foochun commited on
Commit
08f56db
·
verified ·
1 Parent(s): d131900

256 Dimension updated

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 1024, "out_features": 256, "bias": true, "activation_function": "torch.nn.modules.linear.Identity"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ca5c69c803687c1ee3de974c2ca5843da98b4ad83b99dfeb5ad7b3a5574aee6
3
+ size 1049760
README.md ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:58749
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: BAAI/bge-large-en-v1.5
10
+ widget:
11
+ - source_sentence: abdul karim bin bakar
12
+ sentences:
13
+ - chong yang king
14
+ - karim bin bakar
15
+ - johan bin hamid
16
+ - source_sentence: ali bin hussin
17
+ sentences:
18
+ - pei ling sim
19
+ - rosmawati binti ahmad
20
+ - ali hussin
21
+ - source_sentence: thomas yong chee siu
22
+ sentences:
23
+ - xuan lian koay
24
+ - thomas chee siu yong
25
+ - thomas siu chee yong
26
+ - source_sentence: nik suraya binti nik hassan
27
+ sentences:
28
+ - noraini binti mansor
29
+ - soh peng gin
30
+ - nik suraya binti nik hassan
31
+ - source_sentence: nadia soh meng jun
32
+ sentences:
33
+ - brandon yi chia siu
34
+ - nadia jun soh meng
35
+ - meng soh jun
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on BAAI/bge-large-en-v1.5
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5). It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 256 dimensions
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("foochun/bge-large-finetuned")
88
+ # Run inference
89
+ sentences = [
90
+ 'nadia soh meng jun',
91
+ 'nadia jun soh meng',
92
+ 'meng soh jun',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 256]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+ * Size: 58,749 training samples
147
+ * Columns: <code>query</code>, <code>pos</code>, and <code>neg</code>
148
+ * Approximate statistics based on the first 1000 samples:
149
+ | | query | pos | neg |
150
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
151
+ | type | string | string | string |
152
+ | details | <ul><li>min: 4 tokens</li><li>mean: 7.46 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.12 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.29 tokens</li><li>max: 16 tokens</li></ul> |
153
+ * Samples:
154
+ | query | pos | neg |
155
+ |:-------------------------------------------|:--------------------------------------|:-------------------------------------------------|
156
+ | <code>brandon loh wei ping</code> | <code>wei ping loh</code> | <code>ping wei loh brandon</code> |
157
+ | <code>rahimah binti dollah</code> | <code>rahimah binti dollah</code> | <code>mariana binti saad</code> |
158
+ | <code>siti syuhada binti mohd nazri</code> | <code>syuhada binti mohd nazri</code> | <code>siti syuhada binti abd rahman nazri</code> |
159
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
160
+ ```json
161
+ {
162
+ "scale": 20.0,
163
+ "similarity_fct": "cos_sim"
164
+ }
165
+ ```
166
+
167
+ ### Evaluation Dataset
168
+
169
+ #### Unnamed Dataset
170
+
171
+ * Size: 8,392 evaluation samples
172
+ * Columns: <code>query</code>, <code>pos</code>, and <code>neg</code>
173
+ * Approximate statistics based on the first 1000 samples:
174
+ | | query | pos | neg |
175
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
176
+ | type | string | string | string |
177
+ | details | <ul><li>min: 4 tokens</li><li>mean: 7.49 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.18 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 7.33 tokens</li><li>max: 16 tokens</li></ul> |
178
+ * Samples:
179
+ | query | pos | neg |
180
+ |:---------------------------------------------|:---------------------------------------|:---------------------------------------|
181
+ | <code>lam lyn li</code> | <code>li lam lyn</code> | <code>lmam lyn li</code> |
182
+ | <code>sharifah aini binti syed jaafar</code> | <code>sharifah aini syed jaafar</code> | <code>mohd khairul bin abdullah</code> |
183
+ | <code>foo mooi ying</code> | <code>mooi ying foo</code> | <code>foo mooi yng</code> |
184
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
185
+ ```json
186
+ {
187
+ "scale": 20.0,
188
+ "similarity_fct": "cos_sim"
189
+ }
190
+ ```
191
+
192
+ ### Training Hyperparameters
193
+ #### Non-Default Hyperparameters
194
+
195
+ - `eval_strategy`: steps
196
+ - `per_device_train_batch_size`: 64
197
+ - `per_device_eval_batch_size`: 64
198
+ - `learning_rate`: 1e-05
199
+ - `lr_scheduler_type`: cosine
200
+ - `warmup_ratio`: 0.05
201
+ - `fp16`: True
202
+ - `load_best_model_at_end`: True
203
+ - `batch_sampler`: no_duplicates
204
+
205
+ #### All Hyperparameters
206
+ <details><summary>Click to expand</summary>
207
+
208
+ - `overwrite_output_dir`: False
209
+ - `do_predict`: False
210
+ - `eval_strategy`: steps
211
+ - `prediction_loss_only`: True
212
+ - `per_device_train_batch_size`: 64
213
+ - `per_device_eval_batch_size`: 64
214
+ - `per_gpu_train_batch_size`: None
215
+ - `per_gpu_eval_batch_size`: None
216
+ - `gradient_accumulation_steps`: 1
217
+ - `eval_accumulation_steps`: None
218
+ - `torch_empty_cache_steps`: None
219
+ - `learning_rate`: 1e-05
220
+ - `weight_decay`: 0.0
221
+ - `adam_beta1`: 0.9
222
+ - `adam_beta2`: 0.999
223
+ - `adam_epsilon`: 1e-08
224
+ - `max_grad_norm`: 1.0
225
+ - `num_train_epochs`: 3.0
226
+ - `max_steps`: -1
227
+ - `lr_scheduler_type`: cosine
228
+ - `lr_scheduler_kwargs`: {}
229
+ - `warmup_ratio`: 0.05
230
+ - `warmup_steps`: 0
231
+ - `log_level`: passive
232
+ - `log_level_replica`: warning
233
+ - `log_on_each_node`: True
234
+ - `logging_nan_inf_filter`: True
235
+ - `save_safetensors`: True
236
+ - `save_on_each_node`: False
237
+ - `save_only_model`: False
238
+ - `restore_callback_states_from_checkpoint`: False
239
+ - `no_cuda`: False
240
+ - `use_cpu`: False
241
+ - `use_mps_device`: False
242
+ - `seed`: 42
243
+ - `data_seed`: None
244
+ - `jit_mode_eval`: False
245
+ - `use_ipex`: False
246
+ - `bf16`: False
247
+ - `fp16`: True
248
+ - `fp16_opt_level`: O1
249
+ - `half_precision_backend`: auto
250
+ - `bf16_full_eval`: False
251
+ - `fp16_full_eval`: False
252
+ - `tf32`: None
253
+ - `local_rank`: 0
254
+ - `ddp_backend`: None
255
+ - `tpu_num_cores`: None
256
+ - `tpu_metrics_debug`: False
257
+ - `debug`: []
258
+ - `dataloader_drop_last`: False
259
+ - `dataloader_num_workers`: 0
260
+ - `dataloader_prefetch_factor`: None
261
+ - `past_index`: -1
262
+ - `disable_tqdm`: False
263
+ - `remove_unused_columns`: True
264
+ - `label_names`: None
265
+ - `load_best_model_at_end`: True
266
+ - `ignore_data_skip`: False
267
+ - `fsdp`: []
268
+ - `fsdp_min_num_params`: 0
269
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
270
+ - `tp_size`: 0
271
+ - `fsdp_transformer_layer_cls_to_wrap`: None
272
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
273
+ - `deepspeed`: None
274
+ - `label_smoothing_factor`: 0.0
275
+ - `optim`: adamw_torch
276
+ - `optim_args`: None
277
+ - `adafactor`: False
278
+ - `group_by_length`: False
279
+ - `length_column_name`: length
280
+ - `ddp_find_unused_parameters`: None
281
+ - `ddp_bucket_cap_mb`: None
282
+ - `ddp_broadcast_buffers`: False
283
+ - `dataloader_pin_memory`: True
284
+ - `dataloader_persistent_workers`: False
285
+ - `skip_memory_metrics`: True
286
+ - `use_legacy_prediction_loop`: False
287
+ - `push_to_hub`: False
288
+ - `resume_from_checkpoint`: None
289
+ - `hub_model_id`: None
290
+ - `hub_strategy`: every_save
291
+ - `hub_private_repo`: None
292
+ - `hub_always_push`: False
293
+ - `gradient_checkpointing`: False
294
+ - `gradient_checkpointing_kwargs`: None
295
+ - `include_inputs_for_metrics`: False
296
+ - `include_for_metrics`: []
297
+ - `eval_do_concat_batches`: True
298
+ - `fp16_backend`: auto
299
+ - `push_to_hub_model_id`: None
300
+ - `push_to_hub_organization`: None
301
+ - `mp_parameters`:
302
+ - `auto_find_batch_size`: False
303
+ - `full_determinism`: False
304
+ - `torchdynamo`: None
305
+ - `ray_scope`: last
306
+ - `ddp_timeout`: 1800
307
+ - `torch_compile`: False
308
+ - `torch_compile_backend`: None
309
+ - `torch_compile_mode`: None
310
+ - `include_tokens_per_second`: False
311
+ - `include_num_input_tokens_seen`: False
312
+ - `neftune_noise_alpha`: None
313
+ - `optim_target_modules`: None
314
+ - `batch_eval_metrics`: False
315
+ - `eval_on_start`: False
316
+ - `use_liger_kernel`: False
317
+ - `eval_use_gather_object`: False
318
+ - `average_tokens_across_devices`: False
319
+ - `prompts`: None
320
+ - `batch_sampler`: no_duplicates
321
+ - `multi_dataset_batch_sampler`: proportional
322
+
323
+ </details>
324
+
325
+ ### Training Logs
326
+ | Epoch | Step | Training Loss | Validation Loss |
327
+ |:----------:|:--------:|:-------------:|:---------------:|
328
+ | 0.5447 | 500 | 0.1492 | 0.0115 |
329
+ | 1.0893 | 1000 | 0.0145 | 0.0060 |
330
+ | 1.6340 | 1500 | 0.0085 | 0.0055 |
331
+ | 2.1786 | 2000 | 0.0074 | 0.0046 |
332
+ | **2.7233** | **2500** | **0.0059** | **0.0045** |
333
+
334
+ * The bold row denotes the saved checkpoint.
335
+
336
+ ### Framework Versions
337
+ - Python: 3.11.9
338
+ - Sentence Transformers: 4.1.0
339
+ - Transformers: 4.51.3
340
+ - PyTorch: 2.6.0+cu124
341
+ - Accelerate: 1.6.0
342
+ - Datasets: 2.19.1
343
+ - Tokenizers: 0.21.1
344
+
345
+ ## Citation
346
+
347
+ ### BibTeX
348
+
349
+ #### Sentence Transformers
350
+ ```bibtex
351
+ @inproceedings{reimers-2019-sentence-bert,
352
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
353
+ author = "Reimers, Nils and Gurevych, Iryna",
354
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
355
+ month = "11",
356
+ year = "2019",
357
+ publisher = "Association for Computational Linguistics",
358
+ url = "https://arxiv.org/abs/1908.10084",
359
+ }
360
+ ```
361
+
362
+ #### MultipleNegativesRankingLoss
363
+ ```bibtex
364
+ @misc{henderson2017efficient,
365
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
366
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
367
+ year={2017},
368
+ eprint={1705.00652},
369
+ archivePrefix={arXiv},
370
+ primaryClass={cs.CL}
371
+ }
372
+ ```
373
+
374
+ <!--
375
+ ## Glossary
376
+
377
+ *Clearly define terms in order to be accessible across audiences.*
378
+ -->
379
+
380
+ <!--
381
+ ## Model Card Authors
382
+
383
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
384
+ -->
385
+
386
+ <!--
387
+ ## Model Card Contact
388
+
389
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
390
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 4096,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 16,
23
+ "num_hidden_layers": 24,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.51.3",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6fcaabb68c9aeb390f9393ddf41cb701848ab398930c34b06e636d51ec812ae
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff