistics ranging from causal inference to reinforcement learning. Estimators for these tasks, generally called methods of moments, include the prominent generalized method of moments (GMM) which has recently gained attention in causal inference. GMM is a special case of the broader family of empirical likelihood estimators which are based on approximating a population distribution by means of minimizing a varphi-divergence to an empirical distribution. However, the use of varphi-divergences effectively limits the candidate distributions to reweightings of the data samples. We lift this long-standing limitation and provide a method of moments that goes beyond data reweighting. This is achieved by defining an empirical likelihood estimator based on maximum mean discrepancy which we term the kernel method of moments (KMM). We provide a variant of our estimator for conditional moment restrictions and show that it is asymptotically first-order optimal for such problems. Finally, we show that our method achieves competitive performance on several conditional moment restriction tasks. 4 authors · May 18, 2023
- On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties In this work, we focus on a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method. For an arbitrary polynomial degree p, we show that the resulting coefficient matrices possess a Toeplitz-like structure. We investigate their spectral properties via their symbol and we prove that, like for second order differential problems, also in this case the given matrices are ill-conditioned both in the low and high frequencies for large p. More precisely, in the fractional scenario the symbol has a single zero at 0 of order α, with α the fractional derivative order that ranges from 1 to 2, and it presents an exponential decay to zero at π for increasing p that becomes faster as α approaches 1. This translates in a mitigated conditioning in the low frequencies and in a deterioration in the high frequencies when compared to second order problems. Furthermore, the derivation of the symbol reveals another similarity of our problem with a classical diffusion problem. Since the entries of the coefficient matrices are defined as evaluations of fractional derivatives of the B-spline basis at the collocation points, we are able to express the central entries of the coefficient matrix as inner products of two fractional derivatives of cardinal B-splines. Finally, we perform a numerical study of the approximation behavior of polynomial B-spline collocation. This study suggests that, in line with non-fractional diffusion problems, the approximation order for smooth solutions in the fractional case is p+2-α for even p, and p+1-α for odd p. 4 authors · Jun 28, 2021
- Variational Formulation of Local Molecular Field Theory In this note, we show that the Local Molecular Field theory of Weeks et. al. can be re-derived as an extremum problem for an approximate Helmholtz free energy. Using the resulting free energy as a classical, fluid density functional yields an implicit solvent method identical in form to the Molecular Density Functional theory of Borgis et. al., but with an explicit formula for the 'ideal' free energy term. This new expression for the ideal free energy term can be computed from all-atom molecular dynamics of a solvent with only short-range interactions. The key hypothesis required to make the theory valid is that all smooth (and hence long-range) energy functions obey Gaussian statistics. This is essentially a random phase approximation for perturbations from a short-range only, 'reference,' fluid. This single hypothesis is enough to prove that the self-consistent LMF procedure minimizes a novel density functional whose 'ideal' free energy is the molecular system under a specific, reference Hamiltonian, as opposed to the non-interacting gas of conventional density functionals. Implementation of this new functional into existing software should be straightforward and robust. 1 authors · Jul 12, 2025
1 Gaussian Process Priors for Systems of Linear Partial Differential Equations with Constant Coefficients Partial differential equations (PDEs) are important tools to model physical systems, and including them into machine learning models is an important way of incorporating physical knowledge. Given any system of linear PDEs with constant coefficients, we propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system. We apply the Ehrenpreis-Palamodov fundamental principle, which works like a non-linear Fourier transform, to construct GP kernels mirroring standard spectral methods for GPs. Our approach can infer probable solutions of linear PDE systems from any data such as noisy measurements, or pointwise defined initial and boundary conditions. Constructing EPGP-priors is algorithmic, generally applicable, and comes with a sparse version (S-EPGP) that learns the relevant spectral frequencies and works better for big data sets. We demonstrate our approach on three families of systems of PDE, the heat equation, wave equation, and Maxwell's equations, where we improve upon the state of the art in computation time and precision, in some experiments by several orders of magnitude. 3 authors · Dec 29, 2022
- The finite steps of convergence of the fast thresholding algorithms with feedbacks Iterative algorithms based on thresholding, feedback and null space tuning (NST+HT+FB) for sparse signal recovery are exceedingly effective and fast, particularly for large scale problems. The core algorithm is shown to converge in finitely many steps under a (preconditioned) restricted isometry condition. In this paper, we present a new perspective to analyze the algorithm, which turns out that the efficiency of the algorithm can be further elaborated by an estimate of the number of iterations for the guaranteed convergence. The convergence condition of NST+HT+FB is also improved. Moreover, an adaptive scheme (AdptNST+HT+FB) without the knowledge of the sparsity level is proposed with its convergence guarantee. The number of iterations for the finite step of convergence of the AdptNST+HT+FB scheme is also derived. It is further shown that the number of iterations can be significantly reduced by exploiting the structure of the specific sparse signal or the random measurement matrix. 4 authors · Nov 7, 2017
- rd-spiral: An open-source Python library for learning 2D reaction-diffusion dynamics through pseudo-spectral method We introduce rd-spiral, an open-source Python library for simulating 2D reaction-diffusion systems using pseudo-spectral methods. The framework combines FFT-based spatial discretization with adaptive Dormand-Prince time integration, achieving exponential convergence while maintaining pedagogical clarity. We analyze three dynamical regimes: stable spirals, spatiotemporal chaos, and pattern decay, revealing extreme non-Gaussian statistics (kurtosis >96) in stable states. Information-theoretic metrics show 10.7% reduction in activator-inhibitor coupling during turbulence versus 6.5% in stable regimes. The solver handles stiffness ratios >6:1 with features including automated equilibrium classification and checkpointing. Effect sizes (delta=0.37--0.78) distinguish regimes, with asymmetric field sensitivities to perturbations. By balancing computational rigor with educational transparency, rd-spiral bridges theoretical and practical nonlinear dynamics. 3 authors · Jun 25, 2025