rope-embeddings (#20)
Browse files- feat: support rope (f2e0e6205e15f5e1e23354800fe39b3ae25d9bca)
- chore: remove parallelmha (8b64fa835d32d29efa8b3a34f43e4c5011ec6f13)
- feat: default dim (77a17f7cb5d03e4bbfd8674fd49956fdcebb9cdc)
- refactor: revert alibi stuff (11ba2000440ef53e3b8ad551ababcdf2259643ed)
- chore: source (c232c27ed971d786c3e9cad242d415b2cd1fa655)
- refactor: raise error if flash attention is not installed (e8e1e150c525847c940918fa1f849997e14fcaa9)
- mha.py +14 -12
- modeling_xlm_roberta.py +2 -2
- rotary.py +575 -0
mha.py
CHANGED
|
@@ -1,7 +1,5 @@
|
|
| 1 |
-
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py
|
| 2 |
-
# Commit id: 6bbc532388e61185a92e2a563126739967b4c8c5
|
| 3 |
-
|
| 4 |
# Copyright (c) 2023, Tri Dao.
|
|
|
|
| 5 |
|
| 6 |
import math
|
| 7 |
from functools import partial
|
|
@@ -28,10 +26,7 @@ try:
|
|
| 28 |
except ImportError:
|
| 29 |
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
|
| 30 |
|
| 31 |
-
|
| 32 |
-
from flash_attn.layers.rotary import RotaryEmbedding
|
| 33 |
-
except ImportError:
|
| 34 |
-
RotaryEmbedding = None
|
| 35 |
|
| 36 |
|
| 37 |
# From https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
|
|
@@ -619,7 +614,6 @@ class MHA(nn.Module):
|
|
| 619 |
assert key_padding_mask is None
|
| 620 |
assert self.use_flash_attn
|
| 621 |
assert not self.dwconv
|
| 622 |
-
assert self.rotary_emb_dim == 0
|
| 623 |
if key_padding_mask is not None:
|
| 624 |
assert cu_seqlens is None
|
| 625 |
assert max_seqlen is None
|
|
@@ -643,7 +637,9 @@ class MHA(nn.Module):
|
|
| 643 |
else inference_params.seqlen_offset
|
| 644 |
)
|
| 645 |
)
|
| 646 |
-
rotary_max_seqlen =
|
|
|
|
|
|
|
| 647 |
batch, seqlen = x.shape[:2]
|
| 648 |
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
| 649 |
assert x_kv is None and mixer_subset is None
|
|
@@ -664,7 +660,10 @@ class MHA(nn.Module):
|
|
| 664 |
):
|
| 665 |
if self.rotary_emb_dim > 0:
|
| 666 |
qkv = self.rotary_emb(
|
| 667 |
-
qkv,
|
|
|
|
|
|
|
|
|
|
| 668 |
)
|
| 669 |
if inference_params is None:
|
| 670 |
if not self.checkpointing:
|
|
@@ -715,7 +714,11 @@ class MHA(nn.Module):
|
|
| 715 |
):
|
| 716 |
if self.rotary_emb_dim > 0:
|
| 717 |
q, kv = self.rotary_emb(
|
| 718 |
-
q,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 719 |
)
|
| 720 |
if inference_params is None:
|
| 721 |
if not self.checkpointing:
|
|
@@ -730,4 +733,3 @@ class MHA(nn.Module):
|
|
| 730 |
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
|
| 731 |
out = self.out_proj(rearrange(context, "... h d -> ... (h d)"))
|
| 732 |
return out if not self.return_residual else (out, x)
|
| 733 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Copyright (c) 2023, Tri Dao.
|
| 2 |
+
# Adapted from https://github.com/Dao-AILab/flash-attention/pull/556
|
| 3 |
|
| 4 |
import math
|
| 5 |
from functools import partial
|
|
|
|
| 26 |
except ImportError:
|
| 27 |
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
|
| 28 |
|
| 29 |
+
from .rotary import RotaryEmbedding
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
# From https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
|
|
|
|
| 614 |
assert key_padding_mask is None
|
| 615 |
assert self.use_flash_attn
|
| 616 |
assert not self.dwconv
|
|
|
|
| 617 |
if key_padding_mask is not None:
|
| 618 |
assert cu_seqlens is None
|
| 619 |
assert max_seqlen is None
|
|
|
|
| 637 |
else inference_params.seqlen_offset
|
| 638 |
)
|
| 639 |
)
|
| 640 |
+
rotary_max_seqlen = (
|
| 641 |
+
inference_params.max_sequence_len if inference_params is not None else max_seqlen
|
| 642 |
+
)
|
| 643 |
batch, seqlen = x.shape[:2]
|
| 644 |
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
| 645 |
assert x_kv is None and mixer_subset is None
|
|
|
|
| 660 |
):
|
| 661 |
if self.rotary_emb_dim > 0:
|
| 662 |
qkv = self.rotary_emb(
|
| 663 |
+
qkv,
|
| 664 |
+
seqlen_offset=seqlen_offset,
|
| 665 |
+
cu_seqlens=cu_seqlens,
|
| 666 |
+
max_seqlen=rotary_max_seqlen,
|
| 667 |
)
|
| 668 |
if inference_params is None:
|
| 669 |
if not self.checkpointing:
|
|
|
|
| 714 |
):
|
| 715 |
if self.rotary_emb_dim > 0:
|
| 716 |
q, kv = self.rotary_emb(
|
| 717 |
+
q,
|
| 718 |
+
kv,
|
| 719 |
+
seqlen_offset=seqlen_offset,
|
| 720 |
+
cu_seqlens=cu_seqlens,
|
| 721 |
+
max_seqlen=rotary_max_seqlen,
|
| 722 |
)
|
| 723 |
if inference_params is None:
|
| 724 |
if not self.checkpointing:
|
|
|
|
| 733 |
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
|
| 734 |
out = self.out_proj(rearrange(context, "... h d -> ... (h d)"))
|
| 735 |
return out if not self.return_residual else (out, x)
|
|
|
modeling_xlm_roberta.py
CHANGED
|
@@ -45,7 +45,7 @@ from .embedding import XLMRobertaEmbeddings
|
|
| 45 |
from .mha import MHA
|
| 46 |
from .mlp import FusedMLP, Mlp
|
| 47 |
from .stochastic_depth import StochasticDepth
|
| 48 |
-
|
| 49 |
|
| 50 |
try:
|
| 51 |
from flash_attn.ops.fused_dense import FusedDense
|
|
@@ -91,7 +91,7 @@ def create_mixer_cls(config, cross_attn=False, return_residual=False):
|
|
| 91 |
rotary_kwargs = {}
|
| 92 |
if config.position_embedding_type == "rotary":
|
| 93 |
rotary_kwargs["rotary_emb_dim"] = getattr(
|
| 94 |
-
config, "rotary_emb_dim", config.hidden_size
|
| 95 |
)
|
| 96 |
rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0)
|
| 97 |
rotary_kwargs["rotary_emb_scale_base"] = getattr(
|
|
|
|
| 45 |
from .mha import MHA
|
| 46 |
from .mlp import FusedMLP, Mlp
|
| 47 |
from .stochastic_depth import StochasticDepth
|
| 48 |
+
from .rotary import RotaryEmbedding
|
| 49 |
|
| 50 |
try:
|
| 51 |
from flash_attn.ops.fused_dense import FusedDense
|
|
|
|
| 91 |
rotary_kwargs = {}
|
| 92 |
if config.position_embedding_type == "rotary":
|
| 93 |
rotary_kwargs["rotary_emb_dim"] = getattr(
|
| 94 |
+
config, "rotary_emb_dim", config.hidden_size / config.num_attention_heads
|
| 95 |
)
|
| 96 |
rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0)
|
| 97 |
rotary_kwargs["rotary_emb_scale_base"] = getattr(
|
rotary.py
ADDED
|
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/Dao-AILab/flash-attention/pull/556
|
| 2 |
+
# Copyright (c) 2023, Tri Dao.
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
from typing import Optional, Tuple, Union
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from einops import rearrange, repeat
|
| 9 |
+
try:
|
| 10 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
| 11 |
+
except ImportError:
|
| 12 |
+
def apply_rotary(*args, **kwargs):
|
| 13 |
+
raise RuntimeError('RoPE requires flash-attention to be installed')
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def rotate_half(x, interleaved=False):
|
| 17 |
+
if not interleaved:
|
| 18 |
+
x1, x2 = x.chunk(2, dim=-1)
|
| 19 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 20 |
+
else:
|
| 21 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
| 22 |
+
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
|
| 26 |
+
"""
|
| 27 |
+
x: (batch_size, seqlen, nheads, headdim)
|
| 28 |
+
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
| 29 |
+
"""
|
| 30 |
+
ro_dim = cos.shape[-1] * 2
|
| 31 |
+
assert ro_dim <= x.shape[-1]
|
| 32 |
+
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
| 33 |
+
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
| 34 |
+
return torch.cat(
|
| 35 |
+
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
|
| 36 |
+
dim=-1,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class ApplyRotaryEmb(torch.autograd.Function):
|
| 41 |
+
@staticmethod
|
| 42 |
+
def forward(
|
| 43 |
+
ctx,
|
| 44 |
+
x,
|
| 45 |
+
cos,
|
| 46 |
+
sin,
|
| 47 |
+
interleaved=False,
|
| 48 |
+
inplace=False,
|
| 49 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 50 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 51 |
+
max_seqlen: Optional[int] = None,
|
| 52 |
+
):
|
| 53 |
+
out = apply_rotary(
|
| 54 |
+
x,
|
| 55 |
+
cos,
|
| 56 |
+
sin,
|
| 57 |
+
seqlen_offsets=seqlen_offsets,
|
| 58 |
+
cu_seqlens=cu_seqlens,
|
| 59 |
+
max_seqlen=max_seqlen,
|
| 60 |
+
interleaved=interleaved,
|
| 61 |
+
inplace=inplace,
|
| 62 |
+
)
|
| 63 |
+
if isinstance(seqlen_offsets, int):
|
| 64 |
+
ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
|
| 65 |
+
ctx.seqlen_offsets = seqlen_offsets
|
| 66 |
+
else:
|
| 67 |
+
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
| 68 |
+
ctx.seqlen_offsets = None
|
| 69 |
+
ctx.interleaved = interleaved
|
| 70 |
+
ctx.inplace = inplace
|
| 71 |
+
ctx.max_seqlen = max_seqlen
|
| 72 |
+
return out if not inplace else x
|
| 73 |
+
|
| 74 |
+
@staticmethod
|
| 75 |
+
def backward(ctx, do):
|
| 76 |
+
seqlen_offsets = ctx.seqlen_offsets
|
| 77 |
+
if seqlen_offsets is None:
|
| 78 |
+
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
| 79 |
+
else:
|
| 80 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
| 81 |
+
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
|
| 82 |
+
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
|
| 83 |
+
if not ctx.interleaved and not ctx.inplace:
|
| 84 |
+
do = do.clone()
|
| 85 |
+
dx = apply_rotary(
|
| 86 |
+
do,
|
| 87 |
+
cos,
|
| 88 |
+
sin,
|
| 89 |
+
seqlen_offsets=seqlen_offsets,
|
| 90 |
+
cu_seqlens=cu_seqlens,
|
| 91 |
+
max_seqlen=ctx.max_seqlen,
|
| 92 |
+
interleaved=ctx.interleaved,
|
| 93 |
+
inplace=ctx.inplace,
|
| 94 |
+
conjugate=True,
|
| 95 |
+
)
|
| 96 |
+
return dx, None, None, None, None, None, None, None
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def apply_rotary_emb(
|
| 100 |
+
x,
|
| 101 |
+
cos,
|
| 102 |
+
sin,
|
| 103 |
+
interleaved=False,
|
| 104 |
+
inplace=False,
|
| 105 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 106 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 107 |
+
max_seqlen: Optional[int] = None,
|
| 108 |
+
):
|
| 109 |
+
"""
|
| 110 |
+
Arguments:
|
| 111 |
+
x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
| 112 |
+
else (total_seqlen, nheads, headdim)
|
| 113 |
+
cos, sin: (seqlen_rotary, rotary_dim / 2)
|
| 114 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
| 115 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
| 116 |
+
inplace: if True, apply rotary embedding in-place.
|
| 117 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
| 118 |
+
Most commonly used in inference when we have KV cache.
|
| 119 |
+
cu_seqlens: (batch + 1,) or None
|
| 120 |
+
max_seqlen: int
|
| 121 |
+
Return:
|
| 122 |
+
out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
| 123 |
+
else (total_seqlen, nheads, headdim)
|
| 124 |
+
rotary_dim must be <= headdim
|
| 125 |
+
Apply rotary embedding to the first rotary_dim of x.
|
| 126 |
+
"""
|
| 127 |
+
return ApplyRotaryEmb.apply(
|
| 128 |
+
x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
# For backward compatibility
|
| 133 |
+
apply_rotary_emb_func = apply_rotary_emb
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
| 137 |
+
@staticmethod
|
| 138 |
+
def forward(
|
| 139 |
+
ctx,
|
| 140 |
+
qkv,
|
| 141 |
+
cos,
|
| 142 |
+
sin,
|
| 143 |
+
cos_k=None,
|
| 144 |
+
sin_k=None,
|
| 145 |
+
interleaved=False,
|
| 146 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 147 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 148 |
+
max_seqlen: Optional[int] = None,
|
| 149 |
+
):
|
| 150 |
+
# batch, seqlen, three, nheads, headdim = qkv.shape
|
| 151 |
+
assert qkv.shape[-3] == 3
|
| 152 |
+
if cos_k is None and sin_k is None and qkv.is_contiguous():
|
| 153 |
+
# Call 1 kernel instead of 2 kernels
|
| 154 |
+
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
|
| 155 |
+
# dimensions, we get the same tensor
|
| 156 |
+
qk = rearrange(qkv[..., :2, :, :], "... t h d -> ... (t h) d")
|
| 157 |
+
# qk = qkv[:, :, :2].reshape(batch, seqlen, -1, headdim)
|
| 158 |
+
apply_rotary(
|
| 159 |
+
qk,
|
| 160 |
+
cos,
|
| 161 |
+
sin,
|
| 162 |
+
seqlen_offsets=seqlen_offsets,
|
| 163 |
+
interleaved=interleaved,
|
| 164 |
+
inplace=True,
|
| 165 |
+
cu_seqlens=cu_seqlens,
|
| 166 |
+
max_seqlen=max_seqlen,
|
| 167 |
+
)
|
| 168 |
+
else:
|
| 169 |
+
cos_k = cos if cos_k is None else cos_k
|
| 170 |
+
sin_k = sin if sin_k is None else sin_k
|
| 171 |
+
q, k = qkv[..., 0, :, :], qkv[..., 1, :, :]
|
| 172 |
+
apply_rotary(
|
| 173 |
+
q,
|
| 174 |
+
cos,
|
| 175 |
+
sin,
|
| 176 |
+
seqlen_offsets,
|
| 177 |
+
interleaved=interleaved,
|
| 178 |
+
inplace=True,
|
| 179 |
+
cu_seqlens=cu_seqlens,
|
| 180 |
+
max_seqlen=max_seqlen,
|
| 181 |
+
)
|
| 182 |
+
apply_rotary(
|
| 183 |
+
k,
|
| 184 |
+
cos_k,
|
| 185 |
+
sin_k,
|
| 186 |
+
seqlen_offsets,
|
| 187 |
+
interleaved=interleaved,
|
| 188 |
+
inplace=True,
|
| 189 |
+
cu_seqlens=cu_seqlens,
|
| 190 |
+
max_seqlen=max_seqlen,
|
| 191 |
+
)
|
| 192 |
+
ctx.save_for_backward(cos, sin, cos_k, sin_k)
|
| 193 |
+
if isinstance(seqlen_offsets, int):
|
| 194 |
+
ctx.save_for_backward(cos, sin, cos_k, sin_k, cu_seqlens)
|
| 195 |
+
ctx.seqlen_offsets = seqlen_offsets
|
| 196 |
+
else:
|
| 197 |
+
ctx.save_for_backward(cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets)
|
| 198 |
+
ctx.seqlen_offsets = None
|
| 199 |
+
ctx.max_seqlen = max_seqlen
|
| 200 |
+
ctx.interleaved = interleaved
|
| 201 |
+
return qkv
|
| 202 |
+
|
| 203 |
+
@staticmethod
|
| 204 |
+
def backward(ctx, dqkv):
|
| 205 |
+
seqlen_offsets = ctx.seqlen_offsets
|
| 206 |
+
if seqlen_offsets is None:
|
| 207 |
+
cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
| 208 |
+
else:
|
| 209 |
+
cos, sin, cos_k, sin_k, cu_seqlens = ctx.saved_tensors
|
| 210 |
+
if cos_k is None and sin_k is None and dqkv.is_contiguous():
|
| 211 |
+
# Call 1 kernel instead of 2 kernels
|
| 212 |
+
# We need dqkv to be contiguous so that when we reshape to combine (3, nheads)
|
| 213 |
+
# dimensions, we get the same tensor
|
| 214 |
+
dqk = rearrange(dqkv[..., :2, :, :], "... t h d -> ... (t h) d")
|
| 215 |
+
apply_rotary(
|
| 216 |
+
dqk,
|
| 217 |
+
cos,
|
| 218 |
+
sin,
|
| 219 |
+
seqlen_offsets=seqlen_offsets,
|
| 220 |
+
interleaved=ctx.interleaved,
|
| 221 |
+
inplace=True,
|
| 222 |
+
conjugate=True,
|
| 223 |
+
cu_seqlens=cu_seqlens,
|
| 224 |
+
max_seqlen=ctx.max_seqlen,
|
| 225 |
+
)
|
| 226 |
+
else:
|
| 227 |
+
cos_k = cos if cos_k is None else cos_k
|
| 228 |
+
sin_k = sin if sin_k is None else sin_k
|
| 229 |
+
dq, dk = dqkv[..., 0, :, :], dqkv[..., 1, :, :]
|
| 230 |
+
apply_rotary(
|
| 231 |
+
|
| 232 |
+
dq,
|
| 233 |
+
cos,
|
| 234 |
+
sin,
|
| 235 |
+
seqlen_offsets,
|
| 236 |
+
interleaved=ctx.interleaved,
|
| 237 |
+
inplace=True,
|
| 238 |
+
conjugate=True,
|
| 239 |
+
cu_seqlens=cu_seqlens,
|
| 240 |
+
max_seqlen=ctx.max_seqlen,
|
| 241 |
+
)
|
| 242 |
+
apply_rotary(
|
| 243 |
+
dk,
|
| 244 |
+
cos_k,
|
| 245 |
+
sin_k,
|
| 246 |
+
seqlen_offsets,
|
| 247 |
+
interleaved=ctx.interleaved,
|
| 248 |
+
inplace=True,
|
| 249 |
+
conjugate=True,
|
| 250 |
+
cu_seqlens=cu_seqlens,
|
| 251 |
+
max_seqlen=ctx.max_seqlen,
|
| 252 |
+
)
|
| 253 |
+
return dqkv, None, None, None, None, None, None, None, None
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def apply_rotary_emb_qkv_(
|
| 257 |
+
qkv,
|
| 258 |
+
cos,
|
| 259 |
+
sin,
|
| 260 |
+
cos_k=None,
|
| 261 |
+
sin_k=None,
|
| 262 |
+
interleaved=False,
|
| 263 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 264 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 265 |
+
max_seqlen: Optional[int] = None,
|
| 266 |
+
):
|
| 267 |
+
"""
|
| 268 |
+
Arguments:
|
| 269 |
+
qkv: (batch_size, seqlen, 3, nheads, headdim) if cu_seqlens is None
|
| 270 |
+
else (total_seqlen, 3, nheads, headdim)
|
| 271 |
+
cos, sin: (seqlen, rotary_dim / 2)
|
| 272 |
+
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
|
| 273 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
|
| 274 |
+
1st half and 2nd half (GPT-NeoX style).
|
| 275 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
|
| 276 |
+
Most commonly used in inference when we have KV cache.
|
| 277 |
+
cu_seqlens: (batch + 1,) or None
|
| 278 |
+
max_seqlen: int
|
| 279 |
+
Return:
|
| 280 |
+
qkv: (batch_size, seqlen, 3, nheads, headdim) if cu_seqlens is None
|
| 281 |
+
else (total_seqlen, 3, nheads, headdim)
|
| 282 |
+
rotary_dim must be <= headdim
|
| 283 |
+
Apply rotary embedding *inplace* to the first rotary_dim of Q and K.
|
| 284 |
+
"""
|
| 285 |
+
return ApplyRotaryEmbQKV_.apply(
|
| 286 |
+
qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, cu_seqlens, max_seqlen
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
class ApplyRotaryEmbKV_(torch.autograd.Function):
|
| 291 |
+
@staticmethod
|
| 292 |
+
def forward(
|
| 293 |
+
ctx,
|
| 294 |
+
kv,
|
| 295 |
+
cos,
|
| 296 |
+
sin,
|
| 297 |
+
interleaved=False,
|
| 298 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 299 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 300 |
+
max_seqlen: Optional[int] = None,
|
| 301 |
+
):
|
| 302 |
+
# batch, seqlen, two, nheads, headdim = kv.shape
|
| 303 |
+
assert kv.shape[-3] == 2
|
| 304 |
+
k = kv[..., 0, :, :]
|
| 305 |
+
apply_rotary(
|
| 306 |
+
k,
|
| 307 |
+
cos,
|
| 308 |
+
sin,
|
| 309 |
+
seqlen_offsets=seqlen_offsets,
|
| 310 |
+
interleaved=interleaved,
|
| 311 |
+
inplace=True,
|
| 312 |
+
cu_seqlens=cu_seqlens,
|
| 313 |
+
max_seqlen=max_seqlen,
|
| 314 |
+
)
|
| 315 |
+
if isinstance(seqlen_offsets, int):
|
| 316 |
+
ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
|
| 317 |
+
ctx.seqlen_offsets = seqlen_offsets
|
| 318 |
+
else:
|
| 319 |
+
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
| 320 |
+
ctx.seqlen_offsets = None
|
| 321 |
+
ctx.max_seqlen = max_seqlen
|
| 322 |
+
ctx.interleaved = interleaved
|
| 323 |
+
return kv
|
| 324 |
+
|
| 325 |
+
@staticmethod
|
| 326 |
+
def backward(ctx, dkv):
|
| 327 |
+
seqlen_offsets = ctx.seqlen_offsets
|
| 328 |
+
if seqlen_offsets is None:
|
| 329 |
+
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
| 330 |
+
else:
|
| 331 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
| 332 |
+
apply_rotary(
|
| 333 |
+
dkv[..., 0, :, :],
|
| 334 |
+
cos,
|
| 335 |
+
sin,
|
| 336 |
+
seqlen_offsets=seqlen_offsets,
|
| 337 |
+
interleaved=ctx.interleaved,
|
| 338 |
+
inplace=True,
|
| 339 |
+
conjugate=True,
|
| 340 |
+
cu_seqlens=cu_seqlens,
|
| 341 |
+
max_seqlen=ctx.max_seqlen,
|
| 342 |
+
)
|
| 343 |
+
return dkv, None, None, None, None, None, None
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
apply_rotary_emb_kv_ = ApplyRotaryEmbKV_.apply
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
def apply_rotary_emb_kv_(
|
| 350 |
+
kv,
|
| 351 |
+
cos,
|
| 352 |
+
sin,
|
| 353 |
+
interleaved=False,
|
| 354 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 355 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 356 |
+
max_seqlen: Optional[int] = None,
|
| 357 |
+
):
|
| 358 |
+
"""
|
| 359 |
+
Arguments:
|
| 360 |
+
kv: (batch_size, seqlen, 2, nheads, headdim) if cu_seqlens is None
|
| 361 |
+
else (total_seqlen, 2, nheads, headdim)
|
| 362 |
+
cos, sin: (seqlen, rotary_dim / 2)
|
| 363 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
|
| 364 |
+
1st half and 2nd half (GPT-NeoX style).
|
| 365 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
|
| 366 |
+
Most commonly used in inference when we have KV cache.
|
| 367 |
+
cu_seqlens: (batch + 1,) or None
|
| 368 |
+
max_seqlen: int
|
| 369 |
+
Return:
|
| 370 |
+
kv: (batch_size, seqlen, 2, nheads, headdim) if cu_seqlens is None
|
| 371 |
+
else (total_seqlen, 2, nheads, headdim)
|
| 372 |
+
rotary_dim must be <= headdim
|
| 373 |
+
Apply rotary embedding *inplace* to the first rotary_dim of K.
|
| 374 |
+
"""
|
| 375 |
+
return ApplyRotaryEmbKV_.apply(
|
| 376 |
+
kv, cos, sin, interleaved, seqlen_offsets, cu_seqlens, max_seqlen
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 381 |
+
"""
|
| 382 |
+
The rotary position embeddings from RoFormer_ (Su et. al).
|
| 383 |
+
A crucial insight from the method is that the query and keys are
|
| 384 |
+
transformed by rotation matrices which depend on the relative positions.
|
| 385 |
+
|
| 386 |
+
Other implementations are available in the Rotary Transformer repo_ and in
|
| 387 |
+
GPT-NeoX_, GPT-NeoX was an inspiration
|
| 388 |
+
|
| 389 |
+
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
| 390 |
+
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
| 391 |
+
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
| 392 |
+
|
| 393 |
+
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
| 394 |
+
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
|
| 395 |
+
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
|
| 396 |
+
"""
|
| 397 |
+
|
| 398 |
+
def __init__(
|
| 399 |
+
self,
|
| 400 |
+
dim: int,
|
| 401 |
+
base=10000.0,
|
| 402 |
+
interleaved=False,
|
| 403 |
+
scale_base=None,
|
| 404 |
+
pos_idx_in_fp32=True,
|
| 405 |
+
device=None,
|
| 406 |
+
):
|
| 407 |
+
"""
|
| 408 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
| 409 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
| 410 |
+
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
| 411 |
+
otherwise they might be in lower precision.
|
| 412 |
+
This option was added because previously (before 2023-07-02), when we construct
|
| 413 |
+
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
| 414 |
+
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
| 415 |
+
self.inv_freq would be bf16, and the position indices are also in bf16.
|
| 416 |
+
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
| 417 |
+
embeddings for some positions will coincide.
|
| 418 |
+
To maintain compatibility with models previously trained in pure bf16,
|
| 419 |
+
we add this option.
|
| 420 |
+
"""
|
| 421 |
+
super().__init__()
|
| 422 |
+
self.dim = dim
|
| 423 |
+
self.base = float(base)
|
| 424 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 425 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
| 426 |
+
inv_freq = self._compute_inv_freq(device)
|
| 427 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 428 |
+
self.interleaved = interleaved
|
| 429 |
+
self.scale_base = scale_base
|
| 430 |
+
scale = (
|
| 431 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
| 432 |
+
if scale_base is not None
|
| 433 |
+
else None
|
| 434 |
+
)
|
| 435 |
+
self.register_buffer("scale", scale, persistent=False)
|
| 436 |
+
|
| 437 |
+
self._seq_len_cached = 0
|
| 438 |
+
self._cos_cached = None
|
| 439 |
+
self._sin_cached = None
|
| 440 |
+
self._cos_k_cached = None
|
| 441 |
+
self._sin_k_cached = None
|
| 442 |
+
|
| 443 |
+
def _compute_inv_freq(self, device=None):
|
| 444 |
+
return 1.0 / (
|
| 445 |
+
self.base
|
| 446 |
+
** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
| 450 |
+
# Reset the tables if the sequence length has changed,
|
| 451 |
+
# if we're on a new device (possibly due to tracing for instance),
|
| 452 |
+
# or if we're switching from inference mode to training
|
| 453 |
+
if (
|
| 454 |
+
seqlen > self._seq_len_cached
|
| 455 |
+
or self._cos_cached is None
|
| 456 |
+
or self._cos_cached.device != device
|
| 457 |
+
or self._cos_cached.dtype != dtype
|
| 458 |
+
or (self.training and self._cos_cached.is_inference())
|
| 459 |
+
):
|
| 460 |
+
self._seq_len_cached = seqlen
|
| 461 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
| 462 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
| 463 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
| 464 |
+
if self.pos_idx_in_fp32:
|
| 465 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 466 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
| 467 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
| 468 |
+
# cos & sin output to change significantly.
|
| 469 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
| 470 |
+
if self.inv_freq.dtype != torch.float32:
|
| 471 |
+
inv_freq = self._compute_inv_freq(device=device)
|
| 472 |
+
else:
|
| 473 |
+
inv_freq = self.inv_freq
|
| 474 |
+
else:
|
| 475 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 476 |
+
inv_freq = self.inv_freq
|
| 477 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
| 478 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 479 |
+
freqs = torch.outer(t, inv_freq)
|
| 480 |
+
if self.scale is None:
|
| 481 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 482 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 483 |
+
else:
|
| 484 |
+
power = (
|
| 485 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
| 486 |
+
- seqlen // 2
|
| 487 |
+
) / self.scale_base
|
| 488 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
| 489 |
+
# We want the multiplication by scale to happen in fp32
|
| 490 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
| 491 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
| 492 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
| 493 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
| 494 |
+
|
| 495 |
+
def forward(
|
| 496 |
+
self,
|
| 497 |
+
qkv: torch.Tensor,
|
| 498 |
+
kv: Optional[torch.Tensor] = None,
|
| 499 |
+
seqlen_offset: Union[int, torch.Tensor] = 0,
|
| 500 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
| 501 |
+
max_seqlen: Optional[int] = None,
|
| 502 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 503 |
+
"""
|
| 504 |
+
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
|
| 505 |
+
else it's just q of shape (batch, seqlen, nheads, headdim)
|
| 506 |
+
kv: (batch, seqlen, 2, nheads, headdim)
|
| 507 |
+
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
| 508 |
+
Most commonly used in inference when we have KV cache.
|
| 509 |
+
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
| 510 |
+
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
| 511 |
+
Apply rotary embedding *inplace* to qkv and / or kv.
|
| 512 |
+
"""
|
| 513 |
+
if cu_seqlens is not None:
|
| 514 |
+
assert max_seqlen is not None
|
| 515 |
+
seqlen = qkv.shape[1] if max_seqlen is None else max_seqlen
|
| 516 |
+
if max_seqlen is not None:
|
| 517 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
| 518 |
+
elif isinstance(seqlen_offset, int):
|
| 519 |
+
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
| 520 |
+
if kv is None:
|
| 521 |
+
if self.scale is None:
|
| 522 |
+
return apply_rotary_emb_qkv_(
|
| 523 |
+
qkv,
|
| 524 |
+
self._cos_cached,
|
| 525 |
+
self._sin_cached,
|
| 526 |
+
interleaved=self.interleaved,
|
| 527 |
+
seqlen_offsets=seqlen_offset,
|
| 528 |
+
cu_seqlens=cu_seqlens,
|
| 529 |
+
max_seqlen=max_seqlen,
|
| 530 |
+
)
|
| 531 |
+
else:
|
| 532 |
+
return apply_rotary_emb_qkv_(
|
| 533 |
+
qkv,
|
| 534 |
+
self._cos_cached,
|
| 535 |
+
self._sin_cached,
|
| 536 |
+
self._cos_k_cached,
|
| 537 |
+
self._sin_k_cached,
|
| 538 |
+
interleaved=self.interleaved,
|
| 539 |
+
seqlen_offsets=seqlen_offset,
|
| 540 |
+
cu_seqlens=cu_seqlens,
|
| 541 |
+
max_seqlen=max_seqlen,
|
| 542 |
+
)
|
| 543 |
+
else:
|
| 544 |
+
q = qkv
|
| 545 |
+
q = apply_rotary_emb_func(
|
| 546 |
+
q,
|
| 547 |
+
self._cos_cached,
|
| 548 |
+
self._sin_cached,
|
| 549 |
+
interleaved=self.interleaved,
|
| 550 |
+
inplace=True,
|
| 551 |
+
seqlen_offsets=seqlen_offset,
|
| 552 |
+
cu_seqlens=cu_seqlens,
|
| 553 |
+
max_seqlen=max_seqlen,
|
| 554 |
+
)
|
| 555 |
+
if self.scale is None:
|
| 556 |
+
kv = apply_rotary_emb_kv_(
|
| 557 |
+
kv,
|
| 558 |
+
self._cos_cached,
|
| 559 |
+
self._sin_cached,
|
| 560 |
+
interleaved=self.interleaved,
|
| 561 |
+
seqlen_offsets=seqlen_offset,
|
| 562 |
+
cu_seqlens=cu_seqlens,
|
| 563 |
+
max_seqlen=max_seqlen,
|
| 564 |
+
)
|
| 565 |
+
else:
|
| 566 |
+
kv = apply_rotary_emb_kv_(
|
| 567 |
+
kv,
|
| 568 |
+
self._cos_k_cached,
|
| 569 |
+
self._sin_k_cached,
|
| 570 |
+
interleaved=self.interleaved,
|
| 571 |
+
seqlen_offsets=seqlen_offset,
|
| 572 |
+
cu_seqlens=cu_seqlens,
|
| 573 |
+
max_seqlen=max_seqlen,
|
| 574 |
+
)
|
| 575 |
+
return q, kv
|