Refactor LoRA (#8)
Browse files- refactor: lora (e0ea168f256f54e7728033ff8afbf9bb71c617cc)
- refactor: remove pooling layer stuff (c6a5a4d6aa2d39e1b0691e4f48869aa8d7e34b09)
- refactor: restructure the class (a2b7c8644033cc4318c6caa6730836023776faa9)
- refactor: disable lora by default (5418705c2b50051908c38d6df1055df4f21274a2)
- refactor: set task in lora class rather than xlm roberta (851aaca7b1e7f9dbffaacd3b070231e0f94401cb)
- refactor: stuff (370394630d973381185d21d153a5e46d3b9fc6da)
- configuration_xlm_roberta.py +10 -2
- modeling_lora.py +133 -82
- modeling_xlm_roberta.py +1 -1
configuration_xlm_roberta.py
CHANGED
|
@@ -22,7 +22,11 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
| 22 |
position_embedding_type="absolute",
|
| 23 |
use_cache=True,
|
| 24 |
classifier_dropout=None,
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
load_trained_adapters=False,
|
| 27 |
use_flash_attn=True,
|
| 28 |
torch_dtype=None,
|
|
@@ -47,8 +51,12 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
| 47 |
self.position_embedding_type = position_embedding_type
|
| 48 |
self.use_cache = use_cache
|
| 49 |
self.classifier_dropout = classifier_dropout
|
| 50 |
-
self.num_loras = num_loras
|
| 51 |
self.load_trained_adapters = load_trained_adapters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
self.use_flash_attn = use_flash_attn
|
| 53 |
self.emb_pooler = emb_pooler
|
| 54 |
if torch_dtype and hasattr(torch, torch_dtype) and type(getattr(torch, torch_dtype)) is torch.dtype:
|
|
|
|
| 22 |
position_embedding_type="absolute",
|
| 23 |
use_cache=True,
|
| 24 |
classifier_dropout=None,
|
| 25 |
+
lora_adaptations=None,
|
| 26 |
+
lora_rank=4,
|
| 27 |
+
lora_dropout_p=0.0,
|
| 28 |
+
lora_alpha=1,
|
| 29 |
+
lora_main_params_trainable=False,
|
| 30 |
load_trained_adapters=False,
|
| 31 |
use_flash_attn=True,
|
| 32 |
torch_dtype=None,
|
|
|
|
| 51 |
self.position_embedding_type = position_embedding_type
|
| 52 |
self.use_cache = use_cache
|
| 53 |
self.classifier_dropout = classifier_dropout
|
|
|
|
| 54 |
self.load_trained_adapters = load_trained_adapters
|
| 55 |
+
self.lora_adaptations = lora_adaptations
|
| 56 |
+
self.lora_rank = lora_rank
|
| 57 |
+
self.lora_dropout_p = lora_dropout_p
|
| 58 |
+
self.lora_alpha = lora_alpha
|
| 59 |
+
self.lora_main_params_trainable = lora_main_params_trainable
|
| 60 |
self.use_flash_attn = use_flash_attn
|
| 61 |
self.emb_pooler = emb_pooler
|
| 62 |
if torch_dtype and hasattr(torch, torch_dtype) and type(getattr(torch, torch_dtype)) is torch.dtype:
|
modeling_lora.py
CHANGED
|
@@ -1,22 +1,27 @@
|
|
| 1 |
import math
|
| 2 |
import os
|
|
|
|
| 3 |
from functools import partial
|
| 4 |
-
from typing import Iterator, Optional, Tuple, Union
|
| 5 |
|
|
|
|
| 6 |
import torch
|
| 7 |
import torch.nn.utils.parametrize as parametrize
|
| 8 |
from torch import nn
|
| 9 |
from torch.nn import Parameter
|
| 10 |
from transformers import PretrainedConfig
|
| 11 |
|
| 12 |
-
from .modeling_xlm_roberta import
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def initialized_weights(
|
| 16 |
-
shape: Tuple[int],
|
| 17 |
) -> torch.Tensor:
|
| 18 |
weight_data = []
|
| 19 |
-
for _ in range(
|
| 20 |
new_adaption = torch.zeros(shape)
|
| 21 |
if init == "kaiming":
|
| 22 |
nn.init.kaiming_uniform_(new_adaption, a=math.sqrt(5))
|
|
@@ -45,15 +50,16 @@ class LoRAParametrization(nn.Module):
|
|
| 45 |
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
| 46 |
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
| 47 |
"""
|
|
|
|
| 48 |
def __init__(
|
| 49 |
self,
|
| 50 |
fan_in: int,
|
| 51 |
fan_out: int,
|
| 52 |
layer_type: str = "linear",
|
| 53 |
-
|
| 54 |
rank: int = 4,
|
| 55 |
-
|
| 56 |
-
|
| 57 |
):
|
| 58 |
super().__init__()
|
| 59 |
# if weight is stored as (fan_out, fan_in), the memory layout of A & B follows (W + BA)x
|
|
@@ -63,25 +69,23 @@ class LoRAParametrization(nn.Module):
|
|
| 63 |
|
| 64 |
if layer_type == "linear":
|
| 65 |
self.lora_A = nn.Parameter(
|
| 66 |
-
initialized_weights((rank, fan_in),
|
| 67 |
)
|
| 68 |
-
self.lora_B = nn.Parameter(torch.zeros((
|
| 69 |
elif layer_type == "embedding":
|
| 70 |
-
self.lora_A = nn.Parameter(torch.zeros((
|
| 71 |
self.lora_B = nn.Parameter(
|
| 72 |
initialized_weights(
|
| 73 |
-
(rank, fan_out),
|
| 74 |
)
|
| 75 |
)
|
| 76 |
else:
|
| 77 |
raise NotImplementedError
|
| 78 |
|
| 79 |
-
self.lora_alpha, self.rank =
|
| 80 |
-
self.scaling =
|
| 81 |
-
self.lora_dropout = (
|
| 82 |
-
|
| 83 |
-
)
|
| 84 |
-
self.dropout_fn = self._dropout if lora_dropout_p > 0 else lambda x: x
|
| 85 |
self.register_buffer(
|
| 86 |
"lora_dropout_mask",
|
| 87 |
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype),
|
|
@@ -128,42 +132,52 @@ class LoRAParametrization(nn.Module):
|
|
| 128 |
def from_linear(
|
| 129 |
cls,
|
| 130 |
layer: nn.Module,
|
| 131 |
-
|
| 132 |
-
rank: int
|
| 133 |
-
|
| 134 |
-
|
| 135 |
):
|
| 136 |
assert isinstance(layer, nn.Linear)
|
| 137 |
fan_out, fan_in = layer.weight.shape
|
| 138 |
return cls(
|
| 139 |
fan_in,
|
| 140 |
fan_out,
|
| 141 |
-
|
| 142 |
layer_type="linear",
|
| 143 |
rank=rank,
|
| 144 |
-
|
| 145 |
-
|
| 146 |
)
|
| 147 |
|
| 148 |
@classmethod
|
| 149 |
def from_embedding(
|
| 150 |
-
cls,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
):
|
| 152 |
assert isinstance(layer, nn.Embedding)
|
| 153 |
fan_in, fan_out = layer.weight.shape
|
| 154 |
return cls(
|
| 155 |
fan_in,
|
| 156 |
fan_out,
|
| 157 |
-
|
| 158 |
layer_type="embedding",
|
| 159 |
rank=rank,
|
| 160 |
-
|
| 161 |
-
|
| 162 |
)
|
| 163 |
|
| 164 |
@classmethod
|
| 165 |
def add_to_layer(
|
| 166 |
-
cls,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
):
|
| 168 |
if isinstance(layer, nn.Linear):
|
| 169 |
parametrize.register_parametrization(
|
|
@@ -171,10 +185,10 @@ class LoRAParametrization(nn.Module):
|
|
| 171 |
"weight",
|
| 172 |
cls.from_linear(
|
| 173 |
layer,
|
| 174 |
-
|
| 175 |
rank=rank,
|
| 176 |
-
|
| 177 |
-
|
| 178 |
),
|
| 179 |
)
|
| 180 |
elif isinstance(layer, nn.Embedding):
|
|
@@ -183,10 +197,10 @@ class LoRAParametrization(nn.Module):
|
|
| 183 |
"weight",
|
| 184 |
cls.from_embedding(
|
| 185 |
layer,
|
| 186 |
-
|
| 187 |
rank=rank,
|
| 188 |
-
|
| 189 |
-
|
| 190 |
),
|
| 191 |
)
|
| 192 |
|
|
@@ -195,30 +209,39 @@ class LoRAParametrization(nn.Module):
|
|
| 195 |
if isinstance(layer, LoRAParametrization):
|
| 196 |
layer.current_task = task_idx
|
| 197 |
|
| 198 |
-
@staticmethod
|
| 199 |
-
def merge_lora_into_layer(layer: nn.Module):
|
| 200 |
-
if hasattr(layer, "parametrizations"):
|
| 201 |
-
for attr_name in layer.parametrizations.keys():
|
| 202 |
-
parametrize.remove_parametrizations(layer, attr_name, leave_parametrized=True)
|
| 203 |
-
|
| 204 |
|
| 205 |
-
class XLMRobertaLoRA(
|
| 206 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
| 207 |
super().__init__(config)
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
self.
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
self._task_idx = None
|
| 220 |
-
# By default,
|
| 221 |
-
self.current_task =
|
| 222 |
|
| 223 |
@property
|
| 224 |
def main_params_trainable(self):
|
|
@@ -237,13 +260,6 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 237 |
if "lora" not in name:
|
| 238 |
param.requires_grad_(val)
|
| 239 |
|
| 240 |
-
def merge_lora(self):
|
| 241 |
-
"""Merges currently selected LoRA into main weights."""
|
| 242 |
-
if self._is_merged:
|
| 243 |
-
raise Exception('LoRA has already been merged, cannot merge again')
|
| 244 |
-
self._is_merged = True
|
| 245 |
-
self.apply(LoRAParametrization.merge_lora_into_layer)
|
| 246 |
-
|
| 247 |
@classmethod
|
| 248 |
def from_pretrained(
|
| 249 |
cls,
|
|
@@ -259,46 +275,52 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 259 |
use_safetensors: bool = None,
|
| 260 |
**kwargs,
|
| 261 |
):
|
| 262 |
-
config = XLMRobertaFlashConfig.from_pretrained(
|
|
|
|
|
|
|
|
|
|
| 263 |
if config.load_trained_adapters:
|
| 264 |
return super().from_pretrained(
|
| 265 |
-
pretrained_model_name_or_path,
|
| 266 |
-
*model_args,
|
| 267 |
-
**kwargs
|
| 268 |
)
|
| 269 |
else:
|
| 270 |
-
|
| 271 |
-
|
|
|
|
| 272 |
|
| 273 |
-
def _register_lora(self,
|
| 274 |
self.apply(
|
| 275 |
partial(
|
| 276 |
LoRAParametrization.add_to_layer,
|
| 277 |
-
|
| 278 |
rank=rank,
|
| 279 |
-
|
| 280 |
-
|
| 281 |
)
|
| 282 |
)
|
| 283 |
|
| 284 |
@property
|
| 285 |
def current_task(self):
|
| 286 |
-
"""
|
| 287 |
:return: Integer or None (when LoRA is disabled)
|
| 288 |
"""
|
| 289 |
return self._task_idx
|
| 290 |
|
| 291 |
@current_task.setter
|
| 292 |
-
def current_task(self,
|
| 293 |
"""Set the LoRA that is to be used.
|
| 294 |
The LoRA is specified by `task_idx`, which may be an integer >= 0,
|
| 295 |
indexing the available LoRAs. If it is None, no LoRA is used.
|
| 296 |
-
:param
|
| 297 |
:return:
|
| 298 |
"""
|
| 299 |
-
if self.
|
| 300 |
-
raise
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
if self._task_idx != task_idx:
|
| 303 |
# In this case, we need to update the LoRAs everywhere
|
| 304 |
self._task_idx = task_idx
|
|
@@ -306,10 +328,10 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 306 |
partial(LoRAParametrization.select_task_for_layer, task_idx=task_idx)
|
| 307 |
)
|
| 308 |
|
| 309 |
-
def forward(self, *args,
|
| 310 |
-
if
|
| 311 |
-
self.current_task =
|
| 312 |
-
return
|
| 313 |
|
| 314 |
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
| 315 |
for _, param in self.named_parameters(recurse=recurse):
|
|
@@ -323,3 +345,32 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
| 323 |
):
|
| 324 |
if "lora" in name or self.main_params_trainable:
|
| 325 |
yield name, param
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import math
|
| 2 |
import os
|
| 3 |
+
import warnings
|
| 4 |
from functools import partial
|
| 5 |
+
from typing import Iterator, List, Optional, Tuple, Union
|
| 6 |
|
| 7 |
+
import numpy as np
|
| 8 |
import torch
|
| 9 |
import torch.nn.utils.parametrize as parametrize
|
| 10 |
from torch import nn
|
| 11 |
from torch.nn import Parameter
|
| 12 |
from transformers import PretrainedConfig
|
| 13 |
|
| 14 |
+
from .modeling_xlm_roberta import XLMRobertaFlashConfig, XLMRobertaModel
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
LORA_NO_UPDATE = '__lora_no_update__'
|
| 18 |
|
| 19 |
|
| 20 |
def initialized_weights(
|
| 21 |
+
shape: Tuple[int], num_adaptations: int, init: str = "kaiming"
|
| 22 |
) -> torch.Tensor:
|
| 23 |
weight_data = []
|
| 24 |
+
for _ in range(num_adaptations):
|
| 25 |
new_adaption = torch.zeros(shape)
|
| 26 |
if init == "kaiming":
|
| 27 |
nn.init.kaiming_uniform_(new_adaption, a=math.sqrt(5))
|
|
|
|
| 50 |
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
| 51 |
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
| 52 |
"""
|
| 53 |
+
|
| 54 |
def __init__(
|
| 55 |
self,
|
| 56 |
fan_in: int,
|
| 57 |
fan_out: int,
|
| 58 |
layer_type: str = "linear",
|
| 59 |
+
num_adaptations: int = 1,
|
| 60 |
rank: int = 4,
|
| 61 |
+
dropout_p: float = 0.0,
|
| 62 |
+
alpha: float = 1,
|
| 63 |
):
|
| 64 |
super().__init__()
|
| 65 |
# if weight is stored as (fan_out, fan_in), the memory layout of A & B follows (W + BA)x
|
|
|
|
| 69 |
|
| 70 |
if layer_type == "linear":
|
| 71 |
self.lora_A = nn.Parameter(
|
| 72 |
+
initialized_weights((rank, fan_in), num_adaptations, init="kaiming")
|
| 73 |
)
|
| 74 |
+
self.lora_B = nn.Parameter(torch.zeros((num_adaptations, fan_out, rank)))
|
| 75 |
elif layer_type == "embedding":
|
| 76 |
+
self.lora_A = nn.Parameter(torch.zeros((num_adaptations, fan_in, rank)))
|
| 77 |
self.lora_B = nn.Parameter(
|
| 78 |
initialized_weights(
|
| 79 |
+
(rank, fan_out), num_adaptations=num_adaptations, init="normal"
|
| 80 |
)
|
| 81 |
)
|
| 82 |
else:
|
| 83 |
raise NotImplementedError
|
| 84 |
|
| 85 |
+
self.lora_alpha, self.rank = alpha, rank
|
| 86 |
+
self.scaling = alpha / rank
|
| 87 |
+
self.lora_dropout = nn.Dropout(p=dropout_p) if dropout_p > 0 else lambda x: x
|
| 88 |
+
self.dropout_fn = self._dropout if dropout_p > 0 else lambda x: x
|
|
|
|
|
|
|
| 89 |
self.register_buffer(
|
| 90 |
"lora_dropout_mask",
|
| 91 |
torch.ones(self.swap((1, fan_in)), dtype=self.lora_A.dtype),
|
|
|
|
| 132 |
def from_linear(
|
| 133 |
cls,
|
| 134 |
layer: nn.Module,
|
| 135 |
+
num_adaptations: int,
|
| 136 |
+
rank: int,
|
| 137 |
+
dropout_p: float,
|
| 138 |
+
alpha: float,
|
| 139 |
):
|
| 140 |
assert isinstance(layer, nn.Linear)
|
| 141 |
fan_out, fan_in = layer.weight.shape
|
| 142 |
return cls(
|
| 143 |
fan_in,
|
| 144 |
fan_out,
|
| 145 |
+
num_adaptations=num_adaptations,
|
| 146 |
layer_type="linear",
|
| 147 |
rank=rank,
|
| 148 |
+
dropout_p=dropout_p,
|
| 149 |
+
alpha=alpha,
|
| 150 |
)
|
| 151 |
|
| 152 |
@classmethod
|
| 153 |
def from_embedding(
|
| 154 |
+
cls,
|
| 155 |
+
layer: nn.Module,
|
| 156 |
+
num_adaptations: int,
|
| 157 |
+
rank: int,
|
| 158 |
+
dropout_p: float,
|
| 159 |
+
alpha: float,
|
| 160 |
):
|
| 161 |
assert isinstance(layer, nn.Embedding)
|
| 162 |
fan_in, fan_out = layer.weight.shape
|
| 163 |
return cls(
|
| 164 |
fan_in,
|
| 165 |
fan_out,
|
| 166 |
+
num_adaptations=num_adaptations,
|
| 167 |
layer_type="embedding",
|
| 168 |
rank=rank,
|
| 169 |
+
dropout_p=dropout_p,
|
| 170 |
+
alpha=alpha,
|
| 171 |
)
|
| 172 |
|
| 173 |
@classmethod
|
| 174 |
def add_to_layer(
|
| 175 |
+
cls,
|
| 176 |
+
layer: nn.Module,
|
| 177 |
+
num_adaptations: int,
|
| 178 |
+
rank: int,
|
| 179 |
+
dropout_p: float,
|
| 180 |
+
alpha: float,
|
| 181 |
):
|
| 182 |
if isinstance(layer, nn.Linear):
|
| 183 |
parametrize.register_parametrization(
|
|
|
|
| 185 |
"weight",
|
| 186 |
cls.from_linear(
|
| 187 |
layer,
|
| 188 |
+
num_adaptations=num_adaptations,
|
| 189 |
rank=rank,
|
| 190 |
+
dropout_p=dropout_p,
|
| 191 |
+
alpha=alpha,
|
| 192 |
),
|
| 193 |
)
|
| 194 |
elif isinstance(layer, nn.Embedding):
|
|
|
|
| 197 |
"weight",
|
| 198 |
cls.from_embedding(
|
| 199 |
layer,
|
| 200 |
+
num_adaptations=num_adaptations,
|
| 201 |
rank=rank,
|
| 202 |
+
dropout_p=dropout_p,
|
| 203 |
+
alpha=alpha,
|
| 204 |
),
|
| 205 |
)
|
| 206 |
|
|
|
|
| 209 |
if isinstance(layer, LoRAParametrization):
|
| 210 |
layer.current_task = task_idx
|
| 211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
+
class XLMRobertaLoRA(XLMRobertaModel):
|
| 214 |
+
def __init__(
|
| 215 |
+
self,
|
| 216 |
+
config: XLMRobertaFlashConfig,
|
| 217 |
+
):
|
| 218 |
super().__init__(config)
|
| 219 |
|
| 220 |
+
self._lora_adaptations = config.lora_adaptations
|
| 221 |
+
if (
|
| 222 |
+
not isinstance(self._lora_adaptations, list)
|
| 223 |
+
or len(self._lora_adaptations) < 1
|
| 224 |
+
):
|
| 225 |
+
raise ValueError(
|
| 226 |
+
f'`lora_adaptations` must be a list and contain at least one element'
|
| 227 |
+
)
|
| 228 |
+
self._adaptation_map = {
|
| 229 |
+
name: idx for idx, name in enumerate(self._lora_adaptations)
|
| 230 |
+
}
|
| 231 |
+
self._rank = config.lora_rank
|
| 232 |
+
self._dropout_p = config.lora_dropout_p
|
| 233 |
+
self._alpha = config.lora_alpha
|
| 234 |
+
|
| 235 |
+
self._register_lora(
|
| 236 |
+
num_adaptations=self._num_adaptations,
|
| 237 |
+
rank=self._rank,
|
| 238 |
+
dropout_p=self._dropout_p,
|
| 239 |
+
alpha=self._alpha,
|
| 240 |
+
)
|
| 241 |
+
self.main_params_trainable = config.lora_main_params_trainable
|
| 242 |
self._task_idx = None
|
| 243 |
+
# By default, disable LoRA until it's specified which adapter/task to use
|
| 244 |
+
self.current_task = None
|
| 245 |
|
| 246 |
@property
|
| 247 |
def main_params_trainable(self):
|
|
|
|
| 260 |
if "lora" not in name:
|
| 261 |
param.requires_grad_(val)
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
@classmethod
|
| 264 |
def from_pretrained(
|
| 265 |
cls,
|
|
|
|
| 275 |
use_safetensors: bool = None,
|
| 276 |
**kwargs,
|
| 277 |
):
|
| 278 |
+
config = XLMRobertaFlashConfig.from_pretrained(
|
| 279 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
if config.load_trained_adapters:
|
| 283 |
return super().from_pretrained(
|
| 284 |
+
pretrained_model_name_or_path, *model_args, **kwargs
|
|
|
|
|
|
|
| 285 |
)
|
| 286 |
else:
|
| 287 |
+
dtype = config.torch_dtype if config.torch_dtype else torch.bfloat16
|
| 288 |
+
torch.set_default_dtype(dtype)
|
| 289 |
+
return cls(config)
|
| 290 |
|
| 291 |
+
def _register_lora(self, num_adaptations, rank, dropout_p, alpha):
|
| 292 |
self.apply(
|
| 293 |
partial(
|
| 294 |
LoRAParametrization.add_to_layer,
|
| 295 |
+
num_adaptations=num_adaptations,
|
| 296 |
rank=rank,
|
| 297 |
+
dropout_p=dropout_p,
|
| 298 |
+
alpha=alpha,
|
| 299 |
)
|
| 300 |
)
|
| 301 |
|
| 302 |
@property
|
| 303 |
def current_task(self):
|
| 304 |
+
"""Which LoRA is currently selected
|
| 305 |
:return: Integer or None (when LoRA is disabled)
|
| 306 |
"""
|
| 307 |
return self._task_idx
|
| 308 |
|
| 309 |
@current_task.setter
|
| 310 |
+
def current_task(self, task_name: Union[None, str]):
|
| 311 |
"""Set the LoRA that is to be used.
|
| 312 |
The LoRA is specified by `task_idx`, which may be an integer >= 0,
|
| 313 |
indexing the available LoRAs. If it is None, no LoRA is used.
|
| 314 |
+
:param task_name: Which LoRA to use
|
| 315 |
:return:
|
| 316 |
"""
|
| 317 |
+
if task_name and task_name not in self._lora_adaptations:
|
| 318 |
+
raise ValueError(
|
| 319 |
+
f"Unsupported task '{task_name}'. "
|
| 320 |
+
f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
|
| 321 |
+
f"Alternatively, set `task` to `None` if you want to disable LoRA."
|
| 322 |
+
)
|
| 323 |
+
task_idx = self._adaptation_map[task_name] if task_name else None
|
| 324 |
if self._task_idx != task_idx:
|
| 325 |
# In this case, we need to update the LoRAs everywhere
|
| 326 |
self._task_idx = task_idx
|
|
|
|
| 328 |
partial(LoRAParametrization.select_task_for_layer, task_idx=task_idx)
|
| 329 |
)
|
| 330 |
|
| 331 |
+
def forward(self, *args, task: Union[str, None] = LORA_NO_UPDATE, **kwargs):
|
| 332 |
+
if task != LORA_NO_UPDATE:
|
| 333 |
+
self.current_task = task
|
| 334 |
+
return super().forward(*args, **kwargs)
|
| 335 |
|
| 336 |
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
| 337 |
for _, param in self.named_parameters(recurse=recurse):
|
|
|
|
| 345 |
):
|
| 346 |
if "lora" in name or self.main_params_trainable:
|
| 347 |
yield name, param
|
| 348 |
+
|
| 349 |
+
@torch.inference_mode()
|
| 350 |
+
def encode(
|
| 351 |
+
self,
|
| 352 |
+
*args,
|
| 353 |
+
task: Union[str, None] = LORA_NO_UPDATE,
|
| 354 |
+
**kwargs,
|
| 355 |
+
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
| 356 |
+
"""
|
| 357 |
+
Computes sentence embeddings
|
| 358 |
+
|
| 359 |
+
task(`str`, *optional*, defaults to `LORA_NO_UPDATE`):
|
| 360 |
+
Specifies the task for which the encoding is intended. This parameter controls the
|
| 361 |
+
use of specialized LoRA adapters that are tuned for specific tasks. If `task` is set
|
| 362 |
+
to `LORA_NO_UPDATE`, there will be no update to the current task, retaining the
|
| 363 |
+
existing adapter configuration. If `task` is explicitly set to `None`, all LoRA
|
| 364 |
+
adapters are disabled, and the model reverts to its original, general-purpose weights.
|
| 365 |
+
If `task` is set to a specific LoRA adaptation, that adaptation is activated.
|
| 366 |
+
"""
|
| 367 |
+
if task != LORA_NO_UPDATE:
|
| 368 |
+
if not task:
|
| 369 |
+
warnings.warn(
|
| 370 |
+
f"Task-specific embeddings are disabled. To enable, specify the `task` "
|
| 371 |
+
f"argument with one of the supported tasks: {', '.join(self.config.lora_adaptations)}",
|
| 372 |
+
category=UserWarning,
|
| 373 |
+
)
|
| 374 |
+
self.current_task = task
|
| 375 |
+
|
| 376 |
+
return super().encode(*args, **kwargs)
|
modeling_xlm_roberta.py
CHANGED
|
@@ -1253,4 +1253,4 @@ class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
|
| 1253 |
logits=logits,
|
| 1254 |
hidden_states=outputs.hidden_states,
|
| 1255 |
attentions=outputs.attentions,
|
| 1256 |
-
)
|
|
|
|
| 1253 |
logits=logits,
|
| 1254 |
hidden_states=outputs.hidden_states,
|
| 1255 |
attentions=outputs.attentions,
|
| 1256 |
+
)
|