--- license: apache-2.0 tags: - mxfp4_hybrid - gguf - text-generation - quantized - cpu - gpu - mxfp4 - mxfp4_moe - magicquant - magic_quant - IQ4_NL base_model: - unsloth/Qwen3-4B-Thinking-2507 --- # MagicQuant GGUF Hybrids - Qwen3 4B Thinking 2507 > **MagicQuant is an automated quantization, benchmarking, and evolutionary hybrid-GGUF search system for LLMs.** Each release includes models optimized to outperform standard baseline quants (Q8, Q6, Q5, Q4). If a baseline GGUF exists in this repo, the evolutionary engine couldn’t beat it. If a baseline is missing, it’s because a hybrid configuration outperformed it so completely that including the baseline would've been pointless. These hybrid GGUFs are built to be as small, fast, and low-drift as possible while preserving model capability. To dive deeper into how MagicQuant works, see the main repo: [MagicQuant on GitHub (by MagicCodingMan)](https://github.com/magiccodingman/MagicQuant-Wiki) **Notes:** * The HuggingFace hardware compatibility where it shows the bits is usually wrong. It doesn't understand hybrid mixes, so don't trust it. * Naming scheme can be found on the MagicQuant Wiki. * (tips) Less precision loss means less brain damage. More TPS means faster! Smaller is always better right? **Precision Loss Guide** * **0–0.1%** → God-tier, scientifically exact * **0.1–1%** → True near-lossless, agent-ready * **1–3%** → Minimal loss, great for personal use * **3–5%** → Borderline, but still functional * **5%+** → Toys, not tools, outside MagicQuant’s scope [Learn more about precision loss here](https://github.com/magiccodingman/MagicQuant-Wiki/blob/main/docs/precision-loss-guide.md). ### Table - File Size + TPS + Avg Precision Loss | model_name | file_size_gb | bench_tps | avg_prec_loss | | ---------- | ------------ | --------- | ------------- | | [mxfp4_moe-O-Q6K-EQKUD-Q8_0](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-O-Q6K-EQKUD-Q8_0.gguf?download=true) | 3.90 | 369.09 | 0.0989% | | [mxfp4_moe-Q-Q5K-EKOUD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-Q-Q5K-EKOUD-Q6K.gguf?download=true) | 3.03 | 394.06 | 0.1278% | | [iq4_nl-EQKOUD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-iq4_nl-EQKOUD-Q6K.gguf?download=true) | 3.08 | 413.99 | 0.1740% | | [mxfp4_moe-QK-IQ4NL-O-MXFP4-EUD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-QK-IQ4NL-O-MXFP4-EUD-Q6K.gguf?download=true) | 2.84 | 430.23 | 0.3832% | | [Q5_K](./../../resolve/main/Qwen3-4B-Thinking-2507-Q5_K.gguf?download=true) | 2.69 | 375.72 | 0.5973% | | [Q4_K_M](./../../resolve/main/Qwen3-4B-Thinking-2507-Q4_K_M.gguf?download=true) | 2.33 | 366.54 | 1.6668% | | [mxfp4_moe-QKU-IQ4NL-O-MXFP4-D-Q5K-E-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-QKU-IQ4NL-O-MXFP4-D-Q5K-E-Q6K.gguf?download=true) | 2.30 | 412.13 | 2.2740% | | [IQ4_NL](./../../resolve/main/Qwen3-4B-Thinking-2507-IQ4_NL.gguf?download=true) | 2.23 | 450.75 | 2.4657% | | [mxfp4_moe-EQOU-IQ4NL-KD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-EQOU-IQ4NL-KD-Q6K.gguf?download=true) | 2.37 | 472.25 | 2.5049% | ### Table - PPL Columns | model_name | gen | gen_er | code | code_er | math | math_er | | ---------- | --- | ------ | ---- | ------- | ---- | ------- | | [mxfp4_moe-O-Q6K-EQKUD-Q8_0](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-O-Q6K-EQKUD-Q8_0.gguf?download=true) | 10.0081 | 0.2450 | 1.5936 | 0.0128 | 6.9001 | 0.1413 | | [mxfp4_moe-Q-Q5K-EKOUD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-Q-Q5K-EKOUD-Q6K.gguf?download=true) | 9.9957 | 0.2441 | 1.5922 | 0.0127 | 6.9036 | 0.1412 | | [iq4_nl-EQKOUD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-iq4_nl-EQKOUD-Q6K.gguf?download=true) | 9.9687 | 0.2431 | 1.5927 | 0.0127 | 6.8924 | 0.1409 | | [mxfp4_moe-QK-IQ4NL-O-MXFP4-EUD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-QK-IQ4NL-O-MXFP4-EUD-Q6K.gguf?download=true) | 10.0858 | 0.2460 | 1.5949 | 0.0126 | 6.9032 | 0.1403 | | [Q5_K](./../../resolve/main/Qwen3-4B-Thinking-2507-Q5_K.gguf?download=true) | 10.0993 | 0.2473 | 1.5978 | 0.0128 | 6.9256 | 0.1413 | | [Q4_K_M](./../../resolve/main/Qwen3-4B-Thinking-2507-Q4_K_M.gguf?download=true) | 10.3239 | 0.2536 | 1.6093 | 0.0129 | 6.9423 | 0.1412 | | [mxfp4_moe-QKU-IQ4NL-O-MXFP4-D-Q5K-E-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-QKU-IQ4NL-O-MXFP4-D-Q5K-E-Q6K.gguf?download=true) | 10.4164 | 0.2569 | 1.6143 | 0.0130 | 6.9825 | 0.1423 | | [IQ4_NL](./../../resolve/main/Qwen3-4B-Thinking-2507-IQ4_NL.gguf?download=true) | 10.3718 | 0.2548 | 1.6125 | 0.0129 | 7.0606 | 0.1452 | | [mxfp4_moe-EQOU-IQ4NL-KD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-EQOU-IQ4NL-KD-Q6K.gguf?download=true) | 10.3780 | 0.2547 | 1.6178 | 0.0132 | 7.0415 | 0.1443 | ### Table - Precision Loss Columns | model_name | loss_general | loss_code | loss_math | | ---------- | ------------ | --------- | --------- | | [mxfp4_moe-O-Q6K-EQKUD-Q8_0](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-O-Q6K-EQKUD-Q8_0.gguf?download=true) | 0.0250 | 0.1194 | 0.1524 | | [mxfp4_moe-Q-Q5K-EKOUD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-Q-Q5K-EKOUD-Q6K.gguf?download=true) | 0.1488 | 0.0314 | 0.2032 | | [iq4_nl-EQKOUD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-iq4_nl-EQKOUD-Q6K.gguf?download=true) | 0.4186 | 0.0628 | 0.0406 | | [mxfp4_moe-QK-IQ4NL-O-MXFP4-EUD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-QK-IQ4NL-O-MXFP4-EUD-Q6K.gguf?download=true) | 0.7512 | 0.2010 | 0.1974 | | [Q5_K](./../../resolve/main/Qwen3-4B-Thinking-2507-Q5_K.gguf?download=true) | 0.8861 | 0.3832 | 0.5225 | | [Q4_K_M](./../../resolve/main/Qwen3-4B-Thinking-2507-Q4_K_M.gguf?download=true) | 3.1297 | 1.1057 | 0.7649 | | [mxfp4_moe-QKU-IQ4NL-O-MXFP4-D-Q5K-E-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-QKU-IQ4NL-O-MXFP4-D-Q5K-E-Q6K.gguf?download=true) | 4.0537 | 1.4199 | 1.3484 | | [IQ4_NL](./../../resolve/main/Qwen3-4B-Thinking-2507-IQ4_NL.gguf?download=true) | 3.6082 | 1.3068 | 2.4820 | | [mxfp4_moe-EQOU-IQ4NL-KD-Q6K](./../../resolve/main/Qwen3-4B-Thinking-2507-mxfp4_moe-EQOU-IQ4NL-KD-Q6K.gguf?download=true) | 3.6701 | 1.6398 | 2.2048 | --- ### Baseline Models (Reference) ### Table - File Size + TPS + Avg Precision Loss | model_name | file_size_gb | bench_tps | avg_prec_loss | | ---------- | ------------ | --------- | ------------- | | BF16 | 7.50 | 249.86 | 0.0000% | | Q8_0 | 3.99 | 360.78 | 0.1028% | | Q6_K | 3.08 | 404.72 | 0.1740% | | Q5_K | 2.69 | 375.72 | 0.5973% | | Q4_K_M | 2.33 | 366.54 | 1.6668% | | IQ4_NL | 2.23 | 450.75 | 2.4657% | | MXFP4_MOE | 2.00 | 466.66 | 7.9498% | ### Table - PPL Columns | model_name | gen | gen_er | code | code_er | math | math_er | | ---------- | --- | ------ | ---- | ------- | ---- | ------- | | BF16 | 10.0106 | 0.2451 | 1.5917 | 0.0127 | 6.8896 | 0.1410 | | Q8_0 | 10.0174 | 0.2454 | 1.5931 | 0.0128 | 6.9001 | 0.1413 | | Q6_K | 9.9687 | 0.2431 | 1.5927 | 0.0127 | 6.8924 | 0.1409 | | Q5_K | 10.0993 | 0.2473 | 1.5978 | 0.0128 | 6.9256 | 0.1413 | | Q4_K_M | 10.3239 | 0.2536 | 1.6093 | 0.0129 | 6.9423 | 0.1412 | | IQ4_NL | 10.3718 | 0.2548 | 1.6125 | 0.0129 | 7.0606 | 0.1452 | | MXFP4_MOE | 10.9465 | 0.2659 | 1.6645 | 0.0138 | 7.5735 | 0.1563 | ### Table - Precision Loss Columns | model_name | loss_general | loss_code | loss_math | | ---------- | ------------ | --------- | --------- | | BF16 | 0.0000 | 0.0000 | 0.0000 | | Q8_0 | 0.0679 | 0.0880 | 0.1524 | | Q6_K | 0.4186 | 0.0628 | 0.0406 | | Q5_K | 0.8861 | 0.3832 | 0.5225 | | Q4_K_M | 3.1297 | 1.1057 | 0.7649 | | IQ4_NL | 3.6082 | 1.3068 | 2.4820 | | MXFP4_MOE | 9.3491 | 4.5737 | 9.9266 | --- ## Support I’m a solo developer working full time for myself to achieve my dream, pouring nights and weekends into open protocols and tools that I hope make the world a little better. If you chip in, you're helping me keep the lights on while I keep shipping. [Click here to see ways to support](https://sayou.biz/support) - BTC, Paypal, GitHub sponsors. Or, just drop a like on the repo :)