new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

COVID-19-related Nepali Tweets Classification in a Low Resource Setting

Billions of people across the globe have been using social media platforms in their local languages to voice their opinions about the various topics related to the COVID-19 pandemic. Several organizations, including the World Health Organization, have developed automated social media analysis tools that classify COVID-19-related tweets into various topics. However, these tools that help combat the pandemic are limited to very few languages, making several countries unable to take their benefit. While multi-lingual or low-resource language-specific tools are being developed, they still need to expand their coverage, such as for the Nepali language. In this paper, we identify the eight most common COVID-19 discussion topics among the Twitter community using the Nepali language, set up an online platform to automatically gather Nepali tweets containing the COVID-19-related keywords, classify the tweets into the eight topics, and visualize the results across the period in a web-based dashboard. We compare the performance of two state-of-the-art multi-lingual language models for Nepali tweet classification, one generic (mBERT) and the other Nepali language family-specific model (MuRIL). Our results show that the models' relative performance depends on the data size, with MuRIL doing better for a larger dataset. The annotated data, models, and the web-based dashboard are open-sourced at https://github.com/naamiinepal/covid-tweet-classification.

  • 6 authors
·
Oct 11, 2022

Creating and Evaluating Code-Mixed Nepali-English and Telugu-English Datasets for Abusive Language Detection Using Traditional and Deep Learning Models

With the growing presence of multilingual users on social media, detecting abusive language in code-mixed text has become increasingly challenging. Code-mixed communication, where users seamlessly switch between English and their native languages, poses difficulties for traditional abuse detection models, as offensive content may be context-dependent or obscured by linguistic blending. While abusive language detection has been extensively explored for high-resource languages like English and Hindi, low-resource languages such as Telugu and Nepali remain underrepresented, leaving gaps in effective moderation. In this study, we introduce a novel, manually annotated dataset of 2 thousand Telugu-English and 5 Nepali-English code-mixed comments, categorized as abusive and non-abusive, collected from various social media platforms. The dataset undergoes rigorous preprocessing before being evaluated across multiple Machine Learning (ML), Deep Learning (DL), and Large Language Models (LLMs). We experimented with models including Logistic Regression, Random Forest, Support Vector Machines (SVM), Neural Networks (NN), LSTM, CNN, and LLMs, optimizing their performance through hyperparameter tuning, and evaluate it using 10-fold cross-validation and statistical significance testing (t-test). Our findings provide key insights into the challenges of detecting abusive language in code-mixed settings and offer a comparative analysis of computational approaches. This study contributes to advancing NLP for low-resource languages by establishing benchmarks for abusive language detection in Telugu-English and Nepali-English code-mixed text. The dataset and insights can aid in the development of more robust moderation strategies for multilingual social media environments.

  • 4 authors
·
Apr 23, 2025