new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Multimodal Causal Reasoning Benchmark: Challenging Vision Large Language Models to Infer Causal Links Between Siamese Images

Large Language Models (LLMs) have showcased exceptional ability in causal reasoning from textual information. However, will these causalities remain straightforward for Vision Large Language Models (VLLMs) when only visual hints are provided? Motivated by this, we propose a novel Multimodal Causal Reasoning benchmark, namely MuCR, to challenge VLLMs to infer semantic cause-and-effect relationship when solely relying on visual cues such as action, appearance, clothing, and environment. Specifically, we introduce a prompt-driven image synthesis approach to create siamese images with embedded semantic causality and visual cues, which can effectively evaluate VLLMs' causal reasoning capabilities. Additionally, we develop tailored metrics from multiple perspectives, including image-level match, phrase-level understanding, and sentence-level explanation, to comprehensively assess VLLMs' comprehension abilities. Our extensive experiments reveal that the current state-of-the-art VLLMs are not as skilled at multimodal causal reasoning as we might have hoped. Furthermore, we perform a comprehensive analysis to understand these models' shortcomings from different views and suggest directions for future research. We hope MuCR can serve as a valuable resource and foundational benchmark in multimodal causal reasoning research. The project is available at: https://github.com/Zhiyuan-Li-John/MuCR

  • 7 authors
·
Aug 15, 2024

iReason: Multimodal Commonsense Reasoning using Videos and Natural Language with Interpretability

Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.

  • 2 authors
·
Jun 24, 2021

CVBench: Evaluating Cross-Video Synergies for Complex Multimodal Understanding and Reasoning

While multimodal large language models (MLLMs) exhibit strong performance on single-video tasks (e.g., video question answering), their ability across multiple videos remains critically underexplored. However, this capability is essential for real-world applications, including multi-camera surveillance and cross-video procedural learning. To bridge this gap, we present CVBench, the first comprehensive benchmark designed to assess cross-video relational reasoning rigorously. CVBench comprises 1,000 question-answer pairs spanning three hierarchical tiers: cross-video object association (identifying shared entities), cross-video event association (linking temporal or causal event chains), and cross-video complex reasoning (integrating commonsense and domain knowledge). Built from five domain-diverse video clusters (e.g., sports, life records), the benchmark challenges models to synthesise information across dynamic visual contexts. Extensive evaluation of 10+ leading MLLMs (including GPT-4o, Gemini-2.0-flash, Qwen2.5-VL) under zero-shot or chain-of-thought prompting paradigms. Key findings reveal stark performance gaps: even top models, such as GPT-4o, achieve only 60% accuracy on causal reasoning tasks, compared to the 91% accuracy of human performance. Crucially, our analysis reveals fundamental bottlenecks inherent in current MLLM architectures, notably deficient inter-video context retention and poor disambiguation of overlapping entities. CVBench establishes a rigorous framework for diagnosing and advancing multi-video reasoning, offering architectural insights for next-generation MLLMs. The data and evaluation code are available at https://github.com/Hokhim2/CVBench.

  • 12 authors
·
Aug 26, 2025

Link-Context Learning for Multimodal LLMs

The ability to learn from context with novel concepts, and deliver appropriate responses are essential in human conversations. Despite current Multimodal Large Language Models (MLLMs) and Large Language Models (LLMs) being trained on mega-scale datasets, recognizing unseen images or understanding novel concepts in a training-free manner remains a challenge. In-Context Learning (ICL) explores training-free few-shot learning, where models are encouraged to ``learn to learn" from limited tasks and generalize to unseen tasks. In this work, we propose link-context learning (LCL), which emphasizes "reasoning from cause and effect" to augment the learning capabilities of MLLMs. LCL goes beyond traditional ICL by explicitly strengthening the causal relationship between the support set and the query set. By providing demonstrations with causal links, LCL guides the model to discern not only the analogy but also the underlying causal associations between data points, which empowers MLLMs to recognize unseen images and understand novel concepts more effectively. To facilitate the evaluation of this novel approach, we introduce the ISEKAI dataset, comprising exclusively of unseen generated image-label pairs designed for link-context learning. Extensive experiments show that our LCL-MLLM exhibits strong link-context learning capabilities to novel concepts over vanilla MLLMs. Code and data will be released at https://github.com/isekai-portal/Link-Context-Learning.

  • 6 authors
·
Aug 15, 2023 1

PersonaX: Multimodal Datasets with LLM-Inferred Behavior Traits

Understanding human behavior traits is central to applications in human-computer interaction, computational social science, and personalized AI systems. Such understanding often requires integrating multiple modalities to capture nuanced patterns and relationships. However, existing resources rarely provide datasets that combine behavioral descriptors with complementary modalities such as facial attributes and biographical information. To address this gap, we present PersonaX, a curated collection of multimodal datasets designed to enable comprehensive analysis of public traits across modalities. PersonaX consists of (1) CelebPersona, featuring 9444 public figures from diverse occupations, and (2) AthlePersona, covering 4181 professional athletes across 7 major sports leagues. Each dataset includes behavioral trait assessments inferred by three high-performing large language models, alongside facial imagery and structured biographical features. We analyze PersonaX at two complementary levels. First, we abstract high-level trait scores from text descriptions and apply five statistical independence tests to examine their relationships with other modalities. Second, we introduce a novel causal representation learning (CRL) framework tailored to multimodal and multi-measurement data, providing theoretical identifiability guarantees. Experiments on both synthetic and real-world data demonstrate the effectiveness of our approach. By unifying structured and unstructured analysis, PersonaX establishes a foundation for studying LLM-inferred behavioral traits in conjunction with visual and biographical attributes, advancing multimodal trait analysis and causal reasoning.

  • 10 authors
·
Sep 14, 2025 2

Fine-grained Audio-Visual Joint Representations for Multimodal Large Language Models

Audio-visual large language models (LLM) have drawn significant attention, yet the fine-grained combination of both input streams is rather under-explored, which is challenging but necessary for LLMs to understand general video inputs. To this end, a fine-grained audio-visual joint representation (FAVOR) learning framework for multimodal LLMs is proposed in this paper, which extends a text-based LLM to simultaneously perceive speech and audio events in the audio input stream and images or videos in the visual input stream, at the frame level. To fuse the audio and visual feature streams into joint representations and to align the joint space with the LLM input embedding space, we propose a causal Q-Former structure with a causal attention module to enhance the capture of causal relations of the audio-visual frames across time. An audio-visual evaluation benchmark (AVEB) is also proposed which comprises six representative single-modal tasks with five cross-modal tasks reflecting audio-visual co-reasoning abilities. While achieving competitive single-modal performance on audio, speech and image tasks in AVEB, FAVOR achieved over 20% accuracy improvements on the video question-answering task when fine-grained information or temporal causal reasoning is required. FAVOR, in addition, demonstrated remarkable video comprehension and reasoning abilities on tasks that are unprecedented by other multimodal LLMs. An interactive demo of FAVOR is available at https://github.com/BriansIDP/AudioVisualLLM.git, and the training code and model checkpoints will be released soon.

  • 9 authors
·
Oct 9, 2023

Human-MME: A Holistic Evaluation Benchmark for Human-Centric Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks. However, their capacity to comprehend human-centric scenes has rarely been explored, primarily due to the absence of comprehensive evaluation benchmarks that take into account both the human-oriented granular level and higher-dimensional causal reasoning ability. Such high-quality evaluation benchmarks face tough obstacles, given the physical complexity of the human body and the difficulty of annotating granular structures. In this paper, we propose Human-MME, a curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric scene understanding. Compared with other existing benchmarks, our work provides three key features: 1. Diversity in human scene, spanning 4 primary visual domains with 15 secondary domains and 43 sub-fields to ensure broad scenario coverage. 2. Progressive and diverse evaluation dimensions, evaluating the human-based activities progressively from the human-oriented granular perception to the higher-dimensional reasoning, consisting of eight dimensions with 19,945 real-world image question pairs and an evaluation suite. 3. High-quality annotations with rich data paradigms, constructing the automated annotation pipeline and human-annotation platform, supporting rigorous manual labeling to facilitate precise and reliable model assessment. Our benchmark extends the single-target understanding to the multi-person and multi-image mutual understanding by constructing the choice, short-answer, grounding, ranking and judgment question components, and complex questions of their combination. The extensive experiments on 17 state-of-the-art MLLMs effectively expose the limitations and guide future MLLMs research toward better human-centric image understanding. All data and code are available at https://github.com/Yuan-Hou/Human-MME.

  • 15 authors
·
Sep 30, 2025

Towards Safer and Understandable Driver Intention Prediction

Autonomous driving (AD) systems are becoming increasingly capable of handling complex tasks, mainly due to recent advances in deep learning and AI. As interactions between autonomous systems and humans increase, the interpretability of decision-making processes in driving systems becomes increasingly crucial for ensuring safe driving operations. Successful human-machine interaction requires understanding the underlying representations of the environment and the driving task, which remains a significant challenge in deep learning-based systems. To address this, we introduce the task of interpretability in maneuver prediction before they occur for driver safety, i.e., driver intent prediction (DIP), which plays a critical role in AD systems. To foster research in interpretable DIP, we curate the eXplainable Driving Action Anticipation Dataset (DAAD-X), a new multimodal, ego-centric video dataset to provide hierarchical, high-level textual explanations as causal reasoning for the driver's decisions. These explanations are derived from both the driver's eye-gaze and the ego-vehicle's perspective. Next, we propose Video Concept Bottleneck Model (VCBM), a framework that generates spatio-temporally coherent explanations inherently, without relying on post-hoc techniques. Finally, through extensive evaluations of the proposed VCBM on the DAAD-X dataset, we demonstrate that transformer-based models exhibit greater interpretability than conventional CNN-based models. Additionally, we introduce a multilabel t-SNE visualization technique to illustrate the disentanglement and causal correlation among multiple explanations. Our data, code and models are available at: https://mukil07.github.io/VCBM.github.io/

  • 5 authors
·
Oct 10, 2025

Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs

Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of earlier modalities (e.g., images) to incorporate information from later modalities (e.g., text). To address this problem, we propose AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code is publicly available at https://github.com/sony/aki, and we will release our AKI-4B model to encourage further advancements in MLLMs across various directions.

  • 4 authors
·
Mar 4, 2025

Chain-of-Evidence Multimodal Reasoning for Few-shot Temporal Action Localization

Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the action localization task. To address these issues, in this work, we propose a new few-shot temporal action localization method by Chain-of-Evidence multimodal reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level, we design a Chain-of-Evidence (CoE) reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoE text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3, THUMOS14 and our newly collected Human-related Anomaly Localization Dataset. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. Our source code and data are available at https://github.com/MICLAB-BUPT/VAL-VLM.

  • 5 authors
·
Apr 18, 2025

MR$^2$-Bench: Going Beyond Matching to Reasoning in Multimodal Retrieval

Multimodal retrieval is becoming a crucial component of modern AI applications, yet its evaluation lags behind the demands of more realistic and challenging scenarios. Existing benchmarks primarily probe surface-level semantic correspondence (e.g., object-text matching) while failing to assess the deeper reasoning required to capture complex relationships between visual and textual information. To address this gap, we introduce MR^2-Bench, a reasoning-intensive benchmark for multimodal retrieval. MR^2-Bench presents the following critical values: 1) all tasks are reasoning-driven, going beyond shallow matching to effectively assess models' capacity for logical, spatial, and causal inference; 2) it features diverse multimodal data, such as natural images, diagrams, and visual puzzles, enabling comprehensive evaluation across content types; 3) it supports complex queries and documents containing multiple images and covers diverse retrieval scenarios, more accurately reflecting real-world applications. Our benchmark contains 1,309 curated queries, derived either from manual collection and annotation or from selective consolidation of public datasets. Despite achieving strong results on existing benchmarks, current state-of-the-art models still struggle on MR^2-Bench: for example, the leading Seed1.6-Embedding model attains a Recall@1 of 77.78 on MMEB, but only 9.91 on MR^2-Bench. This substantial performance gap highlights both the increased challenge posed by our benchmark and the pressing need for further advances in reasoning-intensive multimodal retrieval. The dataset and evaluation code will be made publicly available at https://github.com/VectorSpaceLab/MR2-Bench.

  • 13 authors
·
Sep 30, 2025

REVISOR: Beyond Textual Reflection, Towards Multimodal Introspective Reasoning in Long-Form Video Understanding

Self-reflection mechanisms that rely on purely text-based rethinking processes perform well in most multimodal tasks. However, when directly applied to long-form video understanding scenarios, they exhibit clear limitations. The fundamental reasons for this lie in two points: (1)long-form video understanding involves richer and more dynamic visual input, meaning rethinking only the text information is insufficient and necessitates a further rethinking process specifically targeting visual information; (2) purely text-based reflection mechanisms lack cross-modal interaction capabilities, preventing them from fully integrating visual information during reflection. Motivated by these insights, we propose REVISOR (REflective VIsual Segment Oriented Reasoning), a novel framework for tool-augmented multimodal reflection. REVISOR enables MLLMs to collaboratively construct introspective reflection processes across textual and visual modalities, significantly enhancing their reasoning capability for long-form video understanding. To ensure that REVISOR can learn to accurately review video segments highly relevant to the question during reinforcement learning, we designed the Dual Attribution Decoupled Reward (DADR) mechanism. Integrated into the GRPO training strategy, this mechanism enforces causal alignment between the model's reasoning and the selected video evidence. Notably, the REVISOR framework significantly enhances long-form video understanding capability of MLLMs without requiring supplementary supervised fine-tuning or external models, achieving impressive results on four benchmarks including VideoMME, LongVideoBench, MLVU, and LVBench.

  • 10 authors
·
Nov 17, 2025 2

Mitigating Object Hallucination via Concentric Causal Attention

Recent Large Vision Language Models (LVLMs) present remarkable zero-shot conversational and reasoning capabilities given multimodal queries. Nevertheless, they suffer from object hallucination, a phenomenon where LVLMs are prone to generate textual responses not factually aligned with image inputs. Our pilot study reveals that object hallucination is closely tied with Rotary Position Encoding (RoPE), a widely adopted positional dependency modeling design in existing LVLMs. Due to the long-term decay in RoPE, LVLMs tend to hallucinate more when relevant visual cues are distant from instruction tokens in the multimodal input sequence. Additionally, we observe a similar effect when reversing the sequential order of visual tokens during multimodal alignment. Our tests indicate that long-term decay in RoPE poses challenges to LVLMs while capturing visual-instruction interactions across long distances. We propose Concentric Causal Attention (CCA), a simple yet effective positional alignment strategy that mitigates the impact of RoPE long-term decay in LVLMs by naturally reducing relative distance between visual and instruction tokens. With CCA, visual tokens can better interact with instruction tokens, thereby enhancing model's perception capability and alleviating object hallucination. Without bells and whistles, our positional alignment method surpasses existing hallucination mitigation strategies by large margins on multiple object hallucination benchmarks.

  • 4 authors
·
Oct 21, 2024 2

Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing

Large Multi-modality Models (LMMs) have made significant progress in visual understanding and generation, but they still face challenges in General Visual Editing, particularly in following complex instructions, preserving appearance consistency, and supporting flexible input formats. To address this gap, we introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE). RISEBench focuses on four key reasoning types: Temporal, Causal, Spatial, and Logical Reasoning. We curate high-quality test cases for each category and propose an evaluation framework that assesses Instruction Reasoning, Appearance Consistency, and Visual Plausibility with both human judges and an LMM-as-a-judge approach. Our experiments reveal that while GPT-4o-Native significantly outperforms other open-source and proprietary models, even this state-of-the-art system struggles with logical reasoning tasks, highlighting an area that remains underexplored. As an initial effort, RISEBench aims to provide foundational insights into reasoning-aware visual editing and to catalyze future research. Though still in its early stages, we are committed to continuously expanding and refining the benchmark to support more comprehensive, reliable, and scalable evaluations of next-generation multimodal systems. Our code and data will be released at https://github.com/PhoenixZ810/RISEBench.

  • 10 authors
·
Apr 3, 2025 2

SpatialBench: Benchmarking Multimodal Large Language Models for Spatial Cognition

Spatial cognition is fundamental to real-world multimodal intelligence, allowing models to effectively interact with the physical environment. While multimodal large language models (MLLMs) have made significant strides, existing benchmarks often oversimplify spatial cognition, reducing it to a single-dimensional metric, which fails to capture the hierarchical structure and interdependence of spatial abilities. To address this gap, we propose a hierarchical spatial cognition framework that decomposes spatial intelligence into five progressively complex levels from basic observation to high-level planning. Building upon this taxonomy, we construct SpatialBench, a large-scale, fine-grained benchmark covering 15 tasks aligned with these cognitive levels. To provide a unified evaluation across heterogeneous tasks, we further introduce a high-level capability-oriented metric that reliably assesses a model's overall spatial reasoning ability. Extensive experiments over massive MLLMs reveal distinct performance stratification across cognitive levels: models exhibit strong perceptual grounding yet remain limited in symbolic reasoning, causal inference, and planning. Additional human tests demonstrate that humans perform selective, goal-directed abstraction, while MLLMs tend to over-attend to surface details without coherent spatial intent. Our work establishes the first systematic framework for measuring hierarchical spatial cognition in MLLMs, laying the foundation for future spatially intelligent systems.

  • 5 authors
·
Nov 26, 2025

TARS: MinMax Token-Adaptive Preference Strategy for Hallucination Reduction in MLLMs

Multimodal large language models (MLLMs) enable vision-language reasoning, yet often generate plausible outputs that are factually incorrect or visually ungrounded, thereby compromising their reliability. Direct preference optimization (DPO) is a common strategy for correcting hallucinations by aligning model outputs with human preferences. Existing DPO strategies typically treat hallucination-related preferences as fixed targets, relying on static supervision signals during training. This approach tends to overfit to superficial linguistic cues in preference data, leading to distributional rigidity and spurious correlations that impair grounding in causally relevant visual information. To overcome this limitation, we propose TARS, a token-adaptive preference strategy that reformulates DPO as a min-max optimization problem. TARS maximizes token-level distributional shifts under semantic constraints to simulate alignment uncertainty, and simultaneously minimizes the expected preference loss under these controlled perturbations. This joint objective preserves causal grounding while mitigating overfitting to preference patterns, thereby reducing hallucinations in multimodal reasoning. We evaluate TARS on multiple hallucination benchmarks and find consistently strong performance. Using only 4.8k preference samples and no expert feedback, TARS reduces hallucination rates from 26.4% to 13.2% and decreases cognition value from 2.5 to 0.4. It outperforms standard DPO and matches GPT-4o on several key metrics.

  • 6 authors
·
Jul 29, 2025 2

LeAdQA: LLM-Driven Context-Aware Temporal Grounding for Video Question Answering

Video Question Answering (VideoQA) requires identifying sparse critical moments in long videos and reasoning about their causal relationships to answer semantically complex questions. While recent advances in multimodal learning have improved alignment and fusion, current approaches remain limited by two prevalent but fundamentally flawed strategies: (1) task-agnostic sampling indiscriminately processes all frames, overwhelming key events with irrelevant content; and (2) heuristic retrieval captures superficial patterns but misses causal-temporal structures needed for complex reasoning. To address these challenges, we introduce LeAdQA, an innovative approach that bridges these gaps through synergizing causal-aware query refinement with fine-grained visual grounding. Our method first leverages LLMs to reformulate question-option pairs, resolving causal ambiguities and sharpening temporal focus. These refined queries subsequently direct a temporal grounding model to precisely retrieve the most salient segments, complemented by an adaptive fusion mechanism dynamically integrating the evidence to maximize relevance. The integrated visual-textual cues are then processed by an MLLM to generate accurate, contextually-grounded answers. Experiments on NExT-QA, IntentQA, and NExT-GQA demonstrate that our method's precise visual grounding substantially enhances the understanding of video-question relationships, achieving state-of-the-art (SOTA) performance on complex reasoning tasks while maintaining computational efficiency.

  • 7 authors
·
Jul 19, 2025

iPerceive: Applying Common-Sense Reasoning to Multi-Modal Dense Video Captioning and Video Question Answering

Most prior art in visual understanding relies solely on analyzing the "what" (e.g., event recognition) and "where" (e.g., event localization), which in some cases, fails to describe correct contextual relationships between events or leads to incorrect underlying visual attention. Part of what defines us as human and fundamentally different from machines is our instinct to seek causality behind any association, say an event Y that happened as a direct result of event X. To this end, we propose iPerceive, a framework capable of understanding the "why" between events in a video by building a common-sense knowledge base using contextual cues to infer causal relationships between objects in the video. We demonstrate the effectiveness of our technique using the dense video captioning (DVC) and video question answering (VideoQA) tasks. Furthermore, while most prior work in DVC and VideoQA relies solely on visual information, other modalities such as audio and speech are vital for a human observer's perception of an environment. We formulate DVC and VideoQA tasks as machine translation problems that utilize multiple modalities. By evaluating the performance of iPerceive DVC and iPerceive VideoQA on the ActivityNet Captions and TVQA datasets respectively, we show that our approach furthers the state-of-the-art. Code and samples are available at: iperceive.amanchadha.com.

  • 3 authors
·
Nov 16, 2020

MMGR: Multi-Modal Generative Reasoning

Video foundation models generate visually realistic and temporally coherent content, but their reliability as world simulators depends on whether they capture physical, logical, and spatial constraints. Existing metrics such as Frechet Video Distance (FVD) emphasize perceptual quality and overlook reasoning failures, including violations of causality, physics, and global consistency. We introduce MMGR (Multi-Modal Generative Reasoning Evaluation and Benchmark), a principled evaluation framework based on five reasoning abilities: Physical, Logical, 3D Spatial, 2D Spatial, and Temporal. MMGR evaluates generative reasoning across three domains: Abstract Reasoning (ARC-AGI, Sudoku), Embodied Navigation (real-world 3D navigation and localization), and Physical Commonsense (sports and compositional interactions). MMGR applies fine-grained metrics that require holistic correctness across both video and image generation. We benchmark leading video models (Veo-3, Sora-2, Wan-2.2) and image models (Nano-banana, Nano-banana Pro, GPT-4o-image, Qwen-image), revealing strong performance gaps across domains. Models show moderate success on Physical Commonsense tasks but perform poorly on Abstract Reasoning (below 10 percent accuracy on ARC-AGI) and struggle with long-horizon spatial planning in embodied settings. Our analysis highlights key limitations in current models, including overreliance on perceptual data, weak global state consistency, and objectives that reward visual plausibility over causal correctness. MMGR offers a unified diagnostic benchmark and a path toward reasoning-aware generative world models.

  • 12 authors
·
Dec 16, 2025 3

Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning

While multi-modal large language models (MLLMs) have made significant progress in complex reasoning tasks via reinforcement learning, it is commonly believed that extensive training data is necessary for improving multi-modal reasoning ability, inevitably leading to data redundancy and substantial computational costs. However, can smaller high-value datasets match or outperform full corpora for multi-modal reasoning in MLLMs? In this work, we challenge this assumption through a key observation: meaningful multi-modal reasoning is triggered by only a sparse subset of training samples, termed cognitive samples, whereas the majority contribute marginally. Building on this insight, we propose a novel data selection paradigm termed Reasoning Activation Potential (RAP), which identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning by two complementary estimators: 1) Causal Discrepancy Estimator (CDE) based on the potential outcome model principle, eliminates samples that overly rely on language priors by comparing outputs between multi-modal and text-only inputs; 2) Attention Confidence Estimator (ACE), which exploits token-level self-attention to discard samples dominated by irrelevant but over-emphasized tokens in intermediate reasoning stages. Moreover, we introduce a Difficulty-aware Replacement Module (DRM) to substitute trivial instances with cognitively challenging ones, thereby ensuring complexity for robust multi-modal reasoning. Experiments on six datasets show that our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%. Our code is available at https://github.com/Leo-ssl/RAP.

  • 9 authors
·
Jun 5, 2025 2