- Using Natural Language Explanations to Improve Robustness of In-context Learning for Natural Language Inference Recent studies have demonstrated that large language models (LLMs) excel in diverse tasks through in-context learning (ICL) facilitated by task-specific prompts and examples. However, the existing literature shows that ICL encounters performance deterioration when exposed to adversarial inputs. Enhanced performance has been observed when ICL is augmented with natural language explanations (NLEs) (we refer to it as X-ICL). Thus, this work investigates whether X-ICL can improve the robustness of LLMs on a suite of seven adversarial and challenging natural language inference datasets. Moreover, we introduce a new approach to X-ICL by prompting an LLM (ChatGPT in our case) with few human-generated NLEs to produce further NLEs (we call it ChatGPT few-shot), which we show superior to both ChatGPT zero-shot and human-generated NLEs alone. We evaluate five popular LLMs (GPT3.5-turbo, LLaMa2, Vicuna, Zephyr, Mistral) and show that X-ICL with ChatGPT few-shot yields over 6% improvement over ICL. Furthermore, while prompt selection strategies were previously shown to significantly improve ICL on in-distribution test sets, we show that these strategies do not match the efficacy of the X-ICL paradigm in robustness-oriented evaluations. 5 authors · Nov 13, 2023
- Multilingual LLMs Inherently Reward In-Language Time-Sensitive Semantic Alignment for Low-Resource Languages The unwavering disparity in labeled resources between resource-rich languages and those considered low-resource remains a significant impediment for Large Language Models (LLMs). Recent strides in cross-lingual in-context learning (X-ICL), mainly through semantically aligned examples retrieved from multilingual pre-trained transformers, have shown promise in mitigating this issue. However, our investigation reveals that LLMs intrinsically reward in-language semantically aligned cross-lingual instances over direct cross-lingual semantic alignments, with a pronounced disparity in handling time-sensitive queries in the X-ICL setup. Such queries demand sound temporal reasoning ability from LLMs, yet the advancements have predominantly focused on English. This study aims to bridge this gap by improving temporal reasoning capabilities in low-resource languages. To this end, we introduce mTEMPREASON, a temporal reasoning dataset aimed at the varied degrees of low-resource languages and propose Cross-Lingual Time-Sensitive Semantic Alignment (CLiTSSA), a novel method to improve temporal reasoning in these contexts. To facilitate this, we construct an extension of mTEMPREASON comprising pairs of parallel cross-language temporal queries along with their anticipated in-language semantic similarity scores. Our empirical evidence underscores the superior performance of CLiTSSA compared to established baselines across three languages -- Romanian, German, and French, encompassing three temporal tasks and including a diverse set of four contemporaneous LLMs. This marks a significant step forward in addressing resource disparity in the context of temporal reasoning across languages. 2 authors · Dec 10, 2024
- ImageGen-CoT: Enhancing Text-to-Image In-context Learning with Chain-of-Thought Reasoning In this work, we study the problem of Text-to-Image In-Context Learning (T2I-ICL). While Unified Multimodal LLMs (MLLMs) have advanced rapidly in recent years, they struggle with contextual reasoning in T2I-ICL scenarios. To address this limitation, we propose a novel framework that incorporates a thought process called ImageGen-CoT prior to image generation. To avoid generating unstructured ineffective reasoning steps, we develop an automatic pipeline to curate a high-quality ImageGen-CoT dataset. We then fine-tune MLLMs using this dataset to enhance their contextual reasoning capabilities. To further enhance performance, we explore test-time scale-up strategies and propose a novel hybrid scaling approach. This approach first generates multiple ImageGen-CoT chains and then produces multiple images for each chain via sampling. Extensive experiments demonstrate the effectiveness of our proposed method. Notably, fine-tuning with the ImageGen-CoT dataset leads to a substantial 80\% performance gain for SEED-X on T2I-ICL tasks. See our project page at https://ImageGen-CoT.github.io/. Code and model weights will be open-sourced. 7 authors · Mar 24, 2025
1 TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second We present TabPFN, a trained Transformer that can do supervised classification for small tabular datasets in less than a second, needs no hyperparameter tuning and is competitive with state-of-the-art classification methods. TabPFN performs in-context learning (ICL), it learns to make predictions using sequences of labeled examples (x, f(x)) given in the input, without requiring further parameter updates. TabPFN is fully entailed in the weights of our network, which accepts training and test samples as a set-valued input and yields predictions for the entire test set in a single forward pass. TabPFN is a Prior-Data Fitted Network (PFN) and is trained offline once, to approximate Bayesian inference on synthetic datasets drawn from our prior. This prior incorporates ideas from causal reasoning: It entails a large space of structural causal models with a preference for simple structures. On the 18 datasets in the OpenML-CC18 suite that contain up to 1 000 training data points, up to 100 purely numerical features without missing values, and up to 10 classes, we show that our method clearly outperforms boosted trees and performs on par with complex state-of-the-art AutoML systems with up to 230times speedup. This increases to a 5 700times speedup when using a GPU. We also validate these results on an additional 67 small numerical datasets from OpenML. We provide all our code, the trained TabPFN, an interactive browser demo and a Colab notebook at https://github.com/automl/TabPFN. 4 authors · Jul 5, 2022 1
2 xCoT: Cross-lingual Instruction Tuning for Cross-lingual Chain-of-Thought Reasoning Chain-of-thought (CoT) has emerged as a powerful technique to elicit reasoning in large language models and improve a variety of downstream tasks. CoT mainly demonstrates excellent performance in English, but its usage in low-resource languages is constrained due to poor language generalization. To bridge the gap among different languages, we propose a cross-lingual instruction fine-tuning framework (xCOT) to transfer knowledge from high-resource languages to low-resource languages. Specifically, the multilingual instruction training data (xCOT-INSTRUCT) is created to encourage the semantic alignment of multiple languages. We introduce cross-lingual in-context few-shot learning (xICL)) to accelerate multilingual agreement in instruction tuning, where some fragments of source languages in examples are randomly substituted by their counterpart translations of target languages. During multilingual instruction tuning, we adopt the randomly online CoT strategy to enhance the multilingual reasoning ability of the large language model by first translating the query to another language and then answering in English. To further facilitate the language transfer, we leverage the high-resource CoT to supervise the training of low-resource languages with cross-lingual distillation. Experimental results on previous benchmarks demonstrate the superior performance of xCoT in reducing the gap among different languages, highlighting its potential to reduce the cross-lingual gap. 11 authors · Jan 13, 2024