Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -267,7 +267,7 @@ class simulation_for_machine_learning{
|
|
| 267 |
int n = sample_sizes[jj];
|
| 268 |
|
| 269 |
// ---- Simulation samples ----
|
| 270 |
-
//competing hypothesis
|
| 271 |
Sample A0(*H0_1.D,n,Gw);
|
| 272 |
Sample B0(*H0_1.D,n,Gw);
|
| 273 |
if( per > 0 )
|
|
@@ -276,7 +276,7 @@ class simulation_for_machine_learning{
|
|
| 276 |
B0.CensoredTypeThird(*H1_1.D,Gw);
|
| 277 |
}
|
| 278 |
|
| 279 |
-
//competing hypothesis
|
| 280 |
Sample A1(*H0_1.D,n,Gw);
|
| 281 |
Sample B1(*H0_2.D,n,Gw);
|
| 282 |
if( per > 0 )
|
|
@@ -286,7 +286,7 @@ class simulation_for_machine_learning{
|
|
| 286 |
}
|
| 287 |
|
| 288 |
// ---- Computation of the test statistics & Save to file ----
|
| 289 |
-
//Sn and p-value computation under
|
| 290 |
FILE *ou = fopen(file_to_save, "a");
|
| 291 |
auto perc1 = A0.RealCensoredPercent();
|
| 292 |
auto perc2 = B0.RealCensoredPercent();
|
|
@@ -303,7 +303,7 @@ class simulation_for_machine_learning{
|
|
| 303 |
}
|
| 304 |
fprintf(ou, "\n");
|
| 305 |
|
| 306 |
-
//Sn and p-value computation under
|
| 307 |
perc1 = A1.RealCensoredPercent();
|
| 308 |
perc2 = B1.RealCensoredPercent();
|
| 309 |
fprintf(ou,"%d;", iter);
|
|
@@ -328,7 +328,7 @@ class simulation_for_machine_learning{
|
|
| 328 |
// Constructor of the class
|
| 329 |
simulation_for_machine_learning(vector<HomogeneityTest*> &D)
|
| 330 |
{
|
| 331 |
-
int N =
|
| 332 |
#pragma omp parallel for
|
| 333 |
for(int k=0; k<N; k++)
|
| 334 |
{
|
|
|
|
| 267 |
int n = sample_sizes[jj];
|
| 268 |
|
| 269 |
// ---- Simulation samples ----
|
| 270 |
+
//competing hypothesis H0
|
| 271 |
Sample A0(*H0_1.D,n,Gw);
|
| 272 |
Sample B0(*H0_1.D,n,Gw);
|
| 273 |
if( per > 0 )
|
|
|
|
| 276 |
B0.CensoredTypeThird(*H1_1.D,Gw);
|
| 277 |
}
|
| 278 |
|
| 279 |
+
//competing hypothesis H1
|
| 280 |
Sample A1(*H0_1.D,n,Gw);
|
| 281 |
Sample B1(*H0_2.D,n,Gw);
|
| 282 |
if( per > 0 )
|
|
|
|
| 286 |
}
|
| 287 |
|
| 288 |
// ---- Computation of the test statistics & Save to file ----
|
| 289 |
+
//Sn and p-value computation under H0
|
| 290 |
FILE *ou = fopen(file_to_save, "a");
|
| 291 |
auto perc1 = A0.RealCensoredPercent();
|
| 292 |
auto perc2 = B0.RealCensoredPercent();
|
|
|
|
| 303 |
}
|
| 304 |
fprintf(ou, "\n");
|
| 305 |
|
| 306 |
+
//Sn and p-value computation under H1
|
| 307 |
perc1 = A1.RealCensoredPercent();
|
| 308 |
perc2 = B1.RealCensoredPercent();
|
| 309 |
fprintf(ou,"%d;", iter);
|
|
|
|
| 328 |
// Constructor of the class
|
| 329 |
simulation_for_machine_learning(vector<HomogeneityTest*> &D)
|
| 330 |
{
|
| 331 |
+
int N = 37650; // number of the Monte-Carlo replications
|
| 332 |
#pragma omp parallel for
|
| 333 |
for(int k=0; k<N; k++)
|
| 334 |
{
|