azugarini commited on
Commit
844a51a
·
verified ·
1 Parent(s): c1586cb

Upload 2 files

Browse files
Files changed (2) hide show
  1. CAPMIT1003.py +2 -20
  2. README.md +56 -0
CAPMIT1003.py CHANGED
@@ -8,11 +8,11 @@ import pandas as pd
8
  import sqlite3
9
  import datasets
10
 
11
- _CITATION = """```@article{zanca2023contrastive,
12
  title={Contrastive Language-Image Pretrained Models are Zero-Shot Human Scanpath Predictors},
13
  author={Zanca, Dario and Zugarini, Andrea and Dietz, Simon and Altstidl, Thomas R and Ndjeuha, Mark A Turban and Schwinn, Leo and Eskofier, Bjoern},
14
  journal={arXiv preprint arXiv:2305.12380},
15
- year={2023}```
16
  }"""
17
 
18
  _DESCRIPTION = """CapMIT1003 is a dataset of captions and click-contingent image explorations collected during captioning tasks.
@@ -90,22 +90,6 @@ class CapMIT1003DB:
90
  return pd.read_sql_query('SELECT x, y, click_time AS time FROM clicks WHERE obs_uid = ?', self.cnx,
91
  params=[obs_uid])
92
 
93
- @staticmethod
94
- def download_images(quiet=False):
95
- """ Download stimuli images for MIT1003.
96
-
97
- Parameters
98
- ----------
99
- quiet: bool
100
- Flag that suppresses command-line outputs.
101
- """
102
- if not os.path.exists('mit1003'):
103
- if not os.path.exists('mit1003.zip'):
104
- print('Downloading MIT1003 Stimuli') if not quiet else None
105
- urlretrieve(MIT1003_URL, 'mit1003.zip')
106
- print('Extracting MIT1003 Stimuli') if not quiet else None
107
- unpack_archive('mit1003.zip', 'mit1003')
108
-
109
 
110
  class CapMIT1003(datasets.GeneratorBasedBuilder):
111
  _URLS = [MIT1003_URL]
@@ -119,7 +103,6 @@ class CapMIT1003(datasets.GeneratorBasedBuilder):
119
  "usr_uid": datasets.Value("string"),
120
  "caption": datasets.Value("string"),
121
  "image": datasets.Image(),
122
- "start_time": datasets.Value("timestamp[s]"),
123
  "clicks_path": datasets.Sequence(datasets.Sequence(datasets.Value("int32"), length=2)),
124
  "clicks_time": datasets.Sequence(datasets.Value("timestamp[s]"))
125
  }
@@ -154,7 +137,6 @@ class CapMIT1003(datasets.GeneratorBasedBuilder):
154
  "usr_uid": pair.usr_uid,
155
  "image": pair.img_path,
156
  "caption": pair.caption,
157
- "start_time": pair.start_time,
158
  "clicks_path": xy_coordinates,
159
  "clicks_time": clicks_time
160
  }
 
8
  import sqlite3
9
  import datasets
10
 
11
+ _CITATION = """@article{zanca2023contrastive,
12
  title={Contrastive Language-Image Pretrained Models are Zero-Shot Human Scanpath Predictors},
13
  author={Zanca, Dario and Zugarini, Andrea and Dietz, Simon and Altstidl, Thomas R and Ndjeuha, Mark A Turban and Schwinn, Leo and Eskofier, Bjoern},
14
  journal={arXiv preprint arXiv:2305.12380},
15
+ year={2023}
16
  }"""
17
 
18
  _DESCRIPTION = """CapMIT1003 is a dataset of captions and click-contingent image explorations collected during captioning tasks.
 
90
  return pd.read_sql_query('SELECT x, y, click_time AS time FROM clicks WHERE obs_uid = ?', self.cnx,
91
  params=[obs_uid])
92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
  class CapMIT1003(datasets.GeneratorBasedBuilder):
95
  _URLS = [MIT1003_URL]
 
103
  "usr_uid": datasets.Value("string"),
104
  "caption": datasets.Value("string"),
105
  "image": datasets.Image(),
 
106
  "clicks_path": datasets.Sequence(datasets.Sequence(datasets.Value("int32"), length=2)),
107
  "clicks_time": datasets.Sequence(datasets.Value("timestamp[s]"))
108
  }
 
137
  "usr_uid": pair.usr_uid,
138
  "image": pair.img_path,
139
  "caption": pair.caption,
 
140
  "clicks_path": xy_coordinates,
141
  "clicks_time": clicks_time
142
  }
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ dataset_info:
3
+ features:
4
+ - name: obs_uid
5
+ dtype: string
6
+ - name: usr_uid
7
+ dtype: string
8
+ - name: caption
9
+ dtype: string
10
+ - name: image
11
+ dtype: image
12
+ - name: clicks_path
13
+ sequence:
14
+ sequence: int32
15
+ length: 2
16
+ - name: clicks_time
17
+ sequence: timestamp[s]
18
+ splits:
19
+ - name: train
20
+ num_bytes: 1611467
21
+ num_examples: 3848
22
+ download_size: 241443505
23
+ dataset_size: 1611467
24
+ ---
25
+
26
+ ### Dataset Description
27
+ CapMIT1003 is a dataset of captions and click-contingent image explorations collected during captioning tasks.
28
+ CapMIT1003 is based on the same stimuli from the well-known MIT1003 benchmark, for which eye-tracking data
29
+ under free-viewing conditions is available, which offers a promising opportunity to concurrently study human attention under both tasks.
30
+
31
+
32
+ ### Usage
33
+ You can load CapMIT1003 as follows:
34
+
35
+
36
+ ```python
37
+ from datasets import load_dataset
38
+
39
+ capmit1003_dataset = load_dataset("azugarini/CAPMIT1003", trust_remote_code=True)
40
+ print(capmit1003_dataset["train"][0]) #print first example
41
+ ```
42
+
43
+
44
+
45
+
46
+
47
+ ### Citation Information
48
+ If you use this dataset in your research or work, please cite the following paper:
49
+
50
+ ```
51
+ @article{zanca2023contrastive,
52
+ title={Contrastive Language-Image Pretrained Models are Zero-Shot Human Scanpath Predictors},
53
+ author={Zanca, Dario and Zugarini, Andrea and Dietz, Simon and Altstidl, Thomas R and Ndjeuha, Mark A Turban and Schwinn, Leo and Eskofier, Bjoern},
54
+ journal={arXiv preprint arXiv:2305.12380},
55
+ year={2023}
56
+ ```