File size: 8,146 Bytes
3133368
 
 
 
f94ae6c
254b64a
 
 
cc5441e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dceda
cc5441e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133368
 
 
74150b0
 
683c9df
74150b0
 
3133368
 
 
 
 
 
 
 
74150b0
683c9df
091462f
b35d84f
cc5441e
091462f
a7d7dba
 
 
 
 
 
 
 
31f88da
 
a7d7dba
091462f
 
bb4a3ad
 
 
 
 
 
 
 
 
 
 
 
31f88da
74150b0
b35d84f
 
74150b0
 
183fe48
8d95ee2
 
 
 
 
 
 
 
 
 
 
 
 
74150b0
 
b35d84f
cc5441e
8d95ee2
67bd108
8d95ee2
 
 
 
 
b35d84f
 
cc5441e
8d95ee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74150b0
d2886db
 
3133368
d2886db
 
 
 
 
 
4a1f764
d2886db
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
license: apache-2.0
---


<h1 align="center">
  WenetSpeech-Chuan: A Large-Scale Sichuanese Corpus With Rich Annotation For Dialectal Speech Processing
</h1>

<p align="center">
  Yuhang Dai<sup>1</sup><sup>,*</sup>, Ziyu Zhang<sup>1</sup><sup>,*</sup>, Shuai Wang<sup>4</sup><sup>,5</sup>, 
  Longhao Li<sup>1</sup>, Zhao Guo<sup>1</sup>, Tianlun Zuo<sup>1</sup>, 
  Shuiyuan Wang<sup>1</sup>, Hongfei Xue<sup>1</sup>, Chengyou Wang<sup>1</sup>, 
  Qing Wang<sup>3</sup>, Xin Xu<sup>2</sup>, Hui Bu<sup>2</sup>, Jie Li<sup>3</sup>, 
  Jian Kang<sup>3</sup>, Binbin Zhang<sup>5</sup>, Lei Xie<sup>1</sup><sup>,╀</sup>
</p>
<p align="center">
  <sup>1</sup> Audio, Speech and Language Processing Group (ASLP@NPU), Northwestern Polytechnical University <br>
  <sup>2</sup> Beijing AISHELL Technology Co., Ltd. <br>
  <sup>3</sup> Institute of Artificial Intelligence (TeleAI), China Telecom <br>
  <sup>4</sup> School of Intelligence Science and Technology, Nanjing University <br>
  <sup>5</sup> WeNet Open Source Community <br>
</p>

<p align="center">
📑 <a href="https://arxiv.org/abs/2509.18004">Paper</a> &nbsp&nbsp | &nbsp&nbsp 
🐙 <a href="https://github.com/ASLP-lab/WenetSpeech-Chuan">GitHub</a> &nbsp&nbsp | &nbsp&nbsp 
🤗 <a href="https://huggingface.co/collections/ASLP-lab/wenetspeech-chuan-68bade9d02bcb1faece65bda">HuggingFace</a>
<br>
🎤 <a href="https://aslp-lab.github.io/WenetSpeech-Chuan/">Demo Page</a> &nbsp&nbsp | &nbsp&nbsp 
💬 <a href="https://github.com/ASLP-lab/WenetSpeech-Chuan?tab=readme-ov-file#contact">Contact Us</a>
</p>


<div align="center">
  <img width="800px" src="https://github.com/ASLP-lab/WenetSpeech-Chuan/blob/main/src/logo/WenetSpeech-Chuan-Logo.png?raw=true" />
</div>

## Dataset
### WenetSpeech-Chuan Overview

* Contains 10,000 hours of large-scale Chuan-Yu dialect speech corpus with rich annotations, the largest open-source resource for Chuan-Yu dialect speech research.</li>
* Stores metadata in a single JSON file, including audio path, duration, text confidence, speaker identity, SNR, DNSMOS, age, gender, and character-level timestamps. Additional metadata tags may be added in the future.</li>
* Covers ten domains: Short videos, Entertainment, Live streams, Documentary, Audiobook, Drama, Interview, News and others.</li>

<div align="center">
  <img src="https://github.com/ASLP-lab/WenetSpeech-Chuan/blob/main/src/figs/domain.png?raw=true" width="300" style="display:inline-block; margin-right:10px;" />
  <img src="https://github.com/ASLP-lab/WenetSpeech-Chuan/blob/main/src/figs/quality_distribution.jpg?raw=true" width="300" style="display:inline-block;" />
</div>





### Metadata Format
We store all audio metadata in a standardized JSON format, where the core fields include `utt_id` (unique identifier for each audio segment), `rover_result` (ROVER result of three ASR transcriptions), `confidence` (confidence score of text transcription), `jyutping_confidence` (confidence score of Cantonese pinyin transcriptions), and `duration` (audio duration); speaker attributes include `speaker_id`, `gender`, and `age`; audio quality assessment metrics include `sample_rate`, `DNSMOS`, and `SNR`; timestamp information includes `timestamp` (precisely recording segment boundaries with `start` and `end`); and extended metadata under the `meta_info` field includes `program` (program name), `region` (geographical information), `link` (original content link), and `domain` (domain classification).


#### 📂 Content Tree
```
WenetSpeech-Chuan
├── metadata.jsonl
├── .gitattributes
└── README.md
```
<!-- WenetSpeech-Chuan
├── metadata.jsonl
│
├── audio_labels/
│   ├── wav_utt_id.jsonl
│   ├── wav_utt_id.jsonl
│   ├── ...
│   └── wav_utt_id.jsonl

├── .gitattributes
└── README.md -->

#### Data sample:

###### metadata.jsonl

{<br>
  "utt": 音频id, <br>
  "filename":音频文件名(type: str), <br>
  "text": 转录抄本(type: str), <br>
  "domain": 参考领域信息(type: list[str]), <br>
  "gender": 说话人性别(type: str), <br>
  "age": 说话人年龄标签 (type: int范围, eg: 中年(36~59)), <br>
  "wvmos": 音频质量分数(type: float), <br>
  "confidence": 转录文本置信度(0-1)(type: str), <br>
  "emotion": 说话人情感标签 (type: str,eg: 愤怒), <br>
} <br>

**example:** 

{ <br>
    "utt": "013165495633_09mNC_9_5820", <br>
    "filename": "013165495633_09mNC_9_5820.wav", <br>
    "text": "还是选二手装好了的别墅诚心入如意的直接入住的好好", <br>
    "domain": [ <br>
        "短视频" <br>
    ], <br>
    "gender": "Male", <br>
    "age": "YOUTH", <br>
    "wvmos": 2.124380588531494, <br>
    "confidence": 0.8333, <br>
    "emotion": angry, <br>
} <br>



<!-- ###### audio_labels/wav_utt_id.jsonl:
{ <br>
  "wav_utt_id_timestamp": 以 转化为wav后的长音频id_时间戳信息 作为切分后的短音频id (type: str), <br>
  "wav_utt_id_timestamp_path": 短音频数据路径 (type: str), <br>
  "audio_clip_id": 该段短音频在长音频中的切分顺序编号, <br>
  "timestamp": 时间戳信息, <br>
  "wvmos_score": wvmos分数,衡量音频片段质量 (type: float), <br>
  "text": 对应时间戳的音频片段的抄本 (type: str), <br>
  "text_punc": 带标点的抄本 (type: str), <br>
  "spk_num": 音频片段说话人个数,single/multi (type: str) <br>
  "confidence": 抄本置信度 (type: float), <br>
  "emotion": 说话人情感标签 (type: str,eg: 愤怒), <br>
  "age": 说话人年龄标签 (type: int范围, eg: 中年(36~59)), <br>
  "gender": 说话人性别标签  (type: str,eg: 男/女), <br>
} <br>
 -->
<!-- #### Data sample(EN):

###### metadata.jsonl
{ <br>
  "utt_id": Original long audio ID,  <br>
  "wav_utt_id": Converted long audio ID after transforming to WAV format,  <br>
  "source_audio_path": Path to the original long audio file,  <br>
  "audio_labels": Path to the label file of short audio segments cut from the converted long audio,  <br>
  "url": Download link for the original long audio <br>
} <br>


###### audio_labels/wav_utt_id.jsonl:

{ <br>
  "wav_utt_id_timestamp": Short audio segment ID, composed of the converted long audio ID + timestamp information (type: str), <br>
  "wav_utt_id_timestamp_path": Path to the short audio data (type: str), <br>
  "audio_clip_id": Sequence number of this short segment within the long audio, <br>
  "timestamp": Timestamp information, <br>
  "wvmos_score": WVMOS score, measuring the quality of the audio segment (type: float), <br>
  "text": Transcript of the audio segment corresponding to the timestamp (type: str), <br>
  "text_punc": Transcript with punctuation (type: str), <br>
  "spk_num": Number of speakers in the audio segment, single/multi (type: str), <br>
  "confidence": Confidence score of the transcript (type: float), <br>
  "emotion": Speaker’s emotion label (type: str, e.g., anger), <br>
  "age": Speaker’s age label (type: int range, e.g., middle-aged (36–59)), <br>
  "gender": Speaker’s gender label (type: str, e.g., male/female) <br>
} <br>
 -->
### WenetSpeech Usage
You can obtain the original video source through the `link` field in the metadata file (`metadata.json`). Segment the audio according to the `timestamps` field to extract the corresponding record. For pre-processed audio data, please contact us using the information provided below. 

## Contact
If you have any questions or would like to collaborate, feel free to reach out to our research team via email: [email protected] or ziyu_[email protected].

You’re also welcome to join our WeChat group for technical discussions, updates, and — as mentioned above — access to pre-processed audio data.

<p align="center">
<img src="https://github.com/ASLP-lab/WenetSpeech-Chuan/raw/main/src/figs/wechat.jpg" width="300" alt="WeChat Group QR Code"/>
<em>Scan to join our WeChat discussion group</em>
</p>

<p align="center">
<img src="https://github.com/ASLP-lab/WenetSpeech-Yue/raw/main/figs/[email protected]" width="300" alt="Official Account QR Code"/>
</p>