File size: 40,483 Bytes
fa608d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:16909
- loss:TripletLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: Under what conditions is the default start position of 1 used for
    a dimension in the resulting array?
  sentences:
  - "Array variables example 3: Variable Unit_Prices\n\nInheritance of dimension start\
    \ position and index values in numerical\nexpressions.\n\nThe following non-aggregating\
    \ non-portfolio 1-dimensional array currency variables are defined in\nthe assumption\
    \ set Assumption_Set (in all cases the dimension name is Fund and it has character\n\
    index values):\n\n | Dimension properties | \nVariable | Size | Start\n      \
    \                                  position | Indices | Array elements\nUnit_Prices\
    \ | 3 | 101 | \"A\", \"B\", \"C\" | 1.25, 0.93, 1.81\nUnit_Prices_2 | 3 | 101\
    \ | \"A\", \"B\", \"C\" | 1.21, 0.97, 1.73\nUnit_Prices_3 | 3 | 201 | \"A\", \"\
    B\", \"C\" | 1.32, 0.79, 1.35\nUnit_Prices_4 | 3 | 101 | \"X\", \"Y\", \"Z\" |\
    \ 1.12, 0.89, 1.97\nUnit_Prices_5 | 2 | 102 | \"B\", \"C\" | 0.93, 1.93\nUnit_Prices_6\
    \ | 3 | 201 | \"X\", \"Y\", \"Z\" | 1.19, 0.98, 1.95\n\nThese variables are used\
    \ in the formula of the following variables in the program Program in the\nprojection\
    \ process Projection_Process, which is used in the model Array_Model (all these\
    \ variables\nhave a single dimension called Fund):\n\n |  | Dimension properties\
    \ | \nVariable | Formula | Size | Start position | Indices | Array elements\n\
    Variable_21 | Unit_Prices - Unit_Prices_2 | 3 | 101 | \"A\", \"B\", \"C\" | 0.04,\
    \ -0.04, 0.08\nVariable_22 | Unit_Prices - Unit_Prices_3 | 3 | 1 | \"A\", \"B\"\
    , \"C\" | -0.07, 0.14, 0.46\nVariable_23 | Unit_Prices - Unit_Prices_4 | 3 | 101\
    \ | (undefined) | 0.13, 0.04, -0.16\nVariable_24 | Unit_Prices[<Fund.index= \"\
    B\" : \"C\">] - Unit_Prices_5 | 2 | 102 | (undefined) | 0, -0.12\nVariable_25\
    \ | Unit_Prices - Unit_Prices_6 | 3 | 1 | (undefined) | 0.06, -0.05, -0.14\n\n\
    Notes:\n\n* The rank of the arrays (number of dimensions), dimension names and\
    \ dimension sizes must be\nidentical for such numerical expressions to be valid.\n\
    * If the indices in a particular dimension are the same in both arrays, they will\
    \ be inherited by\nthe resulting array, otherwise no indices will be defined in\
    \ that dimension.\n* If the start positions in a particular dimension are the\
    \ same in both arrays, they will be\ninherited by the resulting array, otherwise\
    \ the default start position of 1 will be used in that\ndimension.\n* We could\
    \ not have a formula like Unit_Prices - Unit_Prices_5, because these arrays have\n\
    differently sized dimensions.\n* The subset of an array variable in the formula\
    \ of Variable_24 loses its indices. This means that\nVariable_24 cannot inherit\
    \ consistent indices and so none are defined for it.\n* The subset of an array\
    \ variable in the formula of Variable_24 inherits the numbering of its\nelement\
    \ positions from the variable Unit_Prices, so its start position is set to 102.\
    \ This is the\nsame as the start position of Unit_Prices_5, so Variable_24 has\
    \ its dimension start position set to\n102."
  - "## Examples\n\nSuppose:\n\nVariable is a 2-dimensional array\n\n | Dimension\
    \ name | Size | Start position\n1 | Dimension_1 | 2 | 4\n2 | Dimension_2 | 3 |\
    \ 7\n\nDimension_2 | Dimension_1\nPosition = 4 | Position = 5\nPosition = 7 |\
    \ 1 | 2\nPosition = 8 | 3 | 4\nPosition = 9 | 5 | 6\n\nThen:\n\nDimension_Start(Variable,\
    \ <Dimension_1>)\n\n= 4\n\nDimension_Start(Variable, <Dimension_2>)\n\n= 7"
  - '## Other situations where indices are lost


    There are a number of other circumstances where the indices for an array dimension
    are lost:


    * If an array has a changeable dimension and the array is aggregated acrosseventsusing
    the.totalextension, the indices in

    that dimension will be lost.

    * If an array has a changeable dimension and the array is passed from a sub layer
    to a calling

    layer then the indices in that dimension will be lost.

    * If an array has a changeable dimension and the array is calculated in a stochastic
    return value

    variable then the indices in that dimension will be lost.'
- source_sentence: Where can I find examples of batches within the system?
  sentences:
  - "Grouping example 3: Admin_Grouping\n\nUsed in the Calculation grouping property\
    \ of a parent program.\n\nThis grouping has the following properties:\n\nProperty\
    \ | Value\nName | Admin_Grouping\nCategory | Policy\nDescription | Group by method\
    \ of policy administration\nGroup identifier | Internet_Admin.text\n\nThis grouping\
    \ contains just one group:\n\nProperty | Value\nName | Internet_Admin\nCategory\
    \ | Policy\nDescription | Group Internet_Admin by value\nData type | Indicator\n\
    Grouping expression | Internet_Admin\nMethod | By value\nRange boundaries | \n\
    Boundary value in | [Range above]\n\nThe Grouping expression property is set to\
    \ the indicator variable Internet_Admin, so the Data\ntype property must be set\
    \ to\n\nIndicator\n\n.\n\nThe Method property is set to\n\nBy value\n\n(so the\
    \ Range boundaries and Boundary value in\nproperties will be ignored) and the\
    \ records will be grouped together according to the value of the\ngrouping expression.\
    \ In the\n\ndata view\n\nTraditional_Data_View\n\nthe variable\nInternet_Admin\
    \ is read from data, but is expected to take one of two possible values. Since\
    \ this\nvariable defines the grouping expression of this group, there should be\
    \ up to two groups. If the\ndata file contains additional values, there will be\
    \ additional groups.\n\nThis grouping is specified as the\n\nCalculation grouping\n\
    \nproperty of the program\n\nCompany\n\nof the projection process\n\nRealistic_Projection\n\
    \n. This program is a parent program and the records being passed to it by\nits\
    \ child programs will be grouped according to this grouping before being processed\
    \ by the\nprogram.\n\nThe Group identifier property of the grouping will be used\
    \ to provide the value of the\n\nsystem variable\n\nGroup_Identifier in this\n\
    \nprogram\n\nand to provide a unique group\nidentifier for each of its groups.\
    \ These group identifiers will be \"Internet_Admin=0\" and\n\"Internet_Admin=1\"\
    ."
  - "The main topic 'Batches' has the following related sub-topics:\n* **Batch examples**\
    \ : \nThe example user workspace includes examples of batches."
  - 'Batch examples


    The example user workspace includes examples of batches.


    No. | Name | Features

    1 | EV_Batch | Contains very similar models that have slightly different realistic
    assumptions

    2 | EV_Batch_2 | Use of theModel string overrideproperty to access different external
    assumption files'
- source_sentence: 'How does accessing a subset of an array using an expression like
    `Array_1[<Fund.position = 3 : 6>]` affect the dimension start positions?'
  sentences:
  - "## Inheritance rules for the dimension start positions of an array variable\n\
    \nAn array variable inherits the dimension start positions of the array variables\
    \ in its formula\naccording to the points below.\n\nIt is not necessary for different\
    \ assignments for an array variable to return the same start\nposition. For example,\
    \ the following formula is valid even when Array_2 and Array_3 have different\n\
    dimension start positions:\n\nIf Scalar_A > 3 Then\n      Array_2\nElse\n    \
    \  Array_3\nEndIf\n\nAn array variable inherits the dimension start positions\
    \ (and hence the element position numbers)\n                        of the arrays\
    \ (after any function calls) used in its formula. It is not\n                \
    \        necessary for these to be identical. If the start positions in any dimension\n\
    \                        differ between arrays in a formula then\n\nR³S Modeler\n\
    \nsets the\n                        start position in that dimension in the calculated\
    \ array to the default\n                        value of 1. A message will be\
    \ added to the\n\nIndex\n                              and Position Warnings\n\
    \nfolder of the\n\nRun summary\n\nto\n                        indicate this has\
    \ happened.\n\nSimple mathematical operations on an array will preserve the dimension\
    \ start positions.\n\nAccessing a subset of an array with an expression like\n\
    \nArray_1[<Fund\n\n.position\n\n= 3 :\n6>]\n\nwill cause the dimension start positions\
    \ in the resulting array to be set so as to\npreserve the numbering of the element\
    \ positions for all its elements. In this example, the start\nposition of the\
    \ dimension Fund will be set to 3 in the resulting array.\n\nFunctions of arrays\
    \ generally produce an array with the same dimension start positions as the\n\
    inherited dimensions."
  - "## Example 1: Step_Length_PS\n\nProperty | Value\nName | Step_Length_PS\nCategory\
    \ | \nDescription | \nDocumentation | \n\nThis layer module contains no sub layer\
    \ modules and just one layer variable:\n\nVariable | Layer module | Formula\n\
    Step_Length_PS | Step_Length_PS | Duration(Step_Date.start, Step_Date.end, \"\
    Years\", \"One\", \"Exact\")\n\nThis layer module is a sub layer module of the\
    \ layer module Expense_Renewal."
  - '## Accessing a subset of an array


    Any dimension indices will always be inherited when accessing a subset of another
    array with an

    expression like Array_1[<Fund


    .position


    = 3 : 6>] or Array_1[<Fund


    .position


    = First_Fund :

    Last_Fund>]. When it is not possible to determine both the start and end indices
    or element

    positions (that is, the variables First_Fund and Last_Fund in the second example)
    until runtime and

    the subset of the array variable is used in a mathematical expression then an
    index and position

    warning message will be issued to state that the indices for a dimension may not
    match, and if not

    that only one of the set of indices will be used which may lead to runtime errors
    or misleading

    results.'
- source_sentence: What kind of variable is Data_Process_Name considered?
  sentences:
  - 'Data_Process_Name


    The


    Data_Process_Name


    system variable is a character variable that gives the name of the data process.


    You can use this system variable in a data process in the data layer of a model.


    This system variable is a placeholder variable.'
  - "Assumption set example 4:\n        Traditional_Reserve_Assumptions\n\nAn assumption\
    \ set used as the assumption set of a sub layer containing an assumption set\n\
    variable that references an assumption set variable in the assumption set of the\
    \ calling layer using\nthe\n\nSource\n\nqualifier.\n\nThis example describes the\
    \ assumptions that might be used in a sub layer to calculate reserve\nprovisions.\n\
    \nAssumption set local properties:\n\nProperty | Value\nName | Traditional_Reserve_Assumptions\n\
    Category | Traditional_Component\nDescription | Traditional (non-linked without-profit)\
    \ reserve assumptions\nAssumption connection string | \n\nThis assumption set\
    \ has no sub assumption sets.\n\nThis assumption set contains several assumption\
    \ set variables. These variables have the following\nglobal properties (they all\
    \ have their\n\nAggregates\n\nand\n\nPortfolio\n\nproperties set to\n\nNo\n\n\
    ):\n\nVariable | Data type | Display format\nDisc_Rate_Reserve | Numeric | Per\
    \ cent\nMort_Table_F | Life table | [None]\nMort_Table_M | Life table | [None]\n\
    \nThey have the following local properties in this assumption set (they all have\
    \ their\n\nAssumption table\n\nproperty left blank):\n\nVariable | Formula\nDisc_Rate_Reserve\
    \ | Max(Source.Int_Rate - 3%, 0%)\nMort_Table_F | 105% *AM92\nMort_Table_M | 120%\
    \ * AM92 + 1‰\n\nNotes:\n\n* TheSourcequalifier in the formula of Disc_Rate_Reserve\
    \ specifies that the value of Int_Rate in\nthe calling layer is to be used.\n\
    * The per cent (%) and per mille (‰) characters may be included in formulas and\
    \ have the\neffect of dividing by 100 and 1000 respectively, so 3% is interpreted\
    \ as 0.03 and 1‰ is\ninterpreted as 0.001.\n\nThis assumption set is specified\
    \ in the local properties of the sub layers Reserve_Sub_Layer and\nReserve_Sub_Layer_2\
    \ of the layer\n\nRealistic_Layer\n\nof the\nmodel\n\nEV_Model\n\n."
  - '## New system variables


    The system variables


    Data_Process_Name


    ,


    Data_Source_Name


    ,


    Layer_Name


    , and


    Program_Name


    are placeholder variables.'
- source_sentence: Is there a specific location where I can find workspace filters?
  sentences:
  - '## Windows


    You can access the filters of a workspace in the grid of filters.


    The filter window has most properties of the filter.'
  - 'Category examples


    The example user workspace includes examples of categories.


    Some categories that might be useful in a present value of future profits model
    include:


    Name | Category type | Description

    Ages_Dates_Durations |  | Items relating to ages, dates and durations

    Asset_Shares |  | Items relating to asset shares

    Benefits |  | Items relating to benefits

    Bonuses |  | Items relating to bonuses

    Cash_Flow_Module | Modules | Module for general cash flows

    Cash_Flows |  | Items relating to cash flows

    Commission |  | Items relating to commission

    Commutation_Function_Reserve_Module | Modules | Module for reserving using commutation
    functions

    Decrements |  | Decrement tables and rates

    Economic |  | Economic assumptions and variables

    EU | Data flow | EU non-linked data

    Data flow |  | Items relating to expenses

    Flags |  | Items that are set as flags

    Fund_Charges |  | Items related to unit fund charges

    General_Module | Modules | Module suitable for many situations

    Interest |  | Items relating to interest

    Maturities |  | Items relating to maturities

    Mortality |  | Items relating to mortality

    Multiple_Currencies |  | Component for use with a multiple currency model

    NP_End | Data flow | Programs, data sources, and so on, for non-profit endowment
    assurances

    NP_Term | Data flow | Programs, data sources and so on for non-profit term assurances

    NP_WoL | Data flow | Programs, data sources, and so on, for non-profit whole of
    life assurances

    Policy |  | Items relating to policies

    Premiums |  | Items relating to premiums

    Probabilities |  | Items relating to probabilities

    Profit |  | Items relating to profit

    PVFP |  | Items relating to present value of future profits

    PVFP_Module | Modules | Module for present value of future profits

    Reserve_Module | Modules | Module for reserving by projection of cash flows

    Reserves |  | Items relating to reserves

    Solvency_Margin |  | Items relating to solvency margin

    Statistics |  | Items relating to statistics

    Surrenders |  | Items relating to surrenders

    Tax |  | Items relating to tax

    Traditional | Data flow | Traditional/non-profit/conventional non-linked business

    Traditional_Component |  | Traditional/conventional/non-linked/non-profit business
    component

    UK | Data flow | UK non-linked data

    Data flow | Data flow | Unit-linked endowment assurance

    Unit_Fund |  | Items related to the unit fund

    Unit_Linked | Data flow | Programs, and so on, for unit linked business

    Unit_Linked_Component |  | Unit-linked business component

    Unit_Linked_Module | Modules | Module for unit-linked business

    US | Data flow | US non-linked data

    Valuation |  | Items relating to valuations


    Categories provide the items on a drop-down list in the


    Category


    property that can be used to help organize related components.


    There are different possible values for the Category type property, including:


    * If the category type is left blank, it may be used for most components. For
    example, there are assumption set variables within assumption sets, events and
    variables within modules that have the category Expenses.

    * Modules- This type of category applies only to modules, initialization modules
    and layer modules. For example, the modules NP_End_PVFP, NP_Term_PVFP and NP_WoL_PVFP
    have the modules category PVFP_Module.

    * Data flow- This type of category applies only to data sources and programs.
    Data from a

    data source will only be processed by programs assigned to the same category as
    that data source, so

    data flow categories can be used to control the flow of data through a model.
    For example, in the

    modelEV_Model, the data sources in the data process

    Traditional_Data_Process have the data flow category Traditional and will only
    pass to the programs

    in the projection processRealistic_Projectionthat have the data flow category
    Traditional.'
  - "Find/Replace Panel\n\nSee\n\nchoosers and panels\n\nfor information on\n    displaying\
    \ the Find/Replace Panel.\n\nThe Find/Replace Panel allows you to search for specific\
    \ text in the\n\nproperties\n\nof the\n\ncomponents\n\nof the open\n\nworkspaces\n\
    \nand\n\nresults workspaces\n\n.\n\nYou should enter the text for which you wish\
    \ to search in the\n\nFind what\n\nedit field.\n\nYou should select the parts\
    \ of the open workspaces and results workspaces within which you\n    wish to\
    \ search in the tree under\n\nWithin\n\n.\n\nYou can select multiple items discontinuously\
    \ by holding down the\n\nCtrl\n\nkey while clicking with the mouse.\n\nYou can\
    \ use the\n\nName\n\n,\n\nFormula\n\nand\n\nAll\n     fields\n\ncheckboxes to\
    \ specify whether the search should include the\n\nName\n\nproperty, the\n\nFormula\n\
    \nproperty or all properties, respectively. You\n    must check at least one of\
    \ these checkboxes so that there are some properties in which to\n    search.\n\
    \nYou can also select further search options:\n\n* Match case- check this checkbox\
    \ to perform a case-sensitive search\n* Match whole- check this checkbox to exclude\
    \ matches with parts of words, including\n     names of variables and components\n\
    * Ignore spaces- check this checkbox to ignore all white space in the properties\
    \ being\n     searched\n* Ignore info fields- check this checkbox to exclude theDescription,Documentation,Last\
    \ modified,Modified by,Path,Protected byandReserved byproperties.\n\nYou should\
    \ press the\n\nFind\n\nbutton to start the search.\n\nAfter searching the lower\
    \ pane will display the number of occurrences of the text that have\n    been\
    \ found and provide a tree showing where these are. You can double-click on any\
    \ of the\n    results to open that component in the Central Window, with the found\
    \ item selected.\n\nYou can select items in the tree if you wish to replace the\
    \ found text in these items. You\n    should then type the text to replace the\
    \ found text in the\n\nReplace with\n\nedit field and click the\n\nReplace\n\n\
    button.\n\nThe read-only icon\n\nnext to a tree\n    item indicates that it has\
    \ been\n\nprotected\n\nand so none of its\n    text can be replaced using this\
    \ feature.\n\nYou can drag or copy tree items from the Find/Replace Panel into\
    \ the\n\nCentral Window\n\n."
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on BAAI/bge-large-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': True, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Is there a specific location where I can find workspace filters?',
    '## Windows\n\nYou can access the filters of a workspace in the grid of filters.\n\nThe filter window has most properties of the filter.',
    'Find/Replace Panel\n\nSee\n\nchoosers and panels\n\nfor information on\n    displaying the Find/Replace Panel.\n\nThe Find/Replace Panel allows you to search for specific text in the\n\nproperties\n\nof the\n\ncomponents\n\nof the open\n\nworkspaces\n\nand\n\nresults workspaces\n\n.\n\nYou should enter the text for which you wish to search in the\n\nFind what\n\nedit field.\n\nYou should select the parts of the open workspaces and results workspaces within which you\n    wish to search in the tree under\n\nWithin\n\n.\n\nYou can select multiple items discontinuously by holding down the\n\nCtrl\n\nkey while clicking with the mouse.\n\nYou can use the\n\nName\n\n,\n\nFormula\n\nand\n\nAll\n     fields\n\ncheckboxes to specify whether the search should include the\n\nName\n\nproperty, the\n\nFormula\n\nproperty or all properties, respectively. You\n    must check at least one of these checkboxes so that there are some properties in which to\n    search.\n\nYou can also select further search options:\n\n* Match case- check this checkbox to perform a case-sensitive search\n* Match whole- check this checkbox to exclude matches with parts of words, including\n     names of variables and components\n* Ignore spaces- check this checkbox to ignore all white space in the properties being\n     searched\n* Ignore info fields- check this checkbox to exclude theDescription,Documentation,Last modified,Modified by,Path,Protected byandReserved byproperties.\n\nYou should press the\n\nFind\n\nbutton to start the search.\n\nAfter searching the lower pane will display the number of occurrences of the text that have\n    been found and provide a tree showing where these are. You can double-click on any of the\n    results to open that component in the Central Window, with the found item selected.\n\nYou can select items in the tree if you wish to replace the found text in these items. You\n    should then type the text to replace the found text in the\n\nReplace with\n\nedit field and click the\n\nReplace\n\nbutton.\n\nThe read-only icon\n\nnext to a tree\n    item indicates that it has been\n\nprotected\n\nand so none of its\n    text can be replaced using this feature.\n\nYou can drag or copy tree items from the Find/Replace Panel into the\n\nCentral Window\n\n.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, -0.9967, -0.9964],
#         [-0.9967,  1.0000,  0.9994],
#         [-0.9964,  0.9994,  1.0000]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 16,909 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            | negative                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              | string                                                                              |
  | details | <ul><li>min: 7 tokens</li><li>mean: 18.63 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 188.63 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 150.13 tokens</li><li>max: 384 tokens</li></ul> |
* Samples:
  | anchor                                                                                      | positive                                                                                                                                                                                                                                                   | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the purpose of the Analyzer tab in a results workspace?</code>                | <code>Analyzer<br><br>The<br><br>Analyzer<br><br>tab of a results workspace shows how the variables in the results workspace depend on each other.<br>If the results workspace contains sample output, the Analyzer shows these calculated results.</code> | <code>Analyzer<br><br>The Analyzer tool for a component shows how variables in the component depend on each other.<br><br>Most components that contain variables with formulas have an<br><br>Analyzer<br><br>tab at the bottom of their component window.<br>The<br><br>Analyzer<br><br>tab gives access to the Analyzer tool.<br>Components with an<br><br>Analyzer<br><br>tab include<br><br>assumption sets<br><br>,<br><br>data views<br><br>,<br><br>database views<br><br>,<br><br>initialization modules<br><br>,<br><br>layer modules<br><br>,<br><br>modules<br><br>,<br><br>MtF views<br><br>,<br><br>programs<br><br>,<br><br>projection processes<br><br>,<br><br>stochastic processes<br><br>,<br>and<br><br>results workspaces<br><br>.<br>The<br><br>Analyzer<br><br>tab of a results workspace<br><br>differs from the<br><br>Analyzer<br><br>tab of the other components and is covered separately.</code>                                                                                                                                                                                               |
  | <code>What kind of output is displayed in the Analyzer if available?</code>                 | <code>Analyzer<br><br>The<br><br>Analyzer<br><br>tab of a results workspace shows how the variables in the results workspace depend on each other.<br>If the results workspace contains sample output, the Analyzer shows these calculated results.</code> | <code>Accessing output<br><br>You can view and use the output from<br><br>R³S Modeler<br><br>in a variety of different ways.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  | <code>Where can I find the dependency relationships between variables in my results?</code> | <code>Analyzer<br><br>The<br><br>Analyzer<br><br>tab of a results workspace shows how the variables in the results workspace depend on each other.<br>If the results workspace contains sample output, the Analyzer shows these calculated results.</code> | <code>Analyzer dependency diagram<br><br>The dependency diagram of the<br><br>Analyzer<br><br>tab of a results workspace shows which variable you are currently analyzing with the variables that it depends on and the variables that depend upon it.<br>You can double-click another variable in the dependency diagram to analyze that variable.<br>The dependency diagram shows the value of each variable if this is available in sample output.<br><br>The dependency diagram is divided into three strips of variables:<br><br>* The top strip shows variables whose value depends on the value of the current variable (its dependants).<br>* The middle strip contains the variable currently being analyzed.<br>* The bottom strip shows variables on which the value of the current variable depends (its precedents).<br><br>Each variable has a box that shows:<br><br>* An icon representing the data type of the variable<br>* A name bar that shows the name of the variable<br>* A value box that shows the value of the variable<br><br>The variable boxes are linked by arrows that show the ...</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
  ```json
  {
      "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
      "triplet_margin": 5
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 16
- `gradient_accumulation_steps`: 2
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.05
- `bf16`: True
- `dataloader_num_workers`: 2
- `remove_unused_columns`: False

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 2
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: False
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch  | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.0946 | 50   | 9.7648        |
| 0.1892 | 100  | 9.3037        |
| 0.2838 | 150  | 9.1803        |
| 0.3784 | 200  | 9.2374        |
| 0.4730 | 250  | 9.1815        |
| 0.5676 | 300  | 9.2019        |
| 0.6623 | 350  | 9.2085        |
| 0.7569 | 400  | 9.0603        |
| 0.8515 | 450  | 9.1276        |
| 0.9461 | 500  | 9.1794        |
| 1.0397 | 550  | 9.0348        |
| 1.1343 | 600  | 9.1246        |
| 1.2289 | 650  | 9.1251        |
| 1.3236 | 700  | 9.1681        |
| 1.4182 | 750  | 8.907         |
| 1.5128 | 800  | 9.0067        |
| 1.6074 | 850  | 9.1056        |
| 1.7020 | 900  | 9.0715        |
| 1.7966 | 950  | 8.9425        |
| 1.8912 | 1000 | 9.0148        |
| 1.9858 | 1050 | 9.0477        |


### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 5.1.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### TripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->