File size: 15,752 Bytes
c1cd11a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
"""
Example usage of Online mode with warmup

This demonstrates:
1. Warmup phase (generate N sequences to calibrate threshold)
2. Threshold computation (DeepConf-low or DeepConf-high)
3. Final generation with calibrated early stopping
"""

from typing import Optional

import numpy as np
import torch

from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig


def extract_answer(text: str) -> Optional[str]:
    """
    Extract boxed answer from LaTeX text

    Looks for \\boxed{answer} pattern in generated text.
    """
    if "boxed" in text:
        ans = text.split("boxed")[-1]
        if len(ans) == 0:
            return ""
        elif ans[0] == "{":
            stack = 1
            a = ""
            for c in ans[1:]:
                if c == "{":
                    stack += 1
                    a += c
                elif c == "}":
                    stack -= 1
                    if stack == 0:
                        break
                    a += c
                else:
                    a += c
        else:
            a = ans.split("$")[0].strip()
        return a.strip()

    return None


def compute_least_grouped(confs: list, group_size: int) -> list:
    """
    Compute sliding window mean confidence

    Args:
        confs: List of per-token confidence values
        group_size: Size of sliding window

    Returns:
        List of mean confidences for each window position
    """
    if len(confs) < group_size:
        return [sum(confs) / len(confs)] if confs else [0]

    sliding_means = []
    for i in range(len(confs) - group_size + 1):
        window = confs[i : i + group_size]
        sliding_means.append(round(sum(window) / len(window), 3))
    return sliding_means


def process_single_output(
    sequence, confidences, tokenizer, window_size: int, threshold: Optional[float] = None
) -> dict:
    """
    Process a single generated sequence

    Args:
        sequence: Generated token IDs
        confidences: Per-token confidence values (list or tensor)
        tokenizer: Tokenizer for decoding
        window_size: Size of sliding window for confidence
        threshold: Optional threshold for early stopping detection

    Returns:
        Dictionary with trace data
    """
    # Convert to list if tensor
    if hasattr(confidences, "tolist"):
        confs = confidences.tolist()
    else:
        confs = list(confidences)

    # Decode text
    text = tokenizer.decode(sequence, skip_special_tokens=True)

    # Compute sliding window statistics
    sliding_window = compute_least_grouped(confs, window_size)
    min_conf = min(sliding_window) if sliding_window else 0

    # Determine if early stopping would have triggered
    stopped_early = False
    stop_position = None

    if threshold is not None:
        for pos, window_mean in enumerate(sliding_window):
            if window_mean < threshold:
                stopped_early = True
                stop_position = pos + window_size  # Position in original sequence
                break

    # Extract answer if present
    extracted_answer = extract_answer(text)

    return {
        "text": text,
        "confs": confs,
        "group_confs": sliding_window,
        "min_conf": min_conf,
        "stopped_early": stopped_early,
        "stop_position": stop_position,
        "extracted_answer": extracted_answer,
        "num_tokens": len(confs),
        "token_ids": sequence.tolist() if hasattr(sequence, "tolist") else list(sequence),
    }


def process_batch_results(outputs, tokenizer, window_size: int = 2048, threshold: Optional[float] = None) -> dict:
    """
    Process batch generation outputs

    This function provides post-processing capabilities for batch-generated
    sequences, allowing analysis of confidence patterns and early stopping
    behavior after generation is complete.

    Args:
        outputs: GenerateDecoderOnlyOutput from model.generate()
        tokenizer: Tokenizer for decoding sequences
        window_size: Size of sliding window for confidence computation
        threshold: Optional threshold for detecting where early stopping would occur

    Returns:
        Dictionary containing:
            - traces: List of processed trace dictionaries
            - min_confs: List of minimum confidences per trace
            - total_tokens: Total tokens across all traces
            - num_traces: Number of traces processed
    """
    if not hasattr(outputs, "sequences"):
        raise ValueError("outputs must have 'sequences' attribute")

    if not hasattr(outputs, "confidences") or outputs.confidences is None:
        raise ValueError("outputs must have 'confidences' attribute. Set output_confidences=True in generation_config")

    sequences = outputs.sequences
    confidences = outputs.confidences

    # Process each sequence
    traces = []
    min_confs = []
    total_tokens = 0

    for i in range(sequences.shape[0]):
        trace_data = process_single_output(sequences[i], confidences[i], tokenizer, window_size, threshold)

        traces.append(trace_data)
        min_confs.append(trace_data["min_conf"])
        total_tokens += trace_data["num_tokens"]

    return {"traces": traces, "min_confs": min_confs, "total_tokens": total_tokens, "num_traces": len(traces)}


def compute_warmup_threshold(min_confs: list, variant: str = "low", eta: Optional[float] = None) -> float:
    """
    Compute threshold from warmup confidences

    Args:
        min_confs: List of minimum confidences from warmup sequences
        variant: "low" (aggressive) or "high" (permissive)
        eta: Optional manual eta value (overrides variant default)

    Returns:
        Computed threshold value
    """
    if eta is None:
        eta = 0.1 if variant == "low" else 0.9 if variant == "high" else 0.5

    confs = np.asarray(min_confs, dtype=np.float32)
    pct = max(0.0, min(100.0, 100.0 - (eta * 100.0)))
    threshold = float(np.percentile(confs, pct))

    return threshold


# ============================================================================
# Example Functions
# ============================================================================


def prepare_prompt(question: str, tokenizer):
    """Prepare prompt using chat template"""
    messages = [{"role": "user", "content": question}]

    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

    return prompt


def run_online_mode_example(
    question: str,
    ground_truth: Optional[str] = None,
    warmup_traces: int = 8,
    confidence_variant: str = "low",  # "low" or "high"
    window_size: int = 10,
    max_tokens: int = 128,
    temperature: float = 0.7,
    top_p: float = 0.95,
):
    """
    Run DeepConf in online mode

    Args:
        question: Question to answer
        ground_truth: Optional ground truth answer for evaluation
        warmup_traces: Number of warmup sequences (default: 8)
        confidence_variant: "low" (aggressive) or "high" (permissive)
        window_size: Sliding window size for confidence
        max_tokens: Max tokens per generation
        temperature: Sampling temperature
        top_p: Top-p sampling
    """

    # Load model (use local cache to avoid HF Hub timeouts)
    model_name = "Qwen/Qwen2.5-0.5B-Instruct"
    print(f"Loading model: {model_name}")
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float16,
        device_map="auto",
        local_files_only=True,  # Use cached model
    )
    tokenizer = AutoTokenizer.from_pretrained(model_name, local_files_only=True)

    # Prepare prompt
    prompt = prepare_prompt(question, tokenizer)
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    print("\n" + "=" * 80)
    print("DEEPCONF ONLINE MODE - FOLLOWING OFFICIAL PATTERN")
    print("=" * 80)
    print(f"\nQuestion: {question}")
    if ground_truth:
        print(f"Ground truth: {ground_truth}")
    print("\nConfiguration:")
    print(f"  - Warmup traces: {warmup_traces}")
    print(f"  - Variant: DeepConf-{confidence_variant}")
    print(f"  - Window size: {window_size}")
    print(f"  - Max tokens: {max_tokens}")
    print(f"  - Temperature: {temperature}")
    print(f"  - Top-p: {top_p}")

    # ============================================================
    # PHASE 1: WARMUP - Generate multiple sequences to calibrate
    # ============================================================
    print("\n" + "=" * 80)
    print(f"PHASE 1: WARMUP (Generating {warmup_traces} sequences for calibration)")
    print("=" * 80)

    warmup_config = GenerationConfig(
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        max_new_tokens=max_tokens,
        enable_conf=True,
        enable_early_stopping=False,  # No stopping during warmup
        output_confidences=True,
        return_dict_in_generate=True,
        pad_token_id=tokenizer.eos_token_id,
    )

    # Expand inputs for batch generation
    expanded_ids = inputs.input_ids.repeat(warmup_traces, 1)
    if "attention_mask" in inputs and inputs.attention_mask is not None:
        expanded_mask = inputs.attention_mask.repeat(warmup_traces, 1)
    else:
        expanded_mask = None

    print(f"Generating {warmup_traces} warmup sequences...")
    warmup_outputs = model.generate(
        input_ids=expanded_ids,
        attention_mask=expanded_mask,
        generation_config=warmup_config,
        custom_generate="kashif/DeepConf",
        trust_remote_code=True,
    )

    # Process warmup results
    warmup_results = process_batch_results(warmup_outputs, tokenizer, window_size=window_size)

    print("\nWarmup complete!")
    print(f"  - Total tokens: {warmup_results['total_tokens']}")
    print(f"  - Min confidences: {[round(c, 3) for c in warmup_results['min_confs']]}")

    # Show warmup traces
    print("\nWarmup Traces:")
    print("-" * 80)
    for i, trace in enumerate(warmup_results["traces"]):
        text = trace["text"][len(prompt) :].strip()
        answer = extract_answer(text)
        print(f"\nTrace {i + 1}:")
        print(f"  Tokens: {trace['num_tokens']}, Min conf: {trace['min_conf']:.3f}")
        print(f"  Text: {text[:80]}..." if len(text) > 80 else f"  Text: {text}")
        if answer:
            print(f"  Answer: {answer}")
            if ground_truth:
                correct = answer.strip() == ground_truth.strip()
                print(f"  Correct: {'βœ“' if correct else 'βœ—'}")

    # ============================================================
    # PHASE 2: THRESHOLD COMPUTATION
    # ============================================================
    print("\n" + "=" * 80)
    print("PHASE 2: THRESHOLD COMPUTATION")
    print("=" * 80)

    threshold = compute_warmup_threshold(warmup_results["min_confs"], variant=confidence_variant)

    eta = 0.1 if confidence_variant == "low" else 0.9
    percentile = (1.0 - eta) * 100

    print("\nComputed threshold from warmup:")
    print(f"  - Variant: DeepConf-{confidence_variant} (eta={eta})")
    print(f"  - Percentile: {percentile:.0f}th")
    print(f"  - Threshold: {threshold:.3f}")
    print("\nInterpretation:")
    if confidence_variant == "low":
        print("  DeepConf-low is AGGRESSIVE - stops early to save tokens")
    else:
        print("  DeepConf-high is PERMISSIVE - allows longer generation")

    # ============================================================
    # PHASE 3: FINAL GENERATION with calibrated threshold
    # ============================================================
    print("\n" + "=" * 80)
    print("PHASE 3: FINAL GENERATION (With calibrated early stopping)")
    print("=" * 80)

    final_config = GenerationConfig(
        do_sample=True,
        temperature=temperature,
        top_p=top_p,
        max_new_tokens=max_tokens,
        enable_conf=True,
        enable_early_stopping=True,  # Online stopping with calibrated threshold
        threshold=threshold,
        window_size=window_size,
        output_confidences=True,
        return_dict_in_generate=True,
        pad_token_id=tokenizer.eos_token_id,
    )

    print(f"Generating with DeepConf-{confidence_variant} (threshold={threshold:.3f})...")
    final_output = model.generate(
        **inputs,
        generation_config=final_config,
        custom_generate="kashif/DeepConf",
        trust_remote_code=True,
    )

    final_text = tokenizer.decode(final_output.sequences[0], skip_special_tokens=True)
    final_tokens = final_output.sequences.shape[1] - inputs.input_ids.shape[1]
    final_answer = extract_answer(final_text)

    # Calculate min confidence if available
    if hasattr(final_output, "confidences") and final_output.confidences is not None:
        min_conf = final_output.confidences.min().item()
        mean_conf = final_output.confidences.mean().item()
    else:
        min_conf = None
        mean_conf = None

    print("\nFinal generation complete!")
    print(f"  - Tokens generated: {final_tokens}")
    if min_conf is not None:
        print(f"  - Min confidence: {min_conf:.3f}")
        print(f"  - Mean confidence: {mean_conf:.3f}")

    print("\nGenerated text:")
    print("-" * 80)
    print(final_text)
    print("-" * 80)

    if final_answer:
        print(f"\nExtracted answer: {final_answer}")
        if ground_truth:
            correct = final_answer.strip() == ground_truth.strip()
            print(f"Correct: {'βœ“' if correct else 'βœ—'}")

    # ============================================================
    # SUMMARY
    # ============================================================
    print("\n" + "=" * 80)
    print("SUMMARY")
    print("=" * 80)

    total_warmup_tokens = warmup_results["total_tokens"]
    total_tokens = total_warmup_tokens + final_tokens

    print(f"Total tokens: {total_tokens}")
    print(f"  - Warmup: {total_warmup_tokens} ({warmup_traces} sequences)")
    print(f"  - Final: {final_tokens}")

    # Check if we would have used more tokens without early stopping
    avg_warmup_tokens = total_warmup_tokens / warmup_traces
    potential_savings = avg_warmup_tokens - final_tokens
    if potential_savings > 0:
        print("\nToken savings from early stopping:")
        print(f"  - Average warmup length: {avg_warmup_tokens:.1f} tokens")
        print(f"  - Final length: {final_tokens} tokens")
        print(f"  - Saved: {potential_savings:.1f} tokens ({potential_savings / avg_warmup_tokens * 100:.1f}%)")

    print("\n" + "=" * 80)
    print("Example complete!")
    print("=" * 80)


if __name__ == "__main__":
    # Example 1: Simple math problem
    print("\n\n" + "β–ˆ" * 80)
    print("EXAMPLE 1: Simple Math Problem")
    print("β–ˆ" * 80)

    run_online_mode_example(
        question="What is 15 * 8? Show your work step by step.",
        ground_truth="120",
        warmup_traces=4,
        confidence_variant="low",
        window_size=5,
        max_tokens=64,
    )

    # Example 2: Square root problem
    print("\n\n" + "β–ˆ" * 80)
    print("EXAMPLE 2: Square Root Problem")
    print("β–ˆ" * 80)

    run_online_mode_example(
        question="What is the square root of 144? Express your answer in the form \\boxed{answer}.",
        ground_truth="12",
        warmup_traces=4,
        confidence_variant="high",
        window_size=5,
        max_tokens=64,
    )

    # Example 3: Word problem
    print("\n\n" + "β–ˆ" * 80)
    print("EXAMPLE 3: Word Problem")
    print("β–ˆ" * 80)

    run_online_mode_example(
        question="If a train travels 60 miles per hour for 2.5 hours, how far does it travel?",
        ground_truth="150",
        warmup_traces=4,
        confidence_variant="low",
        window_size=5,
        max_tokens=96,
    )