Datasets:
ArXiv:
License:
File size: 8,146 Bytes
3133368 f94ae6c 254b64a cc5441e 38dceda cc5441e 3133368 74150b0 683c9df 74150b0 3133368 74150b0 683c9df 091462f b35d84f cc5441e 091462f a7d7dba 31f88da a7d7dba 091462f bb4a3ad 31f88da 74150b0 b35d84f 74150b0 183fe48 8d95ee2 74150b0 b35d84f cc5441e 8d95ee2 67bd108 8d95ee2 b35d84f cc5441e 8d95ee2 74150b0 d2886db 3133368 d2886db 4a1f764 d2886db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
license: apache-2.0
---
<h1 align="center">
WenetSpeech-Chuan: A Large-Scale Sichuanese Corpus With Rich Annotation For Dialectal Speech Processing
</h1>
<p align="center">
Yuhang Dai<sup>1</sup><sup>,*</sup>, Ziyu Zhang<sup>1</sup><sup>,*</sup>, Shuai Wang<sup>4</sup><sup>,5</sup>,
Longhao Li<sup>1</sup>, Zhao Guo<sup>1</sup>, Tianlun Zuo<sup>1</sup>,
Shuiyuan Wang<sup>1</sup>, Hongfei Xue<sup>1</sup>, Chengyou Wang<sup>1</sup>,
Qing Wang<sup>3</sup>, Xin Xu<sup>2</sup>, Hui Bu<sup>2</sup>, Jie Li<sup>3</sup>,
Jian Kang<sup>3</sup>, Binbin Zhang<sup>5</sup>, Lei Xie<sup>1</sup><sup>,╀</sup>
</p>
<p align="center">
<sup>1</sup> Audio, Speech and Language Processing Group (ASLP@NPU), Northwestern Polytechnical University <br>
<sup>2</sup> Beijing AISHELL Technology Co., Ltd. <br>
<sup>3</sup> Institute of Artificial Intelligence (TeleAI), China Telecom <br>
<sup>4</sup> School of Intelligence Science and Technology, Nanjing University <br>
<sup>5</sup> WeNet Open Source Community <br>
</p>
<p align="center">
📑 <a href="https://arxiv.org/abs/2509.18004">Paper</a>    |   
🐙 <a href="https://github.com/ASLP-lab/WenetSpeech-Chuan">GitHub</a>    |   
🤗 <a href="https://huggingface.co/collections/ASLP-lab/wenetspeech-chuan-68bade9d02bcb1faece65bda">HuggingFace</a>
<br>
🎤 <a href="https://aslp-lab.github.io/WenetSpeech-Chuan/">Demo Page</a>    |   
💬 <a href="https://github.com/ASLP-lab/WenetSpeech-Chuan?tab=readme-ov-file#contact">Contact Us</a>
</p>
<div align="center">
<img width="800px" src="https://github.com/ASLP-lab/WenetSpeech-Chuan/blob/main/src/logo/WenetSpeech-Chuan-Logo.png?raw=true" />
</div>
## Dataset
### WenetSpeech-Chuan Overview
* Contains 10,000 hours of large-scale Chuan-Yu dialect speech corpus with rich annotations, the largest open-source resource for Chuan-Yu dialect speech research.</li>
* Stores metadata in a single JSON file, including audio path, duration, text confidence, speaker identity, SNR, DNSMOS, age, gender, and character-level timestamps. Additional metadata tags may be added in the future.</li>
* Covers ten domains: Short videos, Entertainment, Live streams, Documentary, Audiobook, Drama, Interview, News and others.</li>
<div align="center">
<img src="https://github.com/ASLP-lab/WenetSpeech-Chuan/blob/main/src/figs/domain.png?raw=true" width="300" style="display:inline-block; margin-right:10px;" />
<img src="https://github.com/ASLP-lab/WenetSpeech-Chuan/blob/main/src/figs/quality_distribution.jpg?raw=true" width="300" style="display:inline-block;" />
</div>
### Metadata Format
We store all audio metadata in a standardized JSON format, where the core fields include `utt_id` (unique identifier for each audio segment), `rover_result` (ROVER result of three ASR transcriptions), `confidence` (confidence score of text transcription), `jyutping_confidence` (confidence score of Cantonese pinyin transcriptions), and `duration` (audio duration); speaker attributes include `speaker_id`, `gender`, and `age`; audio quality assessment metrics include `sample_rate`, `DNSMOS`, and `SNR`; timestamp information includes `timestamp` (precisely recording segment boundaries with `start` and `end`); and extended metadata under the `meta_info` field includes `program` (program name), `region` (geographical information), `link` (original content link), and `domain` (domain classification).
#### 📂 Content Tree
```
WenetSpeech-Chuan
├── metadata.jsonl
├── .gitattributes
└── README.md
```
<!-- WenetSpeech-Chuan
├── metadata.jsonl
│
├── audio_labels/
│ ├── wav_utt_id.jsonl
│ ├── wav_utt_id.jsonl
│ ├── ...
│ └── wav_utt_id.jsonl
│
├── .gitattributes
└── README.md -->
#### Data sample:
###### metadata.jsonl
{<br>
"utt": 音频id, <br>
"filename":音频文件名(type: str), <br>
"text": 转录抄本(type: str), <br>
"domain": 参考领域信息(type: list[str]), <br>
"gender": 说话人性别(type: str), <br>
"age": 说话人年龄标签 (type: int范围, eg: 中年(36~59)), <br>
"wvmos": 音频质量分数(type: float), <br>
"confidence": 转录文本置信度(0-1)(type: str), <br>
"emotion": 说话人情感标签 (type: str,eg: 愤怒), <br>
} <br>
**example:**
{ <br>
"utt": "013165495633_09mNC_9_5820", <br>
"filename": "013165495633_09mNC_9_5820.wav", <br>
"text": "还是选二手装好了的别墅诚心入如意的直接入住的好好", <br>
"domain": [ <br>
"短视频" <br>
], <br>
"gender": "Male", <br>
"age": "YOUTH", <br>
"wvmos": 2.124380588531494, <br>
"confidence": 0.8333, <br>
"emotion": angry, <br>
} <br>
<!-- ###### audio_labels/wav_utt_id.jsonl:
{ <br>
"wav_utt_id_timestamp": 以 转化为wav后的长音频id_时间戳信息 作为切分后的短音频id (type: str), <br>
"wav_utt_id_timestamp_path": 短音频数据路径 (type: str), <br>
"audio_clip_id": 该段短音频在长音频中的切分顺序编号, <br>
"timestamp": 时间戳信息, <br>
"wvmos_score": wvmos分数,衡量音频片段质量 (type: float), <br>
"text": 对应时间戳的音频片段的抄本 (type: str), <br>
"text_punc": 带标点的抄本 (type: str), <br>
"spk_num": 音频片段说话人个数,single/multi (type: str) <br>
"confidence": 抄本置信度 (type: float), <br>
"emotion": 说话人情感标签 (type: str,eg: 愤怒), <br>
"age": 说话人年龄标签 (type: int范围, eg: 中年(36~59)), <br>
"gender": 说话人性别标签 (type: str,eg: 男/女), <br>
} <br>
-->
<!-- #### Data sample(EN):
###### metadata.jsonl
{ <br>
"utt_id": Original long audio ID, <br>
"wav_utt_id": Converted long audio ID after transforming to WAV format, <br>
"source_audio_path": Path to the original long audio file, <br>
"audio_labels": Path to the label file of short audio segments cut from the converted long audio, <br>
"url": Download link for the original long audio <br>
} <br>
###### audio_labels/wav_utt_id.jsonl:
{ <br>
"wav_utt_id_timestamp": Short audio segment ID, composed of the converted long audio ID + timestamp information (type: str), <br>
"wav_utt_id_timestamp_path": Path to the short audio data (type: str), <br>
"audio_clip_id": Sequence number of this short segment within the long audio, <br>
"timestamp": Timestamp information, <br>
"wvmos_score": WVMOS score, measuring the quality of the audio segment (type: float), <br>
"text": Transcript of the audio segment corresponding to the timestamp (type: str), <br>
"text_punc": Transcript with punctuation (type: str), <br>
"spk_num": Number of speakers in the audio segment, single/multi (type: str), <br>
"confidence": Confidence score of the transcript (type: float), <br>
"emotion": Speaker’s emotion label (type: str, e.g., anger), <br>
"age": Speaker’s age label (type: int range, e.g., middle-aged (36–59)), <br>
"gender": Speaker’s gender label (type: str, e.g., male/female) <br>
} <br>
-->
### WenetSpeech Usage
You can obtain the original video source through the `link` field in the metadata file (`metadata.json`). Segment the audio according to the `timestamps` field to extract the corresponding record. For pre-processed audio data, please contact us using the information provided below.
## Contact
If you have any questions or would like to collaborate, feel free to reach out to our research team via email: [email protected] or ziyu_[email protected].
You’re also welcome to join our WeChat group for technical discussions, updates, and — as mentioned above — access to pre-processed audio data.
<p align="center">
<img src="https://github.com/ASLP-lab/WenetSpeech-Chuan/raw/main/src/figs/wechat.jpg" width="300" alt="WeChat Group QR Code"/>
<em>Scan to join our WeChat discussion group</em>
</p>
<p align="center">
<img src="https://github.com/ASLP-lab/WenetSpeech-Yue/raw/main/figs/[email protected]" width="300" alt="Official Account QR Code"/>
</p>
|