--- language: - en - zh license: other tags: - gensyn - testnet - rl-swarm - code-generation - mbpp - code-contests pipeline_tag: text-generation base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct datasets: - deepmind/code_contests - google-research-datasets/mbpp library_name: transformers --- # Qwen2.5-Coder-0.5B-Instruct — Gensyn Swarm 此仓库用于记录在 Gensyn Testnet 的 RL Swarm 代码生成任务中的参与与权重版本。基础模型为 `Qwen/Qwen2.5-Coder-0.5B-Instruct`。 ## Overview - Base model: Qwen2.5-Coder-0.5B-Instruct - Task: Code generation (mbpp, code_contests) - Hardware: Mac mini (M4, 16GB), Apple MPS - Participation: Gensyn Testnet / CodeZero ## Training Data - deepmind/code_contests - google-research-datasets/mbpp ## Metrics - pass@1, pass@k, exact-match(随版本更新补充) ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "aiyun123/Qwen2.5-Coder-0.5B-Instruct" tok = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto" # 自动选择设备;在 Mac 可走 MPS ) prompt = "Write a Python function to check if a number is prime." inputs = tok(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=256) print(tok.decode(outputs[0], skip_special_tokens=True)) ``` ### Inference Notes - macOS: 推荐 `PYTORCH_ENABLE_MPS_FALLBACK=1`,必要时设置 `PYTORCH_MPS_HIGH_WATERMARK_RATIO=0.0` - dtype: 若遇内存限制,可尝试 `torch.float16` 或启用 `device_map="auto"` ## Limitations - 小模型在复杂算法/长代码生成上的能力有限;需结合评测任务客观比较 ## Versioning - `swarm-YYYY-MM-DD`(每日/每轮次版本号;后续推送时更新) ## License 与上游基础模型许可一致;请参见 Qwen2.5 的官方许可说明与链接。