formatting
Browse files- custom_generate/generate.py +81 -22
custom_generate/generate.py
CHANGED
|
@@ -11,7 +11,10 @@ from transformers.generation.logits_process import (
|
|
| 11 |
TopKLogitsWarper,
|
| 12 |
TopPLogitsWarper,
|
| 13 |
)
|
| 14 |
-
from transformers.generation.utils import
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
def generate(
|
|
@@ -50,8 +53,12 @@ def generate(
|
|
| 50 |
# Get DeepCONF parameters from generation_config or set defaults
|
| 51 |
enable_conf = getattr(generation_config, "enable_conf", False)
|
| 52 |
window_size = getattr(generation_config, "window_size", 2048)
|
| 53 |
-
threshold = getattr(
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# If DeepCONF is not enabled, fall back to standard sampling
|
| 57 |
if not enable_conf:
|
|
@@ -83,16 +90,26 @@ def generate(
|
|
| 83 |
return_dict_in_generate = generation_config.return_dict_in_generate
|
| 84 |
output_confidences = getattr(generation_config, "output_confidences", False)
|
| 85 |
# Optional DeepConf variant helpers (compute threshold from warmup confidences)
|
| 86 |
-
deepconf_variant = getattr(
|
|
|
|
|
|
|
| 87 |
deepconf_eta = getattr(generation_config, "deepconf_eta", None) # float in (0,1)
|
| 88 |
-
deepconf_warmup_confidences = getattr(
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
do_sample = generation_config.do_sample
|
| 91 |
|
| 92 |
# If a variant is requested and a warmup set of confidences is provided, derive the threshold
|
| 93 |
if enable_conf and threshold is not None:
|
| 94 |
pass
|
| 95 |
-
elif
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
confs = deepconf_warmup_confidences
|
| 97 |
if hasattr(confs, "detach"):
|
| 98 |
confs = confs.detach().cpu().numpy()
|
|
@@ -101,7 +118,13 @@ def generate(
|
|
| 101 |
confs = np.asarray(confs, dtype=np.float32).ravel()
|
| 102 |
eta = deepconf_eta
|
| 103 |
if eta is None:
|
| 104 |
-
eta =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
pct = max(0.0, min(100.0, 100.0 - (eta * 100.0)))
|
| 106 |
threshold = float(np.percentile(confs, pct))
|
| 107 |
|
|
@@ -110,22 +133,36 @@ def generate(
|
|
| 110 |
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
| 111 |
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 112 |
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 113 |
-
decoder_hidden_states = (
|
|
|
|
|
|
|
| 114 |
|
| 115 |
# If model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
| 116 |
if return_dict_in_generate and model.config.is_encoder_decoder:
|
| 117 |
-
encoder_attentions =
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
# Keep track of which sequences are already finished
|
| 121 |
batch_size, cur_len = input_ids.shape[:2]
|
| 122 |
-
unfinished_sequences = torch.ones(
|
|
|
|
|
|
|
| 123 |
# Use public kv-cache via past_key_values
|
| 124 |
|
| 125 |
# Initialize confidence tracking
|
| 126 |
# Use deque for sliding window with fixed size
|
| 127 |
conf_group_lists = [deque(maxlen=window_size) for _ in range(batch_size)]
|
| 128 |
-
conf_grouped_sums = [
|
|
|
|
|
|
|
| 129 |
|
| 130 |
# Optional per-step confidences for debugging/visualization
|
| 131 |
step_confidences = [] if (return_dict_in_generate and output_confidences) else None
|
|
@@ -141,8 +178,14 @@ def generate(
|
|
| 141 |
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 142 |
|
| 143 |
# Prepare variable output controls
|
| 144 |
-
model_inputs.update(
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
# Forward pass with proper KV cache handling
|
| 148 |
with torch.no_grad():
|
|
@@ -181,14 +224,18 @@ def generate(
|
|
| 181 |
raw_logits += (next_token_logits,)
|
| 182 |
if output_attentions:
|
| 183 |
decoder_attentions += (
|
| 184 |
-
(outputs.decoder_attentions,)
|
|
|
|
|
|
|
| 185 |
)
|
| 186 |
if model.config.is_encoder_decoder:
|
| 187 |
cross_attentions += (outputs.cross_attentions,)
|
| 188 |
|
| 189 |
if output_hidden_states:
|
| 190 |
decoder_hidden_states += (
|
| 191 |
-
(outputs.decoder_hidden_states,)
|
|
|
|
|
|
|
| 192 |
)
|
| 193 |
|
| 194 |
# Token selection
|
|
@@ -203,8 +250,12 @@ def generate(
|
|
| 203 |
# This uses the raw logits (next_token_logits) before warpers are applied.
|
| 204 |
probs = F.softmax(next_token_logits, dim=-1)
|
| 205 |
|
| 206 |
-
deepconf_stopping = torch.ones(
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
for i in range(batch_size):
|
| 210 |
if not unfinished_sequences[i]:
|
|
@@ -233,11 +284,15 @@ def generate(
|
|
| 233 |
|
| 234 |
if step_confidences is not None:
|
| 235 |
# Store this step's confidences as a tensor of shape (batch,)
|
| 236 |
-
step_confidences.append(
|
|
|
|
|
|
|
| 237 |
|
| 238 |
# Finished sentences should have their next token be a padding token
|
| 239 |
if has_eos_stopping_criteria and pad_token_id is not None:
|
| 240 |
-
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
|
|
|
|
|
|
|
| 241 |
|
| 242 |
# Update generated ids, model inputs, and length for next step
|
| 243 |
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
|
@@ -245,7 +300,11 @@ def generate(
|
|
| 245 |
if model_kwargs.get("attention_mask") is not None:
|
| 246 |
attn = model_kwargs["attention_mask"]
|
| 247 |
model_kwargs["attention_mask"] = torch.cat(
|
| 248 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
)
|
| 250 |
# Update cache_position for next step (single next token)
|
| 251 |
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
|
|
|
|
| 11 |
TopKLogitsWarper,
|
| 12 |
TopPLogitsWarper,
|
| 13 |
)
|
| 14 |
+
from transformers.generation.utils import (
|
| 15 |
+
GenerateDecoderOnlyOutput,
|
| 16 |
+
GenerateEncoderDecoderOutput,
|
| 17 |
+
)
|
| 18 |
|
| 19 |
|
| 20 |
def generate(
|
|
|
|
| 53 |
# Get DeepCONF parameters from generation_config or set defaults
|
| 54 |
enable_conf = getattr(generation_config, "enable_conf", False)
|
| 55 |
window_size = getattr(generation_config, "window_size", 2048)
|
| 56 |
+
threshold = getattr(
|
| 57 |
+
generation_config, "threshold", 17.0
|
| 58 |
+
) # Default threshold for confidence (positive value)
|
| 59 |
+
conf_topk = getattr(
|
| 60 |
+
generation_config, "conf_topk", 20
|
| 61 |
+
) # Number of top tokens for confidence calculation
|
| 62 |
|
| 63 |
# If DeepCONF is not enabled, fall back to standard sampling
|
| 64 |
if not enable_conf:
|
|
|
|
| 90 |
return_dict_in_generate = generation_config.return_dict_in_generate
|
| 91 |
output_confidences = getattr(generation_config, "output_confidences", False)
|
| 92 |
# Optional DeepConf variant helpers (compute threshold from warmup confidences)
|
| 93 |
+
deepconf_variant = getattr(
|
| 94 |
+
generation_config, "deepconf_variant", None
|
| 95 |
+
) # "low" or "high"
|
| 96 |
deepconf_eta = getattr(generation_config, "deepconf_eta", None) # float in (0,1)
|
| 97 |
+
deepconf_warmup_confidences = getattr(
|
| 98 |
+
generation_config, "deepconf_warmup_confidences", None
|
| 99 |
+
) # list/1D tensor
|
| 100 |
+
has_eos_stopping_criteria = any(
|
| 101 |
+
hasattr(criteria, "eos_token_id") for criteria in stopping_criteria
|
| 102 |
+
)
|
| 103 |
do_sample = generation_config.do_sample
|
| 104 |
|
| 105 |
# If a variant is requested and a warmup set of confidences is provided, derive the threshold
|
| 106 |
if enable_conf and threshold is not None:
|
| 107 |
pass
|
| 108 |
+
elif (
|
| 109 |
+
enable_conf
|
| 110 |
+
and deepconf_variant is not None
|
| 111 |
+
and deepconf_warmup_confidences is not None
|
| 112 |
+
):
|
| 113 |
confs = deepconf_warmup_confidences
|
| 114 |
if hasattr(confs, "detach"):
|
| 115 |
confs = confs.detach().cpu().numpy()
|
|
|
|
| 118 |
confs = np.asarray(confs, dtype=np.float32).ravel()
|
| 119 |
eta = deepconf_eta
|
| 120 |
if eta is None:
|
| 121 |
+
eta = (
|
| 122 |
+
0.1
|
| 123 |
+
if deepconf_variant == "low"
|
| 124 |
+
else 0.9
|
| 125 |
+
if deepconf_variant == "high"
|
| 126 |
+
else 0.5
|
| 127 |
+
)
|
| 128 |
pct = max(0.0, min(100.0, 100.0 - (eta * 100.0)))
|
| 129 |
threshold = float(np.percentile(confs, pct))
|
| 130 |
|
|
|
|
| 133 |
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
| 134 |
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 135 |
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
| 136 |
+
decoder_hidden_states = (
|
| 137 |
+
() if (return_dict_in_generate and output_hidden_states) else None
|
| 138 |
+
)
|
| 139 |
|
| 140 |
# If model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
| 141 |
if return_dict_in_generate and model.config.is_encoder_decoder:
|
| 142 |
+
encoder_attentions = (
|
| 143 |
+
model_kwargs["encoder_outputs"].get("attentions")
|
| 144 |
+
if output_attentions
|
| 145 |
+
else None
|
| 146 |
+
)
|
| 147 |
+
encoder_hidden_states = (
|
| 148 |
+
model_kwargs["encoder_outputs"].get("hidden_states")
|
| 149 |
+
if output_hidden_states
|
| 150 |
+
else None
|
| 151 |
+
)
|
| 152 |
|
| 153 |
# Keep track of which sequences are already finished
|
| 154 |
batch_size, cur_len = input_ids.shape[:2]
|
| 155 |
+
unfinished_sequences = torch.ones(
|
| 156 |
+
batch_size, dtype=torch.long, device=input_ids.device
|
| 157 |
+
)
|
| 158 |
# Use public kv-cache via past_key_values
|
| 159 |
|
| 160 |
# Initialize confidence tracking
|
| 161 |
# Use deque for sliding window with fixed size
|
| 162 |
conf_group_lists = [deque(maxlen=window_size) for _ in range(batch_size)]
|
| 163 |
+
conf_grouped_sums = [
|
| 164 |
+
0.0 for _ in range(batch_size)
|
| 165 |
+
] # Running sums for efficient mean calculation
|
| 166 |
|
| 167 |
# Optional per-step confidences for debugging/visualization
|
| 168 |
step_confidences = [] if (return_dict_in_generate and output_confidences) else None
|
|
|
|
| 178 |
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 179 |
|
| 180 |
# Prepare variable output controls
|
| 181 |
+
model_inputs.update(
|
| 182 |
+
{"output_attentions": output_attentions} if output_attentions else {}
|
| 183 |
+
)
|
| 184 |
+
model_inputs.update(
|
| 185 |
+
{"output_hidden_states": output_hidden_states}
|
| 186 |
+
if output_hidden_states
|
| 187 |
+
else {}
|
| 188 |
+
)
|
| 189 |
|
| 190 |
# Forward pass with proper KV cache handling
|
| 191 |
with torch.no_grad():
|
|
|
|
| 224 |
raw_logits += (next_token_logits,)
|
| 225 |
if output_attentions:
|
| 226 |
decoder_attentions += (
|
| 227 |
+
(outputs.decoder_attentions,)
|
| 228 |
+
if model.config.is_encoder_decoder
|
| 229 |
+
else (outputs.attentions,)
|
| 230 |
)
|
| 231 |
if model.config.is_encoder_decoder:
|
| 232 |
cross_attentions += (outputs.cross_attentions,)
|
| 233 |
|
| 234 |
if output_hidden_states:
|
| 235 |
decoder_hidden_states += (
|
| 236 |
+
(outputs.decoder_hidden_states,)
|
| 237 |
+
if model.config.is_encoder_decoder
|
| 238 |
+
else (outputs.hidden_states,)
|
| 239 |
)
|
| 240 |
|
| 241 |
# Token selection
|
|
|
|
| 250 |
# This uses the raw logits (next_token_logits) before warpers are applied.
|
| 251 |
probs = F.softmax(next_token_logits, dim=-1)
|
| 252 |
|
| 253 |
+
deepconf_stopping = torch.ones(
|
| 254 |
+
batch_size, dtype=torch.bool, device=input_ids.device
|
| 255 |
+
)
|
| 256 |
+
step_conf_values = [
|
| 257 |
+
0.0
|
| 258 |
+
] * batch_size # collect per-sequence confidences for this step (full batch)
|
| 259 |
|
| 260 |
for i in range(batch_size):
|
| 261 |
if not unfinished_sequences[i]:
|
|
|
|
| 284 |
|
| 285 |
if step_confidences is not None:
|
| 286 |
# Store this step's confidences as a tensor of shape (batch,)
|
| 287 |
+
step_confidences.append(
|
| 288 |
+
torch.tensor(step_conf_values, device=input_ids.device)
|
| 289 |
+
)
|
| 290 |
|
| 291 |
# Finished sentences should have their next token be a padding token
|
| 292 |
if has_eos_stopping_criteria and pad_token_id is not None:
|
| 293 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
|
| 294 |
+
1 - unfinished_sequences
|
| 295 |
+
)
|
| 296 |
|
| 297 |
# Update generated ids, model inputs, and length for next step
|
| 298 |
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
|
|
|
| 300 |
if model_kwargs.get("attention_mask") is not None:
|
| 301 |
attn = model_kwargs["attention_mask"]
|
| 302 |
model_kwargs["attention_mask"] = torch.cat(
|
| 303 |
+
[
|
| 304 |
+
attn,
|
| 305 |
+
torch.ones((batch_size, 1), dtype=attn.dtype, device=attn.device),
|
| 306 |
+
],
|
| 307 |
+
dim=-1,
|
| 308 |
)
|
| 309 |
# Update cache_position for next step (single next token)
|
| 310 |
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
|