File size: 40,483 Bytes
fa608d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:16909
- loss:TripletLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: Under what conditions is the default start position of 1 used for
a dimension in the resulting array?
sentences:
- "Array variables example 3: Variable Unit_Prices\n\nInheritance of dimension start\
\ position and index values in numerical\nexpressions.\n\nThe following non-aggregating\
\ non-portfolio 1-dimensional array currency variables are defined in\nthe assumption\
\ set Assumption_Set (in all cases the dimension name is Fund and it has character\n\
index values):\n\n | Dimension properties | \nVariable | Size | Start\n \
\ position | Indices | Array elements\nUnit_Prices\
\ | 3 | 101 | \"A\", \"B\", \"C\" | 1.25, 0.93, 1.81\nUnit_Prices_2 | 3 | 101\
\ | \"A\", \"B\", \"C\" | 1.21, 0.97, 1.73\nUnit_Prices_3 | 3 | 201 | \"A\", \"\
B\", \"C\" | 1.32, 0.79, 1.35\nUnit_Prices_4 | 3 | 101 | \"X\", \"Y\", \"Z\" |\
\ 1.12, 0.89, 1.97\nUnit_Prices_5 | 2 | 102 | \"B\", \"C\" | 0.93, 1.93\nUnit_Prices_6\
\ | 3 | 201 | \"X\", \"Y\", \"Z\" | 1.19, 0.98, 1.95\n\nThese variables are used\
\ in the formula of the following variables in the program Program in the\nprojection\
\ process Projection_Process, which is used in the model Array_Model (all these\
\ variables\nhave a single dimension called Fund):\n\n | | Dimension properties\
\ | \nVariable | Formula | Size | Start position | Indices | Array elements\n\
Variable_21 | Unit_Prices - Unit_Prices_2 | 3 | 101 | \"A\", \"B\", \"C\" | 0.04,\
\ -0.04, 0.08\nVariable_22 | Unit_Prices - Unit_Prices_3 | 3 | 1 | \"A\", \"B\"\
, \"C\" | -0.07, 0.14, 0.46\nVariable_23 | Unit_Prices - Unit_Prices_4 | 3 | 101\
\ | (undefined) | 0.13, 0.04, -0.16\nVariable_24 | Unit_Prices[<Fund.index= \"\
B\" : \"C\">] - Unit_Prices_5 | 2 | 102 | (undefined) | 0, -0.12\nVariable_25\
\ | Unit_Prices - Unit_Prices_6 | 3 | 1 | (undefined) | 0.06, -0.05, -0.14\n\n\
Notes:\n\n* The rank of the arrays (number of dimensions), dimension names and\
\ dimension sizes must be\nidentical for such numerical expressions to be valid.\n\
* If the indices in a particular dimension are the same in both arrays, they will\
\ be inherited by\nthe resulting array, otherwise no indices will be defined in\
\ that dimension.\n* If the start positions in a particular dimension are the\
\ same in both arrays, they will be\ninherited by the resulting array, otherwise\
\ the default start position of 1 will be used in that\ndimension.\n* We could\
\ not have a formula like Unit_Prices - Unit_Prices_5, because these arrays have\n\
differently sized dimensions.\n* The subset of an array variable in the formula\
\ of Variable_24 loses its indices. This means that\nVariable_24 cannot inherit\
\ consistent indices and so none are defined for it.\n* The subset of an array\
\ variable in the formula of Variable_24 inherits the numbering of its\nelement\
\ positions from the variable Unit_Prices, so its start position is set to 102.\
\ This is the\nsame as the start position of Unit_Prices_5, so Variable_24 has\
\ its dimension start position set to\n102."
- "## Examples\n\nSuppose:\n\nVariable is a 2-dimensional array\n\n | Dimension\
\ name | Size | Start position\n1 | Dimension_1 | 2 | 4\n2 | Dimension_2 | 3 |\
\ 7\n\nDimension_2 | Dimension_1\nPosition = 4 | Position = 5\nPosition = 7 |\
\ 1 | 2\nPosition = 8 | 3 | 4\nPosition = 9 | 5 | 6\n\nThen:\n\nDimension_Start(Variable,\
\ <Dimension_1>)\n\n= 4\n\nDimension_Start(Variable, <Dimension_2>)\n\n= 7"
- '## Other situations where indices are lost
There are a number of other circumstances where the indices for an array dimension
are lost:
* If an array has a changeable dimension and the array is aggregated acrosseventsusing
the.totalextension, the indices in
that dimension will be lost.
* If an array has a changeable dimension and the array is passed from a sub layer
to a calling
layer then the indices in that dimension will be lost.
* If an array has a changeable dimension and the array is calculated in a stochastic
return value
variable then the indices in that dimension will be lost.'
- source_sentence: Where can I find examples of batches within the system?
sentences:
- "Grouping example 3: Admin_Grouping\n\nUsed in the Calculation grouping property\
\ of a parent program.\n\nThis grouping has the following properties:\n\nProperty\
\ | Value\nName | Admin_Grouping\nCategory | Policy\nDescription | Group by method\
\ of policy administration\nGroup identifier | Internet_Admin.text\n\nThis grouping\
\ contains just one group:\n\nProperty | Value\nName | Internet_Admin\nCategory\
\ | Policy\nDescription | Group Internet_Admin by value\nData type | Indicator\n\
Grouping expression | Internet_Admin\nMethod | By value\nRange boundaries | \n\
Boundary value in | [Range above]\n\nThe Grouping expression property is set to\
\ the indicator variable Internet_Admin, so the Data\ntype property must be set\
\ to\n\nIndicator\n\n.\n\nThe Method property is set to\n\nBy value\n\n(so the\
\ Range boundaries and Boundary value in\nproperties will be ignored) and the\
\ records will be grouped together according to the value of the\ngrouping expression.\
\ In the\n\ndata view\n\nTraditional_Data_View\n\nthe variable\nInternet_Admin\
\ is read from data, but is expected to take one of two possible values. Since\
\ this\nvariable defines the grouping expression of this group, there should be\
\ up to two groups. If the\ndata file contains additional values, there will be\
\ additional groups.\n\nThis grouping is specified as the\n\nCalculation grouping\n\
\nproperty of the program\n\nCompany\n\nof the projection process\n\nRealistic_Projection\n\
\n. This program is a parent program and the records being passed to it by\nits\
\ child programs will be grouped according to this grouping before being processed\
\ by the\nprogram.\n\nThe Group identifier property of the grouping will be used\
\ to provide the value of the\n\nsystem variable\n\nGroup_Identifier in this\n\
\nprogram\n\nand to provide a unique group\nidentifier for each of its groups.\
\ These group identifiers will be \"Internet_Admin=0\" and\n\"Internet_Admin=1\"\
."
- "The main topic 'Batches' has the following related sub-topics:\n* **Batch examples**\
\ : \nThe example user workspace includes examples of batches."
- 'Batch examples
The example user workspace includes examples of batches.
No. | Name | Features
1 | EV_Batch | Contains very similar models that have slightly different realistic
assumptions
2 | EV_Batch_2 | Use of theModel string overrideproperty to access different external
assumption files'
- source_sentence: 'How does accessing a subset of an array using an expression like
`Array_1[<Fund.position = 3 : 6>]` affect the dimension start positions?'
sentences:
- "## Inheritance rules for the dimension start positions of an array variable\n\
\nAn array variable inherits the dimension start positions of the array variables\
\ in its formula\naccording to the points below.\n\nIt is not necessary for different\
\ assignments for an array variable to return the same start\nposition. For example,\
\ the following formula is valid even when Array_2 and Array_3 have different\n\
dimension start positions:\n\nIf Scalar_A > 3 Then\n Array_2\nElse\n \
\ Array_3\nEndIf\n\nAn array variable inherits the dimension start positions\
\ (and hence the element position numbers)\n of the arrays\
\ (after any function calls) used in its formula. It is not\n \
\ necessary for these to be identical. If the start positions in any dimension\n\
\ differ between arrays in a formula then\n\nR³S Modeler\n\
\nsets the\n start position in that dimension in the calculated\
\ array to the default\n value of 1. A message will be\
\ added to the\n\nIndex\n and Position Warnings\n\
\nfolder of the\n\nRun summary\n\nto\n indicate this has\
\ happened.\n\nSimple mathematical operations on an array will preserve the dimension\
\ start positions.\n\nAccessing a subset of an array with an expression like\n\
\nArray_1[<Fund\n\n.position\n\n= 3 :\n6>]\n\nwill cause the dimension start positions\
\ in the resulting array to be set so as to\npreserve the numbering of the element\
\ positions for all its elements. In this example, the start\nposition of the\
\ dimension Fund will be set to 3 in the resulting array.\n\nFunctions of arrays\
\ generally produce an array with the same dimension start positions as the\n\
inherited dimensions."
- "## Example 1: Step_Length_PS\n\nProperty | Value\nName | Step_Length_PS\nCategory\
\ | \nDescription | \nDocumentation | \n\nThis layer module contains no sub layer\
\ modules and just one layer variable:\n\nVariable | Layer module | Formula\n\
Step_Length_PS | Step_Length_PS | Duration(Step_Date.start, Step_Date.end, \"\
Years\", \"One\", \"Exact\")\n\nThis layer module is a sub layer module of the\
\ layer module Expense_Renewal."
- '## Accessing a subset of an array
Any dimension indices will always be inherited when accessing a subset of another
array with an
expression like Array_1[<Fund
.position
= 3 : 6>] or Array_1[<Fund
.position
= First_Fund :
Last_Fund>]. When it is not possible to determine both the start and end indices
or element
positions (that is, the variables First_Fund and Last_Fund in the second example)
until runtime and
the subset of the array variable is used in a mathematical expression then an
index and position
warning message will be issued to state that the indices for a dimension may not
match, and if not
that only one of the set of indices will be used which may lead to runtime errors
or misleading
results.'
- source_sentence: What kind of variable is Data_Process_Name considered?
sentences:
- 'Data_Process_Name
The
Data_Process_Name
system variable is a character variable that gives the name of the data process.
You can use this system variable in a data process in the data layer of a model.
This system variable is a placeholder variable.'
- "Assumption set example 4:\n Traditional_Reserve_Assumptions\n\nAn assumption\
\ set used as the assumption set of a sub layer containing an assumption set\n\
variable that references an assumption set variable in the assumption set of the\
\ calling layer using\nthe\n\nSource\n\nqualifier.\n\nThis example describes the\
\ assumptions that might be used in a sub layer to calculate reserve\nprovisions.\n\
\nAssumption set local properties:\n\nProperty | Value\nName | Traditional_Reserve_Assumptions\n\
Category | Traditional_Component\nDescription | Traditional (non-linked without-profit)\
\ reserve assumptions\nAssumption connection string | \n\nThis assumption set\
\ has no sub assumption sets.\n\nThis assumption set contains several assumption\
\ set variables. These variables have the following\nglobal properties (they all\
\ have their\n\nAggregates\n\nand\n\nPortfolio\n\nproperties set to\n\nNo\n\n\
):\n\nVariable | Data type | Display format\nDisc_Rate_Reserve | Numeric | Per\
\ cent\nMort_Table_F | Life table | [None]\nMort_Table_M | Life table | [None]\n\
\nThey have the following local properties in this assumption set (they all have\
\ their\n\nAssumption table\n\nproperty left blank):\n\nVariable | Formula\nDisc_Rate_Reserve\
\ | Max(Source.Int_Rate - 3%, 0%)\nMort_Table_F | 105% *AM92\nMort_Table_M | 120%\
\ * AM92 + 1‰\n\nNotes:\n\n* TheSourcequalifier in the formula of Disc_Rate_Reserve\
\ specifies that the value of Int_Rate in\nthe calling layer is to be used.\n\
* The per cent (%) and per mille (‰) characters may be included in formulas and\
\ have the\neffect of dividing by 100 and 1000 respectively, so 3% is interpreted\
\ as 0.03 and 1‰ is\ninterpreted as 0.001.\n\nThis assumption set is specified\
\ in the local properties of the sub layers Reserve_Sub_Layer and\nReserve_Sub_Layer_2\
\ of the layer\n\nRealistic_Layer\n\nof the\nmodel\n\nEV_Model\n\n."
- '## New system variables
The system variables
Data_Process_Name
,
Data_Source_Name
,
Layer_Name
, and
Program_Name
are placeholder variables.'
- source_sentence: Is there a specific location where I can find workspace filters?
sentences:
- '## Windows
You can access the filters of a workspace in the grid of filters.
The filter window has most properties of the filter.'
- 'Category examples
The example user workspace includes examples of categories.
Some categories that might be useful in a present value of future profits model
include:
Name | Category type | Description
Ages_Dates_Durations | | Items relating to ages, dates and durations
Asset_Shares | | Items relating to asset shares
Benefits | | Items relating to benefits
Bonuses | | Items relating to bonuses
Cash_Flow_Module | Modules | Module for general cash flows
Cash_Flows | | Items relating to cash flows
Commission | | Items relating to commission
Commutation_Function_Reserve_Module | Modules | Module for reserving using commutation
functions
Decrements | | Decrement tables and rates
Economic | | Economic assumptions and variables
EU | Data flow | EU non-linked data
Data flow | | Items relating to expenses
Flags | | Items that are set as flags
Fund_Charges | | Items related to unit fund charges
General_Module | Modules | Module suitable for many situations
Interest | | Items relating to interest
Maturities | | Items relating to maturities
Mortality | | Items relating to mortality
Multiple_Currencies | | Component for use with a multiple currency model
NP_End | Data flow | Programs, data sources, and so on, for non-profit endowment
assurances
NP_Term | Data flow | Programs, data sources and so on for non-profit term assurances
NP_WoL | Data flow | Programs, data sources, and so on, for non-profit whole of
life assurances
Policy | | Items relating to policies
Premiums | | Items relating to premiums
Probabilities | | Items relating to probabilities
Profit | | Items relating to profit
PVFP | | Items relating to present value of future profits
PVFP_Module | Modules | Module for present value of future profits
Reserve_Module | Modules | Module for reserving by projection of cash flows
Reserves | | Items relating to reserves
Solvency_Margin | | Items relating to solvency margin
Statistics | | Items relating to statistics
Surrenders | | Items relating to surrenders
Tax | | Items relating to tax
Traditional | Data flow | Traditional/non-profit/conventional non-linked business
Traditional_Component | | Traditional/conventional/non-linked/non-profit business
component
UK | Data flow | UK non-linked data
Data flow | Data flow | Unit-linked endowment assurance
Unit_Fund | | Items related to the unit fund
Unit_Linked | Data flow | Programs, and so on, for unit linked business
Unit_Linked_Component | | Unit-linked business component
Unit_Linked_Module | Modules | Module for unit-linked business
US | Data flow | US non-linked data
Valuation | | Items relating to valuations
Categories provide the items on a drop-down list in the
Category
property that can be used to help organize related components.
There are different possible values for the Category type property, including:
* If the category type is left blank, it may be used for most components. For
example, there are assumption set variables within assumption sets, events and
variables within modules that have the category Expenses.
* Modules- This type of category applies only to modules, initialization modules
and layer modules. For example, the modules NP_End_PVFP, NP_Term_PVFP and NP_WoL_PVFP
have the modules category PVFP_Module.
* Data flow- This type of category applies only to data sources and programs.
Data from a
data source will only be processed by programs assigned to the same category as
that data source, so
data flow categories can be used to control the flow of data through a model.
For example, in the
modelEV_Model, the data sources in the data process
Traditional_Data_Process have the data flow category Traditional and will only
pass to the programs
in the projection processRealistic_Projectionthat have the data flow category
Traditional.'
- "Find/Replace Panel\n\nSee\n\nchoosers and panels\n\nfor information on\n displaying\
\ the Find/Replace Panel.\n\nThe Find/Replace Panel allows you to search for specific\
\ text in the\n\nproperties\n\nof the\n\ncomponents\n\nof the open\n\nworkspaces\n\
\nand\n\nresults workspaces\n\n.\n\nYou should enter the text for which you wish\
\ to search in the\n\nFind what\n\nedit field.\n\nYou should select the parts\
\ of the open workspaces and results workspaces within which you\n wish to\
\ search in the tree under\n\nWithin\n\n.\n\nYou can select multiple items discontinuously\
\ by holding down the\n\nCtrl\n\nkey while clicking with the mouse.\n\nYou can\
\ use the\n\nName\n\n,\n\nFormula\n\nand\n\nAll\n fields\n\ncheckboxes to\
\ specify whether the search should include the\n\nName\n\nproperty, the\n\nFormula\n\
\nproperty or all properties, respectively. You\n must check at least one of\
\ these checkboxes so that there are some properties in which to\n search.\n\
\nYou can also select further search options:\n\n* Match case- check this checkbox\
\ to perform a case-sensitive search\n* Match whole- check this checkbox to exclude\
\ matches with parts of words, including\n names of variables and components\n\
* Ignore spaces- check this checkbox to ignore all white space in the properties\
\ being\n searched\n* Ignore info fields- check this checkbox to exclude theDescription,Documentation,Last\
\ modified,Modified by,Path,Protected byandReserved byproperties.\n\nYou should\
\ press the\n\nFind\n\nbutton to start the search.\n\nAfter searching the lower\
\ pane will display the number of occurrences of the text that have\n been\
\ found and provide a tree showing where these are. You can double-click on any\
\ of the\n results to open that component in the Central Window, with the found\
\ item selected.\n\nYou can select items in the tree if you wish to replace the\
\ found text in these items. You\n should then type the text to replace the\
\ found text in the\n\nReplace with\n\nedit field and click the\n\nReplace\n\n\
button.\n\nThe read-only icon\n\nnext to a tree\n item indicates that it has\
\ been\n\nprotected\n\nand so none of its\n text can be replaced using this\
\ feature.\n\nYou can drag or copy tree items from the Find/Replace Panel into\
\ the\n\nCentral Window\n\n."
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': True, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Is there a specific location where I can find workspace filters?',
'## Windows\n\nYou can access the filters of a workspace in the grid of filters.\n\nThe filter window has most properties of the filter.',
'Find/Replace Panel\n\nSee\n\nchoosers and panels\n\nfor information on\n displaying the Find/Replace Panel.\n\nThe Find/Replace Panel allows you to search for specific text in the\n\nproperties\n\nof the\n\ncomponents\n\nof the open\n\nworkspaces\n\nand\n\nresults workspaces\n\n.\n\nYou should enter the text for which you wish to search in the\n\nFind what\n\nedit field.\n\nYou should select the parts of the open workspaces and results workspaces within which you\n wish to search in the tree under\n\nWithin\n\n.\n\nYou can select multiple items discontinuously by holding down the\n\nCtrl\n\nkey while clicking with the mouse.\n\nYou can use the\n\nName\n\n,\n\nFormula\n\nand\n\nAll\n fields\n\ncheckboxes to specify whether the search should include the\n\nName\n\nproperty, the\n\nFormula\n\nproperty or all properties, respectively. You\n must check at least one of these checkboxes so that there are some properties in which to\n search.\n\nYou can also select further search options:\n\n* Match case- check this checkbox to perform a case-sensitive search\n* Match whole- check this checkbox to exclude matches with parts of words, including\n names of variables and components\n* Ignore spaces- check this checkbox to ignore all white space in the properties being\n searched\n* Ignore info fields- check this checkbox to exclude theDescription,Documentation,Last modified,Modified by,Path,Protected byandReserved byproperties.\n\nYou should press the\n\nFind\n\nbutton to start the search.\n\nAfter searching the lower pane will display the number of occurrences of the text that have\n been found and provide a tree showing where these are. You can double-click on any of the\n results to open that component in the Central Window, with the found item selected.\n\nYou can select items in the tree if you wish to replace the found text in these items. You\n should then type the text to replace the found text in the\n\nReplace with\n\nedit field and click the\n\nReplace\n\nbutton.\n\nThe read-only icon\n\nnext to a tree\n item indicates that it has been\n\nprotected\n\nand so none of its\n text can be replaced using this feature.\n\nYou can drag or copy tree items from the Find/Replace Panel into the\n\nCentral Window\n\n.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, -0.9967, -0.9964],
# [-0.9967, 1.0000, 0.9994],
# [-0.9964, 0.9994, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 16,909 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 18.63 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 188.63 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 150.13 tokens</li><li>max: 384 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the purpose of the Analyzer tab in a results workspace?</code> | <code>Analyzer<br><br>The<br><br>Analyzer<br><br>tab of a results workspace shows how the variables in the results workspace depend on each other.<br>If the results workspace contains sample output, the Analyzer shows these calculated results.</code> | <code>Analyzer<br><br>The Analyzer tool for a component shows how variables in the component depend on each other.<br><br>Most components that contain variables with formulas have an<br><br>Analyzer<br><br>tab at the bottom of their component window.<br>The<br><br>Analyzer<br><br>tab gives access to the Analyzer tool.<br>Components with an<br><br>Analyzer<br><br>tab include<br><br>assumption sets<br><br>,<br><br>data views<br><br>,<br><br>database views<br><br>,<br><br>initialization modules<br><br>,<br><br>layer modules<br><br>,<br><br>modules<br><br>,<br><br>MtF views<br><br>,<br><br>programs<br><br>,<br><br>projection processes<br><br>,<br><br>stochastic processes<br><br>,<br>and<br><br>results workspaces<br><br>.<br>The<br><br>Analyzer<br><br>tab of a results workspace<br><br>differs from the<br><br>Analyzer<br><br>tab of the other components and is covered separately.</code> |
| <code>What kind of output is displayed in the Analyzer if available?</code> | <code>Analyzer<br><br>The<br><br>Analyzer<br><br>tab of a results workspace shows how the variables in the results workspace depend on each other.<br>If the results workspace contains sample output, the Analyzer shows these calculated results.</code> | <code>Accessing output<br><br>You can view and use the output from<br><br>R³S Modeler<br><br>in a variety of different ways.</code> |
| <code>Where can I find the dependency relationships between variables in my results?</code> | <code>Analyzer<br><br>The<br><br>Analyzer<br><br>tab of a results workspace shows how the variables in the results workspace depend on each other.<br>If the results workspace contains sample output, the Analyzer shows these calculated results.</code> | <code>Analyzer dependency diagram<br><br>The dependency diagram of the<br><br>Analyzer<br><br>tab of a results workspace shows which variable you are currently analyzing with the variables that it depends on and the variables that depend upon it.<br>You can double-click another variable in the dependency diagram to analyze that variable.<br>The dependency diagram shows the value of each variable if this is available in sample output.<br><br>The dependency diagram is divided into three strips of variables:<br><br>* The top strip shows variables whose value depends on the value of the current variable (its dependants).<br>* The middle strip contains the variable currently being analyzed.<br>* The bottom strip shows variables on which the value of the current variable depends (its precedents).<br><br>Each variable has a box that shows:<br><br>* An icon representing the data type of the variable<br>* A name bar that shows the name of the variable<br>* A value box that shows the value of the variable<br><br>The variable boxes are linked by arrows that show the ...</code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `gradient_accumulation_steps`: 2
- `learning_rate`: 2e-05
- `num_train_epochs`: 2
- `warmup_ratio`: 0.05
- `bf16`: True
- `dataloader_num_workers`: 2
- `remove_unused_columns`: False
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 2
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: False
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.0946 | 50 | 9.7648 |
| 0.1892 | 100 | 9.3037 |
| 0.2838 | 150 | 9.1803 |
| 0.3784 | 200 | 9.2374 |
| 0.4730 | 250 | 9.1815 |
| 0.5676 | 300 | 9.2019 |
| 0.6623 | 350 | 9.2085 |
| 0.7569 | 400 | 9.0603 |
| 0.8515 | 450 | 9.1276 |
| 0.9461 | 500 | 9.1794 |
| 1.0397 | 550 | 9.0348 |
| 1.1343 | 600 | 9.1246 |
| 1.2289 | 650 | 9.1251 |
| 1.3236 | 700 | 9.1681 |
| 1.4182 | 750 | 8.907 |
| 1.5128 | 800 | 9.0067 |
| 1.6074 | 850 | 9.1056 |
| 1.7020 | 900 | 9.0715 |
| 1.7966 | 950 | 8.9425 |
| 1.8912 | 1000 | 9.0148 |
| 1.9858 | 1050 | 9.0477 |
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 5.1.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### TripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |