--- license: apache-2.0 pipeline_tag: tabular-regression --- # Mitra Regressor Mitra regressor is a tabular foundation model that is pre-trained on purely synthetic datasets sampled from a mix of random regressors. ## Architecture Mitra is based on a 12-layer Transformer of 72 M parameters, pre-trained by incorporating an in-context learning paradigm. ## Usage To use Mitra regressor, install AutoGluon by running: ```sh pip install uv uv pip install autogluon.tabular[mitra] ``` A minimal example showing how to perform inference using the Mitra regressor: ```python import pandas as pd from autogluon.tabular import TabularDataset, TabularPredictor from sklearn.model_selection import train_test_split from sklearn.datasets import fetch_california_housing # Load datasets housing_data = fetch_california_housing() housing_df = pd.DataFrame(housing_data.data, columns=housing_data.feature_names) housing_df['target'] = housing_data.target print("Dataset shapes:") print(f"California Housing: {housing_df.shape}") # Create train/test splits (80/20) housing_train, housing_test = train_test_split(housing_df, test_size=0.2, random_state=42) print("Training set sizes:") print(f"Housing: {len(housing_train)} samples") # Convert to TabularDataset housing_train_data = TabularDataset(housing_train) housing_test_data = TabularDataset(housing_test) # Create predictor with Mitra for regression print("Training Mitra regressor on California Housing dataset...") mitra_reg_predictor = TabularPredictor( label='target', path='./mitra_regressor_model', problem_type='regression' ) mitra_reg_predictor.fit( housing_train_data.sample(1000), # sample 1000 rows hyperparameters={ 'MITRA': {'fine_tune': False} }, ) # Evaluate regression performance mitra_reg_predictor.leaderboard(housing_test_data) ``` ## License This project is licensed under the Apache-2.0 License. ## Reference ``` @article{zhang2025mitra, title={Mitra: Mixed synthetic priors for enhancing tabular foundation models}, author={Zhang, Xiyuan and Maddix, Danielle C and Yin, Junming and Erickson, Nick and Ansari, Abdul Fatir and Han, Boran and Zhang, Shuai and Akoglu, Leman and Faloutsos, Christos and Mahoney, Michael W and others}, journal={arXiv preprint arXiv:2510.21204}, year={2025} } ``` Amazon Science blog: [Mitra: Mixed synthetic priors for enhancing tabular foundation models](https://www.amazon.science/blog/mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models?utm_campaign=mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models&utm_medium=organic-asw&utm_source=linkedin&utm_content=2025-7-22-mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models&utm_term=2025-july)